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Abstract. Let (K, v) be a complete discretely valued field of charac-
teristic zero with an algebraically closed residue field of positive charac-
teristic. Let σ : K → K be a continuous automorphism of K inducing
a Frobenius automorphism on the residue field. We prove quantifier-
elimination for (K, v, σ) in a language with angular component maps
and in a language with predicates on leading terms. The proof passes
through a generalization of the main Ax-Kochen-Eršov and quantifier-
elimination results of [6] to a wider class of D-henselian fields of char-
acteristic zero.

1 Introduction

A valued difference field is a valued field (K, v) given together with an automor-
phism σ : K → K preserving the valuation in the sense that v(x) = v(σ(x)) holds
universally on K×. Examples of valued difference fields are legion though complete
fields of positive residue characteristic given together with a relative Frobenius may
be the mostly widely exploited.

Valued D-fields, a general framework for considering valued difference and dif-
ferential fields, were introduced in [6] and quantifier elimination relative to the
residue field and the value group for D-henselian fields with root-closed linearly
differentially closed residue fields of characteristic zero was proved. However, quan-
tifier elimination for valued difference fields eluded the methods of that paper for
good reason: if the distinguished automorphism is nontrivial on the residue field,
then the theory of (K, v, σ) cannot eliminate quantifiers, even relative to the residue
field and the value group. The culprit is the same obstruction to quantifier elim-
ination for henselian (pure) fields with residue fields not closed under roots: the
existential quantifier defining the `-th powers cannot be eliminated simply by ex-
panding the language for the residue field and the value group.

While the formulas defining powers lie at the heart of the failure of quantifier
elimination, it does not suffice to simply expand the language with power predicates.
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However, the solution to the problem for D-henselian fields is no more difficult than
the solution for henselian (pure) fields.

Ax and Kochen [1] approached this problem by expanding the language to
include a section of the valuation. If (K, v) is a valued field and χ : vK → K×

is a section of the valuation, then we may write any element x ∈ K× as x =
x

χ(v(x))χ(v(x)). If K is henselian of residue characteristic zero, then x is an n-th
power if and only if n divides v(x) and the reduction of x

χ(v(x)) is an n-th power in
the residue field for any n ∈ Z+.

Expanding the language with a section of the valuation one substantially alters
the class of definable sets. Such a section is never definable in the pure valued field
language and some of the new definable sets are quite pathological in comparison
to those definable in the valued field language. For instance, the image of the
section is an infinite definable subset of the field which has no interior. While in
a henselian field of characteristic zeor no set definable in the valued field language
can have this property. For some valued fields, notably p-adic fields, it suffices
to add power predicates [5], but in general the Basarab-Kuhlmann technology of
additive multiplicative congruences (amc structures) is needed to obtain quantifier
elimination in a definitional expansion of the valued field language [2].

While amc structures meet the condition of not expanding the class of definable
sets, they may very well strike the reader as obscure (precise definitions are given
in section 3). Angular component functions restore the transparency of the axioms
in a language with a cross section while retaining the topological properties of the
definable sets in the original language. An angular component function (of level
zero for a pure valued field) is nothing more than a group homomorphism from
the units of the field to the units of the residue field which is trivial on the 1-units
and induces the identity on the residue field. If π : OK → OK/mK is the residue
map and χ : vK → K× is a section of the valuation, then the associated angular
component map is x 7→ π( x

χ(v(x)) ) =: α(x). For K a henselian field of residue
characteristic zero, x is an n-th power if and only if α(x) is an n-th power and n
divides v(x). We use χ only to get α, the rest of the information supplied by χ is
wasted.

In this work we modify the amc and angular component techniques to suit
valued D- fields. We use angular component functions and amc structures of higher
level to pass from mixed characteristic to pure characteristic zero.

The main theorem of this paper is an extension of the results of [6] to a complete
axiomatization and quantifier elimination for a wider class of D-henselian fields.
This class includes all D-henselian fields of characterization zero. Perhaps, the
most important example of such a valued D-field is (Wp∞(Falg

p )[ 1p ], σq), the field

of fractions of the Witt vectors of Falg
p (also known as Q̂p

unr, the completion of
the maximal unramified extension of the p-adics) with the unique lifting of the
q-power Frobenius. Independently from the current author, Luc Belair and Angus
Macintyre obtained a version of the main theorem of this paper. Their work and
its connections to the present paper will be reported in [4].

