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20 (1.2) Write a = 2k + 1. Then

a>—1=(a—1)(a+1) =2k 2k +2) =4k (k+1).

Note that either 2|k or 2|k + 1. Hence 8|4k (k + 1).
36 (1.2) Use (a,b) = (a,b— aq) to get

(n+1n’—n+1)=Mm+1Ln"—n+1—(n+1)(n—2)) =(n+1,3).

Now (n + 1, 3) is either 1 or 3.
32(1.2) If dy,. .., dy are digits of n, n can be written in the form

di1057 Y + 1072 4+ -+ d,.
Define S =dy +---+dj. Let
A=n—S8=d (10" 1) +dp (10> = 1) + ...+ dp—1 (10— 1).

Note that 10° — 1 =99...9 = 3(33...3) is divisible by 3 for all s. Hence 3|A. If
3|S5, then 3| (S + A =n). If 3|n, then 3| (n — A = 9).

11(1.4) Let us assume that there only finitely many prime numbers of the form
4k + 3. Denote them by py,...,p,. Note that p? will be of the form 4k + 1, and
therefore p? ... p?2 is of the form 4k + 1. Let m = pi ...p2 +2. Then m is of the form
4k + 3, therefore it has at least one prime factor p of the form 4k 4+ 3. But p; does
not divide m for ¢ = 1,...,n, therefore p # p;. This contradicts the assumption that
Pi,---,Pn are ALL primes of the form 4k + 3.

12(1.4) At least one of the numbers n, n + 2 and n + 4 is divisible by 3. If they
are all prime, one of them is 3, which is possible only if n = 3.

14(1.4) Induction on n. If n =1, py =2 < 22" = 2. If py,...,pn are first n
primes. Then

Pnt1 < p1...pn+ 1

By induction assumption py < 227" for all k < n. Therefore
Pri1 < 220+21+22+---+2”*1 +1=922""141= %2n +1< 92"

30(2.1) We have to show that 30|a® — a. It is sufficient to show that 2,3 and 5
divide a® — a. 5|a® — a by Fermat’s little Theorem. To prove that 2 and 3 divide

a® — a, factor

a>—a=a(a"—1)=a(@®—1)(a®+1)=a(a—1)(a+1)(a*+1).

Now 2|a — 1 or 2|a, 3 divides one of three consequtive numbers a — 1,a,a + 1.
13(2.3) Assume that az = 0 has a non-zero solution # = b. Then n|ab but n does

not divide b. Therefore d = (n,b) > 1. But the equation ax = 1 has a solution in
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Zy, if and only if ac = 1 + nk, for some ¢, k € Z. Therefore (a,n) = 1. Thus, the
equation ax = 1 does not have solutions in Z,.

Now assume that ax = 1 has a solution x = ¢. Multiply by ¢ the equation ax = 0.
Get ¢ (azx) =0, ca = 1 implies x = 0.

6(3.1) No, not closed under addition.

20(3.1) Note a1 =a. So 1 =0g. Also a02 =2o0a = a, therefore 2 = 1z. The
ring has identity and commutative. The condition

aob=0g
can be translated in usual language
ab—(a+b)+2=1

Therefore ab—a—b+1=(a—1)(b—1) =0. Hencea=1=0g or b=1=0p.

29(3.1) Both are wrong, because (1g,0s) (0Og, ls) = (0g,0s) = Orxs, zero product
rule does not work.

5(3.2) (a) Yes,ifa,b € SNT, thena—b e SNT and ab € SNT. (b) not true. For
example, consider two subrings 7" and S in Z, S being the subset of even numbers,

T being the subset of numbers divisible by 3.
22(3.2)
a+a=(a+a)l=d"+a*+a*+d*=(a+a)+(a+a)=a+a=0z
a+b = (a +b)?> = a*+ab+ba+b? = (a + b)+ab+ba = ab+ba = Og, (ab + ab = 0g) = ab = ba.
30(3.2) Suppose a" = 0g for some a # O and n > 1. Choose the minimal n such
that a”® = Og. If n is even, n = 2k, and = = a” is a nonzero solution for 22 = 0g. If n
is odd, then n = 2k + 1, and = = a**! is a nonzero solution for 22 = 0p. If 22 = 0y

does not have nonzero solutions, R should not have nonzero nilpotents elements. If
2% = O has a nonzero solution, this solution is a nilpotent element.



