Solutions of homework problems.

Math 113

Vera Serganova

12(4.5) If $f(x) = g(x)h(x)$ then $f(x+c) = g(x+c)h(x+c)$. Moreover, $\deg p(x) = \deg p(x+c)$ for any polynomial $p(x)$. Hence irreducibility of $f(x)$ is equivalent to irreducibility of $f(x + c)$.

13(4.5) The polynomial

$$
f(x+1) = x^4 + 4x^3 + 6x^2 + 8x + 6
$$

is irreducible by Eisenstein criterion with $p = 2$.

17(4.5) The number of polynomials of degree less or equal than k is n^k , the number of polynomial of degree less or equal than $k-1$ is $n^{\tilde{k}-1}$. Hence the number of polynomials of degree k equals $n^k - n^{k-1}$.

11 (5.1) Since $p(x)$ is not irreducible, then $p(x) = f(x) g(x)$ for some polynomial $f(x)$, $g(x)$ of degree less than the degree of $p(x)$. Then $f(x) g(x) \equiv 0_F \mod p(x)$ but both $f(x)$ and $g(x)$ are not congruent to 0_F modulo $p(x)$.

13 (5.1) Both graphs meet the y-axis at the same point, because $f(0) = g(0)$. $14(5.2)$ Answers:

 $(a)[2r-3]^{-1} - [-2r-3]$

$$
\text{(a)}[2x-3] = [-2x-3]
$$

$$
(b)[x2 + x + 1]-1 = [x]-1 = [-x]
$$

$$
(c)[x2 + x + 1]-1 = [x2]
$$

15(5.2) Let $r = [x], s = [x + 1]$. The polynomial is $x(x - 1)(x - r)(x - s) =$ x^4+x .

1(5.3)

(a) Yes, the polynomial $x^3 + 2x^2 + x + 1$ is irreducible in $\mathbb{Z}_3[x]$, because it does not have a root.

(b) No, $2x^3 - 4x^2 + 2x + 1$ is reducible in $\mathbb{Z}_5[x]$, because 2 is a root.

(c) No, $x^4 + x^2 + 1$ is reducible in $\mathbb{Z}_2[x]$, because $(x^2 + x + 1)^2 = x^4 + x^2 + 1$.

7(5.3) Use induction on $n = \deg f(x)$. The case $n = 1$ is trivial. By Corollary 5.12 there exists an extension K of F which contains a root c_1 of $f(x)$. In $K[x]$ we have $f(x) = (x - c_1) h(x)$. By induction assumption there is an extension E of K such that $h(x) = c_0 (x - c_2) \dots (x - c_n)$ for some $c_0, c_2, \dots c_n \in E$. Hence

$$
f(x) = c_0(x - c_1)(x - c_2)...(x - c_n)
$$

as required.

8 (5.3) Let $E = F[x]/(p(x))$. Then $(x - [x])$ divides $p(x)$ in $E[x]$. Therefore

$$
p(x) = b(x - [x])(x - c)
$$

for some $b, c \in E$. In particular c is the second root of $p(x)$.

10 (6.1) Let (a_1, a_2) , $(b_1, b_2) \in I \times J$, then $a_1, b_1 \in I$ and $a_2, b_2 \in J$. Therefore

 $a_1 - b_1 \in I$ and $a_2 - b_2 \in J$. Hence $(a_1, a_2) - (b_1, b_2) = (a_1 - b_1, a_2 - b_2) \in I \times J$. 1

If $(r, s) \in R \times S$, then $ra_1 \in I$ and $sa_2 \in J$, and therefore (r, s) $(a_1, a_2) = (ra_1, sa_2) \in$ $I \times J$. In the same way (a_1, a_2) $(r, s) \in I \times J$.

34 (6.1) If $x, y \in IJ$ then

$$
x = a_1b_1 + \dots + a_nb_n, y = c_1d_1 + \dots + c_md_m
$$

for some $a_1, ..., a_n, c_1, ..., c_m \in I, b_1, ..., b_n, d_1, ..., d_m \in J$. Then

$$
x - y = a_1b_1 + \dots + a_nb_n + (-c_1)d_1 + \dots + (-c_m)d_m \in IJ,
$$

because $-c_i \in I$. If $r \in R$, then

$$
rx = (ra1) b1 + \dots + (ran) bn \in IJ,
$$

$$
xr = a1(b1r) + \dots + an(bnr) \in IJ
$$

since $ra_i \in I$, $b_i r \in J$.

13 (6.2) Let $p: R[x] \to R$ defined by

$$
p (a_0 + a_1 x + \dots + a_n x^n) = a_0.
$$

Then p is a surjective homomorphism, and the kernel of p consists of all polynomials with zero constant coefficients. In other words the kernel of p is (x) . By the first isomorphism theorem R is isomorphic to $R[x]/(x)$.

18 (6.2) Let R/I be an integral domain. Then $(a + I)(b + I) = ab + I = 0 + I$ implies that $a + I = 0$ or $b + I = 0$. Hence $ab \in I$ implies $a \in I$ or $b \in I$.

Conversely, let $ab \in I$ implies $a \in I$ or $b \in I$. Then $(a + I)(b + I) = ab + I = 0 + I$ implies $ab \in I$. Therefore $a \in I$ or $b \in I$, and hence $a + I = 0 + I$ or $b + I = 0 + I$. is not prime.

