Solutions of homework problems.

Math 113

Vera Serganova

20 (1.2) Write a = 2k + 1. Then

$$a^{2} - 1 = (a - 1)(a + 1) = 2k(2k + 2) = 4k(k + 1).$$

Note that either 2|k or 2|k+1. Hence 8|4k(k+1).

36 (1.2) Use (a, b) = (a, b - aq) to get

$$(n+1, n^2 - n + 1) = (n+1, n^2 - n + 1 - (n+1)(n-2)) = (n+1, 3).$$

Now (n + 1, 3) is either 1 or 3.

32(1.2) If d_1, \ldots, d_k are digits of n, n can be written in the form

$$d_1 10^{k-1} + d_2 10^{k-2} + \dots + d_k.$$

Define $S = d_1 + \cdots + d_k$. Let

$$\Delta = n - S = d_1 \left(10^{k-1} - 1 \right) + d_2 \left(10^{k-2} - 1 \right) + \ldots + d_{k-1} \left(10 - 1 \right).$$

Note that $10^s - 1 = 99 \dots 9 = 3(33 \dots 3)$ is divisible by 3 for all s. Hence $3|\Delta$. If 3|S, then $3|(S + \Delta = n)$. If 3|n, then $3|(n - \Delta = S)$.

11(1.4) Let us assume that there only finitely many prime numbers of the form 4k + 3. Denote them by p_1, \ldots, p_n . Note that p_1^2 will be of the form 4k + 1, and therefore $p_1^2 \ldots p_n^2$ is of the form 4k + 1. Let $m = p_1^1 \ldots p_n^2 + 2$. Then m is of the form 4k + 3, therefore it has at least one prime factor p of the form 4k + 3. But p_i does not divide m for $i = 1, \ldots, n$, therefore $p \neq p_i$. This contradicts the assumption that p_1, \ldots, p_n are ALL primes of the form 4k + 3.

12(1.4) At least one of the numbers n, n+2 and n+4 is divisible by 3. If they are all prime, one of them is 3, which is possible only if n = 3.

14(1.4) Induction on *n*. If n = 1, $p_1 = 2 \le 2^{2^{n-1}} = 2$. If p_1, \ldots, p_n are first *n* primes. Then

$$p_{n+1} \le p_1 \dots p_n + 1.$$

By induction assumption $p_k \leq 2^{2^{k-1}}$ for all $k \leq n$. Therefore

$$p_{n+1} \le 2^{2^0 + 2^1 + 2^2 + \dots + 2^{n-1}} + 1 = 2^{2^n - 1} + 1 = \frac{1}{2}2^n + 1 \le 2^{2^n}.$$

30(2.1) We have to show that $30|a^5 - a$. It is sufficient to show that 2,3 and 5 divide $a^5 - a$. $5|a^5 - a$ by Fermat's little Theorem. To prove that 2 and 3 divide $a^5 - a$, factor

$$a^{5} - a = a(a^{4} - 1) = a(a^{2} - 1)(a^{2} + 1) = a(a - 1)(a + 1)(a^{2} + 1).$$

Now 2|a-1 or 2|a, 3 divides one of three consequtive numbers a-1, a, a+1.

13(2.3) Assume that ax = 0 has a non-zero solution x = b. Then n|ab but n does not divide b. Therefore d = (n, b) > 1. But the equation ax = 1 has a solution in

2

 \mathbb{Z}_n if and only if ac = 1 + nk, for some $c, k \in \mathbb{Z}$. Therefore (a, n) = 1. Thus, the equation ax = 1 does not have solutions in \mathbb{Z}_n .

Now assume that ax = 1 has a solution x = c. Multiply by c the equation ax = 0. Get c(ax) = 0, ca = 1 implies x = 0.

6(3.1) No, not closed under addition.

20(3.1) Note $a \oplus 1 = a$. So $1 = 0_R$. Also $a \circ 2 = 2 \circ a = a$, therefore $2 = 1_R$. The ring has identity and commutative. The condition

$$a \circ b = 0_R$$

can be translated in usual language

$$ab - (a + b) + 2 = 1.$$

Therefore ab - a - b + 1 = (a - 1)(b - 1) = 0. Hence $a = 1 = 0_R$ or $b = 1 = 0_R$.

29(3.1) Both are wrong, because $(1_R, 0_S)(0_R, 1_S) = (0_R, 0_S) = 0_{R \times S}$, zero product rule does not work.

5(3.2) (a) Yes, if $a, b \in S \cap T$, then $a - b \in S \cap T$ and $ab \in S \cap T$. (b) not true. For example, consider two subrings T and S in \mathbb{Z} , S being the subset of even numbers, T being the subset of numbers divisible by 3.

22(3.2)

$$a + a = (a + a)^2 = a^2 + a^2 + a^2 + a^2 = (a + a) + (a + a) \Rightarrow a + a = 0_R$$

 $a+b = (a+b)^2 = a^2 + ab + ba + b^2 = (a+b) + ab + ba \Rightarrow ab + ba = 0_R, (ab+ab=0_R) \Rightarrow ab = ba.$

30(3.2) Suppose $a^n = 0_R$ for some $a \neq 0_R$ and n > 1. Choose the minimal n such that $a^n = 0_R$. If n is even, n = 2k, and $x = a^k$ is a nonzero solution for $x^2 = 0_R$. If n is odd, then n = 2k + 1, and $x = a^{k+1}$ is a nonzero solution for $x^2 = 0_R$. If $x^2 = 0_R$ does not have nonzero solutions, R should not have nonzero nilpotents elements. If $x^2 = 0_R$ has a nonzero solution, this solution is a nilpotent element.