This paper is organized as follows. We recall the formalism of amc structures
and angular components and adapt them to valued D-fields. We then set out the
languages to be used and state precisely the theorems to be proved. We present a
standard valuation coarsening argument to reduce to the study of valued D-fields
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of pure characteristic zero. The remainder of the paper consists of a detailed guide
to modifying the arguments of [6] to the expanded languages.

I originally envisioned the results of the current paper as a part of my thesis [7],
but realized through conversations with my thesis advisor, Ehud Hrushovski, that
predicates beyond those used in [7] were necessary. A number of people contributed
to my understanding of this problem. I thank especially Luc Belair (for suggest-
ing that angular components may be the most natural framework for quantifier
elimination), Lou van den Dries (for supplying a preprint of [8]), Ehud Hrushovski
(for his advice during the work on [7]), Franz-Viktor Kuhlmann (for bringing amc
structures to my attention), and Angus Macintyre (for discussing his work on the
relative Frobenius). During the writing of this paper I was partially supported by
an NSF MSPRF.

2 Notation

The notation used in this paper follows that of [6] with the exception that we
revert to a more widely used notation for the value group of a valued field.

For us a ring is a unital ring. If R is a ring, then R× := {x ∈ R : (∃y)xy = 1}
is the set of units in R considered as subgroup of the multiplicative monoid of R.

If K is a field with a valuation v, then we write vK for the value group of K
and OK,v, or OK is v is understood, for the ring of integers {x ∈ K : v(x) ≥ 0}.
The maximal ideal in OK,v is mK,v = mK := {x ∈ K : v(x) > 0}. Sometimes we
regard a valued field as a three-sorted structure (K,ΓK , kK) where ΓK = vK and
kK = OK,v/mK,v is the residue field. It will become necessary for us to liberate ΓK
and kK so that we have only vK ≤ ΓK and OK,v/mK ⊆ kK .

Recall that aD-ring is a commutative ring R given together with a fixed element
e ∈ R and a function D : R → R satisfying D(1) = 0, D(x + y) = D(x) + D(y),
and D(xy) = D(x)y + xD(y) + eD(x)D(y) universally. On any D-ring there is an
endomorphism σ : R → R defined by x 7→ eD(x) + x. The set of D-constants,
RD := {x ∈ R : D(x) = 0} forms a subring of R.

A valued D-field is a valued field (K, v) given with a D-ring structure for which
v(e) ≥ 0 and v(Dx) ≥ v(x) holds universally.

If (R,D, e) is a D-ring, the ring of D-polynomials over R, is R〈X〉D. As a
ring, R〈X〉D is the polynomial ring over R in the countably many indeterminates
{DjX}j∈ω. The ring of D-polynomials has a unique D-structure extending that
on R with D(DjX) = Dj+1X. Given an element P (X) of R〈X〉D may be written
in the form P (X) = F (X, . . . ,DdX) for some F (X0, . . . , Xd) ∈ R[X0, . . . , Xd]. We
define ∂

∂Xi
P = ( ∂

∂Xi
F )(X, . . . ,DdX). The order of a differential polynomial P (X),

ordP , is −∞ if P ∈ K and is the least d such that P ∈ K[X, . . . ,DdX] otherwise.
If P (X) = F (X, . . . ,DdX) with d = ordP then the degree of P is degXd

F . The
total degee of P is the sequence (degXi

F )i∈ω.

3 Leading Terms

If (K, v) is a valued field with ring of integers OK , then the ideals in OK,v
correspond to cuts in ΓK,v,≥0 := {v(x) : x ∈ OK} via I ⇔ v(I) := {v(a) : a ∈ I}.
For an element γ ∈ ΓK,v,≥0 write Iγ for {x ∈ OK : v(x) > γ}. Note that I0 = mK ,
the maximal ideal of OK .

If I ⊂ OK is a proper ideal, then because OK is a local ring, 1 + I is a
subgroup of K× under multiplication. We denote by KI the factor group K×/(1+
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I). The structureKI has been defined merely as a group, but it inherits considerable
structure from K.

