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12(4.5) If f(x) = g(x)h(z) then f(x+c¢c) = g(z+c)h(x+c). Moreover,
degp(x) = degp(z + ¢) for any polynomial p(x). Hence irreducibility of f(x) is
equivalent to irreducibility of f (z + ¢).

13(4.5) The polynomial

fx+1)=a"+42° + 627 + 82 + 6

is irreducible by Eisenstein criterion with p = 2.

17(4.5) The number of polynomials of degree less or equal than k is n*, the
number of polynomial of degree less or equal than k& — 1 is n*~!. Hence the number
of polynomials of degree k equals n* — nf=1.

11 (5.1) Since p (z) is not irreducible, then p (z) = f (x) g (x) for some polynomial
f (z), g (x) of degree less than the degree of p(x). Then f(x)g(z) =0r mod p(z)
but both f (x) and g (z) are not congruent to 0 modulo p(z).

13 (5.1) Both graphs meet the y-axis at the same point, because f (0) = g (0).

14(5.2) Answers:

(a)[2z — 3] 7" = [-2z — 3]

() +o+1)7 =[] " =[]

() +2+1]7" = [27]

15(5.2) Let r = [z], s = [vr + 1]. The polynomial is z (x — 1) (x —r) (z — s) =
ot + .

1(5.3)

(a) Yes, the polynomial 2 4 2x? +x + 1 is irreducible in Zj3 [x], because it does not
have a root.

(b) No, 22 — 422 + 2z + 1 is reducible in Zs [z], because 2 is a root.

(¢) No, a* + 22 + 1 is reducible in Z, [z], because (22 + x4+ 1)° = 2% + 22 + 1.

7(5.3) Use induction on n = deg f (). The case n = 1 is trivial. By Corollary
5.12 there exists an extension K of F' which contains a root ¢; of f (z). In K [z] we
have f (x) = (x — ¢1) h(z). By induction assumption there is an extension F of K
such that h(x) = co (x — ¢2) ... (x — ¢,) for some cq, ca, ...c, € E. Hence

flx)=c(zr—c)(r—c)...(x—cp)

as required.
8 (5.3) Let E = Fz]/(p(z)). Then (z — [z]) divides p(z) in E [z]. Therefore

p(z) =b(z = [z]) (z = ¢)

for some b, c € E. In particular ¢ is the second root of p (z).
10 (6.1) Let (ay,az2), (b1,b2) € I x J, then ay,b; € I and ay, by € J. Therefore

a1 — by € I and as — by € J. Hence (al,ag) — (bl,bg) = (a1 —bl,ag —bg) el xJ
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If (r,s) € Rx S, then ra; € I and say € J, and therefore (7, s) (a1, a2) = (ray, sas) €
I x J. In the same way (ay,a2) (r,s) € I x J.
34 (6.1) If x,y € IJ then

r=aiby + -+ ayb,, y=crdy + - + cndpy,
for some ay,...,a,,¢c1,..., ¢ €1, 0b1,...,b,,dy,...,d, € J. Then
r—y=abi+ -+ ayb,+ (—c1)di + -+ (—cn) dm € 1,
because —c¢; € I. If r € R, then
re = (ra;) by + -+ (ra,) b, € 1J,
xr=ay (byr) + -+ ap, (byr) € 1J

since ra; € I, b;r € J.
13 (6.2) Let p: R[z] — R defined by

plao+ a1z + -+ + a,z™) = aop.

Then p is a surjective homomorphism, and the kernel of p consists of all polynomials
with zero constant coefficients. In other words the kernel of p is (z). By the first
isomorphism theorem R is isomorphic to R [z]/(z).

18 (6.2) Let R/I be an integral domain. Then (a+1)(b+1)=ab+1=0+1
implies that a +1 =0 or b+ I = 0. Hence ab € I impliesa € [ or b € I.

Conversely, let ab € [ impliesa € Torb € I. Then (a+1)(b+1)=ab+1=0+1
implies ab € I. Therefore a € [ or b€ I, and hencea+ 1 =0+Torb+1=0+ 1.

is not prime.

20 (6.2) Let f: R — S be a surjective homomorphism, so S is a homomorphic
image. S is commutative, because f (z) f (y) = f (zy) = f (yx) = f (y) f (x). Fur-
thermore, f(1g) is the identity in S. Finally, if J is an ideal in S, then f~!(J) =
{reR| f(r)=7} is an ideal in R, and f~'(J) = (c) for some ¢ € R. Then
every element b € J can be written as f (r) for some r € f~1(J). But r = xc,
sob=f(r)=f(x)f(c). Thus J = (f (c)).

32 (6.2) Obviously f(a) = a + J is a well-defined homomorphism f : [ —
(I + J)/J. It is surjective since for any a € I,b € J, a+b+J = f(a). The kernel of
f consists of all ¢ € I such that c+J =0+ J, i.e. c € J. Thus, Ker f =INJ, and
by the first isomorphism theorem /(I NJ) = (I +J)/J.

19 (7.1) Just check all properties of a group

(agb) #he = cx (bxa) = (c ¥ b) x a = a (bfe),

lvsa=e=axa' = a #a.

aHe=exa=a=axe=e#a, aFa ' =a
14 (7.2) If |a| = n, then the order a* is equal to - Indeed, (ak)m = e if and

only if n divides km. Let r = ﬁ

obtain (n"—k)|m The minimal possible m = .

, then nLk) divides rm. Since <7’, ﬁ) =1, we
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30 (7.2) Assume that G does not contain an element of order 2. Then if g € G
and g # e, then g~ # g. Thus, G is a disjoint union of {¢} and two-element sets
{g,9g7'}. That implies |G| is odd. Therefore if |G| is even, G must have an element
of order 2.

33 (7.2) Note that

ab® = b'ab = b¥a = ba.
Therefore

ab = bla = b*b*a = ab?,
and therefore

b = e, ab = ba.
36 (7.2) Write
(ab)k _ akbk, (ab)k—i-l _ akkuH, (ab)k—i-? — gFt2pkt2,
Then
ab = (ab) ™ (ab)Ft = hkq Rk TIpht = Ryl
that implies @ = b~*ab*. Similarly, a = b=*"'ab**!. Therefore we get
a=b"ab? =b""0""ab™b = b~ ab.

Therefore ab = ba.
31 (7.3) If a,b € v *Hux, then a = x 7 cz, b = 27 dx for some ¢, d € H. Therefore

ab =gz cxx  der = v edr € 27 Ha,
a? (:B_lcat)_l =z 'cle e x ' Ha,
since cd, ¢! € H.

32 (7.3) The map ¢,: H — H given by ¢, (h) = x7'hz is a bijection, since
(¢2) " = py-1. Therefore ¢, is surjective and hence 2 Hz = ¢, (H) = H.

21 (7.4) Let (f (a))* = ey. Since (f(a))* = f (a¥) and f is injective a* = eg.
Thus, |a| divides |f (a)|. On the other hand, if a™ = eg, then (f (a))™ = f (a™) = ey.
Therefore |f (a) | divides |a|. Thus, |f (a)| = |al.

24 (7.4) If f and g are two automorphisms of G. Then

foglab) = f(g(ab)) = f(g(a)g (b)) =f(g(a))f(g(b)=fog(a)fog(b).
Therefore f o g is a homomorphism. Since f o g is bijective, f o g € Aut G. It is left
to check that f~! is a homomorphism.

Indeed, since f is bijective, for any a,b € GG there exist unique ¢,d € G such that
a=f(c),b= f(d). Then

fHab) = (f () f(d) = f" (fed) =cd=f""(a) 71 (D).



