Solutions of homework problems.
Math 113
Vera Serganova

12(4.5) If \(f(x) = g(x)h(x) \) then \(f(x + c) = g(x + c)h(x + c) \). Moreover, \(\deg p(x) = \deg p(x + c) \) for any polynomial \(p(x) \). Hence irreducibility of \(f(x) \) is equivalent to irreducibility of \(f(x + c) \).

13(4.5) The polynomial
\[
f(x + 1) = x^4 + 4x^3 + 6x^2 + 8x + 6
\]
is irreducible by Eisenstein criterion with \(p = 2 \).

17(4.5) The number of polynomials of degree less or equal than \(k \) is \(n^k \), the number of polynomial of degree less or equal than \(k - 1 \) is \(n^{k-1} \). Hence the number of polynomials of degree \(k \) equals \(n^k - n^{k-1} \).

11 (5.1) Since \(p(x) \) is not irreducible, then \(p(x) = f(x)g(x) \) for some polynomial \(f(x), g(x) \) of degree less than the degree of \(p(x) \). Then \(f(x)g(x) \equiv 0 \pmod{p(x)} \) but both \(f(x) \) and \(g(x) \) are not congruent to \(0 \) modulo \(p(x) \).

13 (5.1) Both graphs meet the \(y \)-axis at the same point, because \(f(0) = g(0) \).

14(5.2) Answers:
(a) \([2x - 3]^{-1} = [-2x - 3] \)
(b) \([[x^2 + x + 1]]^{-1} = [x]^{-1} = [-x] \)
(c) \([[x^2 + x + 1]]^{-1} = [x^2] \)

15(5.2) Let \(r = [x], s = [x + 1] \). The polynomial is \(x(x - 1)(x - r)(x - s) = x^4 + x \).

1(5.3) (a) Yes, the polynomial \(x^3 + 2x^2 + x + 1 \) is irreducible in \(\mathbb{Z}_3[x] \), because it does not have a root.
(b) No, \(2x^3 - 4x^2 + 2x + 1 \) is reducible in \(\mathbb{Z}_5[x] \), because \(2 \) is a root.
(c) No, \(x^4 + x^2 + 1 \) is reducible in \(\mathbb{Z}_2[x] \), because \((x^2 + x + 1)^2 = x^4 + x^2 + 1 \).

7(5.3) Use induction on \(n = \deg f(x) \). The case \(n = 1 \) is trivial. By Corollary 5.12 there exists an extension \(K \) of \(F \) which contains a root \(c_1 \) of \(f(x) \). In \(K[x] \) we have \(f(x) = (x - c_1)h(x) \). By induction assumption there is an extension \(E \) of \(K \) such that \(h(x) = c_0(x - c_2)\ldots(x - c_n) \) for some \(c_0, c_2, \ldots, c_n \in E \). Hence
\[
f(x) = c_0(x - c_1)(x - c_2)\ldots(x - c_n)
\]
as required.

8 (5.3) Let \(E = F[x]/(p(x)) \). Then \((x - [x]) \) divides \(p(x) \) in \(E[x] \). Therefore
\[
p(x) = b(x - [x])(x - c)
\]
for some \(b, c \in E \). In particular \(c \) is the second root of \(p(x) \).

10 (6.1) Let \((a_1, a_2), (b_1, b_2) \in I \times J \), then \(a_1, b_1 \in I \) and \(a_2, b_2 \in J \). Therefore \(a_1 - b_1 \in I \) and \(a_2 - b_2 \in J \). Hence \((a_1, a_2) - (b_1, b_2) = (a_1 - b_1, a_2 - b_2) \in I \times J \).
If \((r, s) \in R \times S\), then \(ra_1 \in I\) and \(sa_2 \in J\), and therefore \((r, s)(a_1, a_2) = (ra_1, sa_2) \in I \times J\). In the same way \((a_1, a_2)(r, s) \in I \times J\).

34 (6.1) If \(x, y \in IJ\) then

\[
x = a_1b_1 + \cdots + a_nb_n, \quad y = c_1d_1 + \cdots + c_md_m
\]

for some \(a_1, \ldots, a_n, c_1, \ldots, c_m \in I, b_1, \ldots, b_n, d_1, \ldots, d_m \in J\). Then

\[
x - y = a_1b_1 + \cdots + a_nb_n + (-c_1)d_1 + \cdots + (-c_m)d_m \in IJ,
\]

because \(-c_i \in I\). If \(r \in R\), then

\[
rx = (ra_1)b_1 + \cdots + (ra_n)b_n \in IJ,
\]

\[
xr = a_1(b_1r) + \cdots + a_n(b_nr) \in IJ
\]

since \(ra_i \in I, br \in J\).

13 (6.2) Let \(p : R[x] \rightarrow R\) defined by

\[
p(a_0 + a_1x + \cdots + a_nx^n) = a_0,
\]

Then \(p\) is a surjective homomorphism, and the kernel of \(p\) consists of all polynomials with zero constant coefficients. In other words the kernel of \(p\) is \((x)\). By the first isomorphism theorem \(R\) is isomorphic to \(R[x]/(x)\).

18 (6.2) Let \(R/I\) be an integral domain. Then \((a + I)(b + I) = ab + I = 0 + I\) implies that \(a + I = 0\) or \(b + I = 0\). Hence \(ab \in I\) implies \(a \in I\) or \(b \in I\).

Conversely, let \(ab \in I\) implies \(a \in I\) or \(b \in I\). Then \((a + I)(b + I) = ab + I = 0 + I\) implies \(ab \in I\). Therefore \(a \in I\) or \(b \in I\), and hence \(a + I = 0 + I\) or \(b + I = 0 + I\) is not prime.