The valuation v on K is defined by the exact sequence

1 −−−−→ O×
K −−−−→ K× v−−−−→ vK −−−−→ 1

Since 1 + I ≤ O×
K , the valuation descends to KI giving the following exact

sequence.

1 −−−−→ (OK/I)× −−−−→ KI
v−−−−→ vK −−−−→ 1

If I ⊆ J ⊂ OK are proper ideals, then we have a natural projection map
πI,J : KI → KJ . As K(0)

∼= K×, we write πI : K× → KI for the map π(0),I .
The ultrametric triangle inequality implies that addition on K leaves a strong

trace on KI . For a pair of ideals I ⊆ J ⊂ OK we define a partial binary operation
+I,J on KI with values in KJ by z = x+I,J y if and only if for any x′, y′ ∈ K with
πI(x′) = x and πI(y′) = y we have πJ(x′ + y′) = z. In the case that I = {x ∈
OK : v(x) > ε} and J = {x ∈ OK : v(x) > δ} with δ ≤ ε, then +I,J is defined at
(x, y) if and only if for any (some) (x′, y′) ∈ K2 with πI(x′) = x and πI(y′) = y we
have v(x′ + y′) + δ ≤ min{v(x′) + ε, v(y′) + ε}. In particular, if I = J = mK , then
πI(x) +I,I πI(y) is defined if and only if v(x+ y) = min{v(x), v(y)}.

Other operations on K induce structure on KI . For instance, if σ : K → K is a
field endomorphism which maps I back to itself, then σ induces an endomorphism of
K. In particular, if σ is an automorphism preserving the valuation (v(x) = v(σ(x))
for x ∈ K×), then σ induces a valuation preserving automorphism of KI .

Recall that aD-ring is a commutative ring R given together with a fixed element
e ∈ R and an additive map D : R→ R satisfying D(1) = 0 and the twisted Leibniz
rule D(ab) = aD(b) + bD(a) + eD(a)D(b). A valued D-field is a valued field (K, v)
given with the structure of a D-ring so that v(e) ≥ 0 and v(Dx) ≥ v(x) for all
nonzero x ∈ K.

If D : K → K gives K the structure of a valued D-field, then D induces a
partial function on KI . As with the partial addition, take I ⊆ J ⊂ OK . We define
the partial function DI,J : KI → KJ by DI,JπI(x) := πJ(D(x)) if this assignment
is well defined. If I = {x ∈ OK : v(x) > δ} and J = {x ∈ OK : v(x) > ε}, then
DI,J(πI(x)) is defined if and only if v(Dx) ≤ v(x) + δ − ε.

Of course, other structure from K also descends to the leading terms, but we
shall need nothing beyond what we have already lain out.

Let I be a set of ideals in OK . A system of angular component functions
for the pure valued field K relative to I is a family of group homomorphisms
acI : KI → (OK/I)× which are sections of the inclusions defining the valuation on
KI and which are compatible in the sense that if I ⊆ J are two elements of I, then
πI,J ◦ acI = acJ ◦ πI,J . The function acI is called an angular component function of
level I. We abuse notation and write acI for acI ◦ πI as well. Angular component
functions respect addition weakly. More precisely, we have the following lemma.

Lemma 3.1 If (K, v) is a valued field, I ⊂ OK is a proper ideal, acI : K× →
(OK/I)× is an angular component function of level I, and x, y ∈ K× with v(x+y) =
v(x) = v(y), then acI(x+ y) = acI(x) + acI(y).

Proof Since acI is a section, if x ∈ K× and πI(x) ∈ (OK/I)×, then we have
acI(x) = πI(x). From this observation we compute:
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acI(x + y) = acI(x)acI(1 + y
x ) = acI(x)πI(1 + y

x ) = acI(x) + acI(x)πI( yx ) =
acI(x) + acI(x)acI( yx ) = acI(x) + acI(y)

However, if v(x+y) 6= v(x) and v(x+y) 6= v(y), then we can say nothing about
acI(x+ y) in terms of acI(x) and acI(y).

On occasion, we will need to use the fact that angular component functions
preserve sums of arbitrarily many terms.

