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20 (1.2) Write a = 2k + 1. Then

a2 − 1 = (a − 1) (a + 1) = 2k (2k + 2) = 4k (k + 1) .

Note that either 2|k or 2|k + 1. Hence 8|4k (k + 1).
36 (1.2) Use (a, b) = (a, b− aq) to get

(

n + 1, n2 − n + 1
)

=
(

n + 1, n2 − n + 1 − (n + 1) (n − 2)
)

= (n + 1, 3) .

Now (n + 1, 3) is either 1 or 3.
32(1.2) If d1, . . . , dk are digits of n, n can be written in the form

d110
k−1 + d210

k−2 + · · · + dk.

Define S = d1 + · · · + dk. Let

∆ = n − S = d1

(

10k−1 − 1
)

+ d2

(

10k−2 − 1
)

+ . . . . + dk−1 (10 − 1) .

Note that 10s − 1 = 99 . . . 9 = 3 (33 . . . 3) is divisible by 3 for all s. Hence 3|∆. If
3|S, then 3| (S + ∆ = n). If 3|n, then 3| (n − ∆ = S).

11(1.4) Let us assume that there only finitely many prime numbers of the form
4k + 3. Denote them by p1, . . . , pn. Note that p2

1 will be of the form 4k + 1, and
therefore p2

1 . . . p2
n is of the form 4k + 1. Let m = p1

1 . . . p2
n +2. Then m is of the form

4k + 3, therefore it has at least one prime factor p of the form 4k + 3. But pi does
not divide m for i = 1, . . . , n, therefore p 6= pi. This contradicts the assumption that
p1, . . . , pn are ALL primes of the form 4k + 3.

12(1.4) At least one of the numbers n, n + 2 and n + 4 is divisible by 3. If they
are all prime, one of them is 3, which is possible only if n = 3.

14(1.4) Induction on n. If n = 1, p1 = 2 ≤ 22n−1

= 2. If p1, . . . , pn are first n

primes. Then

pn+1 ≤ p1 . . . pn + 1.

By induction assumption pk ≤ 22k−1

for all k ≤ n. Therefore

pn+1 ≤ 220+21+22+···+2n−1

+ 1 = 22n
−1 + 1 =

1

2
2n + 1 ≤ 22n

.

30(2.1) We have to show that 30|a5 − a. It is sufficient to show that 2,3 and 5
divide a5 − a. 5|a5 − a by Fermat’s little Theorem. To prove that 2 and 3 divide
a5 − a, factor

a5 − a = a
(

a4 − 1
)

= a
(

a2 − 1
) (

a2 + 1
)

= a (a − 1) (a + 1)
(

a2 + 1
)

.

Now 2|a − 1 or 2|a, 3 divides one of three consequtive numbers a − 1, a, a + 1.
13(2.3) Assume that ax = 0 has a non-zero solution x = b. Then n|ab but n does

not divide b. Therefore d = (n, b) > 1. But the equation ax = 1 has a solution in
1



2

Zn if and only if ac = 1 + nk, for some c, k ∈ Z. Therefore (a, n) = 1. Thus, the
equation ax = 1 does not have solutions in Zn.

Now assume that ax = 1 has a solution x = c. Multiply by c the equation ax = 0.
Get c (ax) = 0, ca = 1 implies x = 0.

6(3.1) No, not closed under addition.
20(3.1) Note a ⊕ 1 = a. So 1 = 0R. Also a ◦ 2 = 2 ◦ a = a, therefore 2 = 1R. The

ring has identity and commutative. The condition

a ◦ b = 0R

can be translated in usual language

ab − (a + b) + 2 = 1.

Therefore ab − a − b + 1 = (a − 1) (b − 1) = 0. Hence a = 1 = 0R or b = 1 = 0R.
29(3.1) Both are wrong, because (1R, 0S) (0R, 1S) = (0R, 0S) = 0R×S , zero product

rule does not work.
5(3.2) (a) Yes, if a, b ∈ S∩T , then a− b ∈ S∩T and ab ∈ S∩T . (b) not true. For

example, consider two subrings T and S in Z, S being the subset of even numbers,
T being the subset of numbers divisible by 3.

22(3.2)

a + a = (a + a)2 = a2 + a2 + a2 + a2 = (a + a) + (a + a) ⇒ a + a = 0R

a+b = (a + b)2 = a2+ab+ba+b2 = (a + b)+ab+ba ⇒ ab+ba = 0R, (ab + ab = 0R) ⇒ ab = ba.

30(3.2) Suppose an = 0R for some a 6= 0R and n > 1. Choose the minimal n such
that an = 0R. If n is even, n = 2k, and x = ak is a nonzero solution for x2 = 0R. If n

is odd, then n = 2k + 1, and x = ak+1 is a nonzero solution for x2 = 0R. If x2 = 0R

does not have nonzero solutions, R should not have nonzero nilpotents elements. If
x2 = 0R has a nonzero solution, this solution is a nilpotent element.