20 (6.2) Let \(f : R \rightarrow S\) be a surjective homomorphism, so \(S\) is a homomorphic image. \(S\) is commutative, because \(f(x)f(y) = f(xy) = f(yx) = f(y)f(x)\). Furthermore, \(f(1_R)\) is the identity in \(S\). Finally, if \(J\) is an ideal in \(S\), then \(f^{-1}(J) = \{r \in R \mid f(r) = j\}\) is an ideal in \(R\), and \(f^{-1}(J) = (c)\) for some \(c \in R\). Then every element \(b \in J\) can be written as \(f(r)\) for some \(r \in f^{-1}(J)\). But \(r = xc\), so \(b = f(r) = f(x)f(c)\). Thus \(J = (f(c))\).

32 (6.2) Obviously \(f(a) = a + J\) is a well-defined homomorphism \(f : I \rightarrow (I + J)/J\). It is surjective since for any \(a \in I, b \in J, a + b + J = f(a)\). The kernel of \(f\) consists of all \(c \in I\) such that \(c + J = 0 + J\), i.e. \(c \in J\). Thus, \(\text{Ker} f = I \cap J\), and by the first isomorphism theorem \(I/(I \cap J) \cong (I + J)/J\).

19 (7.1) Just check all properties of a group

\[
(a \# b) \# c = c \ast (b \# a) = (c \ast b) \ast a = a \# (b \# c),
\]

\[
a \# e = e \ast a = a = a \ast e = e \# a, \quad a \# a^{-1} = a^{-1} \ast a = e = a \ast a^{-1} = a^{-1} \# a.
\]

14 (7.2) If \(|a| = n\), then the order \(a^k\) is equal to \(\frac{n}{(n,k)}\). Indeed, \((a^k)^m = e\) if and only if \(n\) divides \(km\). Let \(r = \frac{k}{(n,k)}\), then \(\frac{n}{(n,k)}\) divides \(rm\). Since \(\left(r, \frac{n}{(n,k)}\right) = 1\), we obtain \(\frac{n}{(n,k)} | m\). The minimal possible \(m = \frac{n}{(n,k)}\).
30 (7.2) Assume that \(G \) does not contain an element of order 2. Then if \(g \in G \) and \(g \neq e \), then \(g^{-1} \neq g \). Thus, \(G \) is a disjoint union of \(\{e\} \) and two-element sets \(\{g, g^{-1}\} \). That implies \(|G|\) is odd. Therefore if \(|G|\) is even, \(G \) must have an element of order 2.

33 (7.2) Note that \(ab^2 = b^4ab = b^8a = b^2a \).

Therefore
\[ab = b^4a = b^2b^2a = ab^k, \]

and therefore
\[b^3 = e, \quad ab = ba. \]

36 (7.2) Write
\[(ab)^k = a^kb^k, \quad (ab)^{k+1} = a^{k+1}b^{k+1}, \quad (ab)^{k+2} = a^{k+2}b^{k+2}. \]

Then
\[ab = (ab)^{-k} (ab)^{k+1} = b^{-k}a^{-k} a^{k+1}b^{k+1} = b^{-k}ab^{k+1}, \]

that implies \(a = b^{-k}ab^k \). Similarly, \(a = b^{-k}ab^{-1} \). Therefore we get
\[a = b^{-k}ab^k = b^{-1}b^{-k}ab^k = b^{-1}ab. \]

Therefore \(ab = ba. \)

31 (7.3) If \(a, b \in x^{-1}Hx \), then \(a = x^{-1}cx \), \(b = x^{-1}dx \) for some \(c, d \in H \). Therefore
\[ab = x^{-1}cxx^{-1}dx = x^{-1}cdx \in x^{-1}Hx, \]

\[a^{-1}(x^{-1}cx)^{-1} = x^{-1}c^{-1}x \in x^{-1}Hx, \]

since \(cd, c^{-1} \in H \).

32 (7.3) The map \(\varphi_x: H \to H \) given by \(\varphi_x(h) = x^{-1}hx \) is a bijection, since \((\varphi_x)^{-1} = \varphi_{x^{-1}} \). Therefore \(\varphi_x \) is surjective and hence \(x^{-1}Hx = \varphi_x(H) = H \).

21 (7.4) Let \((f(a))^k = e_H \). Since \((f(a))^k = f(a^k)\) and \(f \) is injective \(a^k = e_G \).

Thus, \(|a| \) divides \(|f(a)|\). On the other hand, if \(a^m = e_G \), then \((f(a))^m = f(a^m) = e_H \).

Therefore \(|f(a)| \) divides \(|a|\). Thus, \(|f(a)| = |a|\).

24 (7.4) If \(f \) and \(g \) are two automorphisms of \(G \). Then
\[f \circ g(ab) = f(g(ab)) = f(g(a)g(b)) = f(g(a))f(g(b)) = f \circ g(a)f \circ g(b). \]

Therefore \(f \circ g \) is a homomorphism. Since \(f \circ g \) is bijective, \(f \circ g \in \text{Aut} \ G \). It is left to check that \(f^{-1} \) is a homomorphism.

Indeed, since \(f \) is bijective, for any \(a, b \in G \) there exist unique \(c, d \in G \) such that \(a = f(c), b = f(d) \). Then
\[f^{-1}(ab) = f^{-1}(f(c)f(d)) = f^{-1}(f(cd)) = cd = f^{-1}(a)f^{-1}(b). \]