Lemma 3.2 Let (K, v) be a valued field of residue characteristic zero. Let n
be a positive integer. If x1, . . . , xn+1 ∈ K× all have the same valuation γ, then
γ = v(

∑
j 6=i xj) for some i.

Proof Dividing by x1 we may assume that v(xi) = 0 for each i. Thus, it
suffices to show that if k is a field of characteristic zero and S ⊆ k× is a finite set
of non-zero elements of size n+ 1, then for some s ∈ S the sum

∑
t6=s t 6= 0.

We prove this by induction on n.
The case of n = 1 is trivial.
In the case of n = 2, observe that x1 + x2 = 0 = x1 + x3 implies that x2 = x3

which combined with x2 + x3 = 0 gives 2x2 = 0. As the characteristic is not two,
this gives x2 = 0 contrary to our hypotheses.

Now for the inductive case of n = m+ 1. By induction, there is some subset of
size m of the first m + 1 elements with non-zero sum. Without loss of generality,
we may assume that

∑m
i=1 xi 6= 0. If

∑m+1
i=1 xi = 0 and (

∑m
i=1 xi) + xn+1 = 0, then

we have xn = xn+1 = −
∑m
i=1 xi. We may assume that xi 6= xj for some i and j, as

otherwise
∑m+1
i=1 xi = nx1 6= 0. Thus, without loss of generality x1 6= xn = xn+1.

Applying the above reasoning to {xj : j > 1} we find that either
∑n+1
j=2 xj 6= 0 or

x1 = xi for some i (say, i = 2) and
∑n+1
j=3 xj = −x1. Write y :=

∑m
i=3. Then, we

have 2x1 + y + xn = x1 + y + 2xn. This yields x1 = xn contrary to our choice of
x1.

Using Lemma 3.2 we derive a sum formula for angular component functions.

Lemma 3.3 Let K be a valued field of equicharacteristic zero with an angular
component funciton acI with respect to some ideal I ⊂ OK . If x1, . . . , xn ∈ K×

and v(
∑n
j=1 xj) = v(x1) = · · · = v(xn), then for some permutation π ∈ Sn we have

acI(
∑n
j=1 xj) =

∑n
i=1 xπ(i).

Proof We work by induction on n. The case of n = 1 is trivial.
Take the case of n+1. Using Lemma 3.2 permute x1, . . . , xn+1 so that v(

∑j
i=1 xi) =

v(x1) for each j ≤ n.
By induction and Lemma 3.1 we have acI(

∑n+1
i=1 xi) = acI(

∑n
i=1 xi + xn+1) =

acI(
∑n
i=1 xi) + acI(xn+1) =

∑n
i=1 acI(xi) + acI(xn+1) =

∑n+1
i=1 acI(xi).

Remark 3.4 If we adopt the convention that acI(x) + acI(y) = 0 if v(x+ y) >
v(x) = v(y), then the choice of π in Lemma 3.3 is unnecessary. Moreover, with this
convention in place the result is valid without regard to the residue characteristic.

If (K, v,D, e) is a valued D-field, then recall that σ : K → K defined by
σ(x) := eD(x) + x is an endomorphism of K. If v(e) > 0, then σ is necessarily an
automorphism and v(x) = v(σ(x)) holds for all x ∈ K×. However, if v(e) = 0, the
endomorphism σ need be neither surjective nor valuation preserving.
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Convention 3.5 From now on we include as part of the definition of a valued
D-field that σ is a valuation preserving automorphism.

If K is a valued D-field and I is a family of ideals in OK , then a system of
D-field angular component functions for I is defined to be a system of angular
component functions for I in the sense of pure valued fields which respect the D-
structure. That is, acJ(DI,J(x)) = πI,J(DacI(x)) for x with v(Dx) = v(x) and
acI(σ(x)) = σ(acI(x)) for all x.

From an angular component function acI : KI → (OK/I)× we obtain a section
of the valuation χI : ΓK → KI by the formula χI(γ) := x

acI(x) for any choice of
x ∈ KI with v(x) = γ.

