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12(4.5) If f (x) = g (x)h (x) then f (x + c) = g (x + c)h (x + c). Moreover,

deg p (x) = deg p (x + c) for any polynomial p (x). Hence irreducibility of f (x) is
equivalent to irreducibility of f (x + c).

13(4.5) The polynomial

f (x + 1) = x4 + 4x3 + 6x2 + 8x + 6

is irreducible by Eisenstein criterion with p = 2.
17(4.5) The number of polynomials of degree less or equal than k is nk, the

number of polynomial of degree less or equal than k − 1 is nk−1. Hence the number
of polynomials of degree k equals nk − nk−1.

11 (5.1) Since p (x) is not irreducible, then p (x) = f (x) g (x) for some polynomial
f (x), g (x) of degree less than the degree of p (x). Then f (x) g (x) ≡ 0F mod p (x)
but both f (x) and g (x) are not congruent to 0F modulo p (x).

13 (5.1) Both graphs meet the y-axis at the same point, because f (0) = g (0).
14(5.2) Answers:
(a)[2x − 3]−1 = [−2x − 3]

(b)[x2 + x + 1]
−1

= [x]
−1

= [−x]

(c)[x2 + x + 1]
−1

= [x2]
15(5.2) Let r = [x], s = [x + 1]. The polynomial is x (x − 1) (x − r) (x − s) =

x4 + x.
1(5.3)
(a) Yes, the polynomial x3 +2x2 +x+1 is irreducible in Z3 [x], because it does not

have a root.
(b) No, 2x3 − 4x2 + 2x + 1 is reducible in Z5 [x], because 2 is a root.

(c) No, x4 + x2 + 1 is reducible in Z2 [x], because (x2 + x + 1)
2

= x4 + x2 + 1.
7(5.3) Use induction on n = deg f (x). The case n = 1 is trivial. By Corollary

5.12 there exists an extension K of F which contains a root c1 of f (x). In K [x] we
have f (x) = (x − c1) h (x). By induction assumption there is an extension E of K
such that h (x) = c0 (x− c2) . . . (x − cn) for some c0, c2, . . . cn ∈ E. Hence

f (x) = c0 (x − c1) (x− c2) . . . (x − cn)

as required.
8 (5.3) Let E = F [x]/(p (x)). Then (x− [x]) divides p (x) in E [x]. Therefore

p (x) = b (x − [x]) (x− c)

for some b, c ∈ E. In particular c is the second root of p (x).
10 (6.1) Let (a1, a2) , (b1, b2) ∈ I × J , then a1, b1 ∈ I and a2, b2 ∈ J . Therefore

a1 − b1 ∈ I and a2 − b2 ∈ J . Hence (a1, a2) − (b1, b2) = (a1 − b1, a2 − b2) ∈ I × J.
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If (r, s) ∈ R×S, then ra1 ∈ I and sa2 ∈ J , and therefore (r, s) (a1, a2) = (ra1, sa2) ∈
I × J . In the same way (a1, a2) (r, s) ∈ I × J .

34 (6.1) If x, y ∈ IJ then

x = a1b1 + · · · + anbn, y = c1d1 + · · · + cmdm

for some a1, . . . , an, c1, . . . , cm ∈ I , b1, . . . , bn, d1, . . . , dm ∈ J . Then

x − y = a1b1 + · · · + anbn + (−c1) d1 + · · · + (−cm) dm ∈ IJ,

because −ci ∈ I . If r ∈ R, then

rx = (ra1) b1 + · · · + (ran) bn ∈ IJ,

xr = a1 (b1r) + · · · + an (bnr) ∈ IJ

since rai ∈ I , bir ∈ J .
13 (6.2) Let p : R [x] → R defined by

p (a0 + a1x + · · · + anx
n) = a0.

Then p is a surjective homomorphism, and the kernel of p consists of all polynomials
with zero constant coefficients. In other words the kernel of p is (x). By the first
isomorphism theorem R is isomorphic to R [x]/(x).

18 (6.2) Let R/I be an integral domain. Then (a + I) (b + I) = ab + I = 0 + I
implies that a + I = 0 or b + I = 0. Hence ab ∈ I implies a ∈ I or b ∈ I .