20 (6.2) Let $f: R \to S$ be a surjective homomorphism, so S is a homomorphic image. S is commutative, because $f(x) f (y) = f (xy) = f (yx) = f (y) f (x)$. Furthermore, $f(1_R)$ is the identity in S. Finally, if J is an ideal in S, then $f^{-1}(J)$ = ${r \in R \mid f(r) = j}$ is an ideal in R, and $f^{-1}(J) = (c)$ for some $c \in R$. Then every element $b \in J$ can be written as $f(r)$ for some $r \in f^{-1}(J)$. But $r = xc$, so $b = f(r) = f(x) f(c)$. Thus $J = (f(c))$.

32 (6.2) Obviously $f(a) = a + J$ is a well-defined homomorphism $f : I \rightarrow$ $(I+J)/J$. It is surjective since for any $a\in I, b\in J, a+b+J=f(a)$. The kernel of f consists of all $c \in I$ such that $c + J = 0 + J$, i.e. $c \in J$. Thus, Ker $f = I \cap J$, and by the first isomorphism theorem $I/(I \cap J) \cong (I + J)/J$.

19 (7.1) Just check all properties of a group

$$
(a \# b) \# c = c * (b * a) = (c * b) * a = a \# (b \# c),
$$

 $a \# e = e * a = a = a * e = e \# a, a \# a^{-1} = a^{-1} * a = e = a * a^{-1} = a^{-1} \# a.$

14 (7.2) If $|a| = n$, then the order a^k is equal to $\frac{n}{(n,k)}$. Indeed, $(a^k)^m = e$ if and only if *n* divides km. Let $r = \frac{k}{r}$ $\frac{k}{(n,k)}$, then $\frac{n}{(n,k)}$ divides rm. Since $\left(r, \frac{n}{(n,k)}\right) = 1$, we obtain $\frac{n}{(n,k)}|m$. The minimal possible $m = \frac{n}{(n,k)}$ $\frac{n}{(n,k)}$.

30 (7.2) Assume that G does not contain an element of order 2. Then if $g \in G$ and $g \neq e$, then $g^{-1} \neq g$. Thus, G is a disjoint union of $\{e\}$ and two-element sets ${g, g^{-1}}$. That implies |G| is odd. Therefore if |G| is even, G must have an element of order 2.

33 (7.2) Note that

$$
ab^2 = b^4ab = b^8a = b^2a.
$$

Therefore

$$
ab = b^4a = b^2b^2a = ab^4,
$$

and therefore

 $b^3 = e$, $ab = ba$.

36 (7.2) Write

$$
(ab)^k = a^k b^k, \ (ab)^{k+1} = a^{k+1} b^{k+1}, \ (ab)^{k+2} = a^{k+2} b^{k+2}.
$$

Then

$$
ab = (ab)^{-k} (ab)^{k+1} = b^{-k} a^{-k} a^{k+1} b^{k+1} = b^{-k} a b^{k+1},
$$

that implies $a = b^{-k}ab^{k}$. Similarly, $a = b^{-k-1}ab^{k+1}$. Therefore we get

$$
a = b^{-k}ab^{k} = b^{-1}b^{-k}ab^{k}b = b^{-1}ab.
$$

Therefore $ab = ba$.

31 (7.3) If $a, b \in x^{-1}Hx$, then $a = x^{-1}cx$, $b = x^{-1}dx$ for some $c, d \in H$. Therefore $ab = x^{-1}cxx^{-1}dx = x^{-1}cdx \in x^{-1}Hx,$ $a^{-1}(x^{-1}cx)^{-1} = x^{-1}c^{-1}x \in x^{-1}Hx,$

since $cd, c^{-1} \in H$.

32 (7.3) The map $\varphi_x : H \to H$ given by $\varphi_x(h) = x^{-1}hx$ is a bijection, since $(\varphi_x)^{-1} = \varphi_{x^{-1}}$. Therefore φ_x is surjective and hence $x^{-1}Hx = \varphi_x(H) = H$.

21 (7.4) Let $(f(a))^k = e_H$. Since $(f(a))^k = f(a^k)$ and f is injective $a^k = e_G$. Thus, |a| divides $|f(a)|$. On the other hand, if $a^m = e_G$, then $(f(a))^m = f(a^m) = e_H$. Therefore $|f(a)|$ divides $|a|$. Thus, $|f(a)| = |a|$.

24 (7.4) If f and g are two automorphisms of G. Then

$$
f \circ g (ab) = f (g (ab)) = f (g (a) g (b)) = f (g (a)) f (g (b) = f \circ g (a) f \circ g (b).
$$

Therefore $f \circ g$ is a homomorphism. Since $f \circ g$ is bijective, $f \circ g \in \text{Aut } G$. It is left to check that f^{-1} is a homomorphism.

Indeed, since f is bijective, for any $a, b \in G$ there exist unique $c, d \in G$ such that $a = f(c)$, $b = f(d)$. Then

$$
f^{-1}(ab) = f^{-1}(f(c) f(d)) = f^{-1}(f(cd)) = cd = f^{-1}(a) f^{-1}(b).
$$