Conversely, let ab ∈ I implies a ∈ I or b ∈ I . Then (a + I) (b + I) = ab+ I = 0+ I
implies ab ∈ I . Therefore a ∈ I or b ∈ I , and hence a + I = 0 + I or b + I = 0 + I .

is not prime.
20 (6.2) Let f : R → S be a surjective homomorphism, so S is a homomorphic

image. S is commutative, because f (x) f (y) = f (xy) = f (yx) = f (y)f (x). Fur-
thermore, f (1R) is the identity in S. Finally, if J is an ideal in S, then f−1 (J) =
{r ∈ R | f (r) = j} is an ideal in R, and f−1 (J) = (c) for some c ∈ R. Then
every element b ∈ J can be written as f (r) for some r ∈ f−1 (J). But r = xc,
so b = f (r) = f (x) f (c). Thus J = (f (c)).

32 (6.2) Obviously f (a) = a + J is a well-defined homomorphism f : I →
(I + J)/J . It is surjective since for any a ∈ I, b ∈ J , a + b +J = f (a). The kernel of
f consists of all c ∈ I such that c + J = 0 + J , i.e. c ∈ J . Thus, Ker f = I ∩ J , and
by the first isomorphism theorem I/(I ∩ J) ∼= (I + J)/J .

19 (7.1) Just check all properties of a group

(a#b)#c = c ∗ (b ∗ a) = (c ∗ b) ∗ a = a# (b#c) ,

a#e = e ∗ a = a = a ∗ e = e#a, a#a−1 = a−1 ∗ a = e = a ∗ a−1 = a−1#a.

14 (7.2) If |a| = n, then the order ak is equal to n
(n,k)

. Indeed,
(

ak
)m

= e if and

only if n divides km. Let r = k
(n,k)

, then n
(n,k)

divides rm. Since
(

r, n
(n,k)

)

= 1, we

obtain n
(n,k)

|m. The minimal possible m = n
(n,k)

.
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30 (7.2) Assume that G does not contain an element of order 2. Then if g ∈ G
and g 6= e, then g−1 6= g. Thus, G is a disjoint union of {e} and two-element sets
{g, g−1}. That implies |G| is odd. Therefore if |G| is even, G must have an element
of order 2.

33 (7.2) Note that
ab2 = b4ab = b8a = b2a.

Therefore
ab = b4a = b2b2a = ab4,

and therefore
b3 = e, ab = ba.

36 (7.2) Write

(ab)k = akbk, (ab)k+1 = ak+1bk+1, (ab)k+2 = ak+2bk+2.

Then
ab = (ab)−k (ab)k+1 = b−ka−kak+1bk+1 = b−kabk+1,

that implies a = b−kabk. Similarly, a = b−k−1abk+1. Therefore we get

a = b−kabk = b−1b−kabkb = b−1ab.

Therefore ab = ba.
31 (7.3) If a, b ∈ x−1Hx, then a = x−1cx, b = x−1dx for some c, d ∈ H. Therefore

ab = x−1cxx−1dx = x−1cdx ∈ x−1Hx,

a−1
(

x−1cx
)

−1
= x−1c−1x ∈ x−1Hx,

since cd, c−1 ∈ H.
32 (7.3) The map ϕx : H → H given by ϕx (h) = x−1hx is a bijection, since

(ϕx)
−1

= ϕx−1. Therefore ϕx is surjective and hence x−1Hx = ϕx (H) = H.

21 (7.4) Let (f (a))k = eH. Since (f (a))k = f
(

ak
)

and f is injective ak = eG.
Thus, |a| divides |f (a) |. On the other hand, if am = eG, then (f (a))

m
= f (am) = eH.

Therefore |f (a) | divides |a|. Thus, |f (a) | = |a|.
24 (7.4) If f and g are two automorphisms of G. Then

f ◦ g (ab) = f (g (ab)) = f (g (a) g (b)) = f (g (a)) f (g (b) = f ◦ g (a)f ◦ g (b) .

Therefore f ◦ g is a homomorphism. Since f ◦ g is bijective, f ◦ g ∈ AutG. It is left
to check that f−1 is a homomorphism.

Indeed, since f is bijective, for any a, b ∈ G there exist unique c, d ∈ G such that
a = f (c) , b = f (d). Then

f−1 (ab) = f−1 (f (c) f (d)) = f−1 (f (cd)) = cd = f−1 (a) f−1 (b) .