Lemma 3.6 Let (K, 0, 1, e,+, ·, D, v) be a valued D-field, I ⊂ OK a proper
ideal, acI : KI → (OK/I)× an angular component function of level I, and χI :
ΓK → KI the corresponding section on the value group. Then the angular compo-
nent function acI respects the D structure if the range of χI is contained in the set
of D-constants, the set {x ∈ KI : (∀x′ ∈ K×)π(x′) = x→ Dx′

x′ ∈ I}. The converse
is true as long as D is non-trivial on the residue field.

Proof We show first that acI respect the D-structure if χI takes values in
the D-constants. Let x ∈ KI and suppose that DI,I(x) is defined. Write x =
acI(x)χI(v(x)). Let a, b ∈ K× with πI(a) = acI(x) and πI(b) = χI(v(x)). Then by
the twisted Leibniz rule we have D(ab) = aD(b) + σ(b)D(a). As χI takes values
in the D-constants (modulo 1 + I), we have D(b) ∈ bI and σ(b) ∈ b(1 + I). So we
have D(ab) = bD(a) + bD(a)i + abi′ for some i, i′ ∈ I. As K is a valued D-field,
we have v(bD(a)) ≥ v(ab). Thus, the hypothesis that v(x) = v(Dx) implies that
v(Da) = v(a). Thus, we have D(ab) ≡ bD(a)(1+ I). Applying πI , we have D(x) =
χI(v(x))D(acI(x)). As v(x) = v(D(x)), we have χI(D(x)) = χI(v(D(x))D(acI(x)).
As generally we have acI(y) = y

χI(v(y)) , we conclude that D(acI(x)) = acI(Dx).
For the other implication, let γ ∈ ΓK .
The hypothesis that D is non-trivial on the residue field implies that we can

find some x ∈ K× with v(x) = γ = v(Dx). That is, choose any y with v(y) = γ. If
y does not already work, then look for some α with v(α) = 0 and γ = v(D(αy)) =
v(D(α)y+σ(α)D(y)). As v(D(y)) > γ and v(α) = 0, we achieve this is v(D(α)) = 0.

For this choice of x, write x = acI(x)χI(γ). As v(x) = v(Dx) we have D(x) =
acI(Dx)χI(γ) and D(x) = D(acI(x))χI(γ) + σ(acI(x))D(χI(γ)) = acI(Dx)χI(γ) +
σ(acI(x))D(χI(γ)). As v(σ(acI(x))) = v(acI(x)) = 0, we conclude that D(χI(γ))

χI(γ) ∈ I
as claimed.

4 Languages

We treat valued D-fields as many-sorted structures having a basic sort K for
the valued field itself and other sorts for the residue field, k; the value group, Γ;
and, perhaps, also some other sorts for leading terms and residue rings. All these
sorts are interpretable in the basic sort; so nothing is lost by working in a one-sorted
structure and treating the other sorts as merely interpreted. However, doing this
requires one to relatize the quantifier elimination statements of our main theorem.

The language of D-rings, LD−ring := L(+, ·,−, D, 0, 1, e), is the expansion of
the language of rings by a new unary function symbol D and a new constant symbol
e. As mentioned in the previous section, if (R,D, e) is a D-ring, then the function
σ : R→ R defined by σ(x) := eD(x)+x is a ring endomorphism. We insist that σ is
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actually an automorphism so that the LD−ring-structures we consider have natural
expansions to LD−ring(σ, σ−1).

We regard K and k as LD−ring(σ, σ−1)-structures and Γ as an L(+,−,≤, 0)-
structure where the non-logical symbols have their usual meaning. These sorts are
connected by the valuation v : K → Γ ∪ {∞} and residue map π : K → k ∪ {∞},
where we have adjoined a new symbol “∞” not belonging to any particular sort to
ensure that π and v are total. We call the language described above the language
of valued D-fields, Lvdf .

One could consider the language of valued D-fields augmented by arbitrarily
complicated systems of angular component functions or leading term sorts. How-
ever, we need only multiplicative congruences modulo the 1-units in pure charac-
teristic zero and with respect to the family of ideals {In := {x ∈ OK : v(x) >
nv(p)}}n∈ω in mixed characteristic.

We first define the languages appropriate to leading term structures. The
language involving just leading terms of level mK is obtained from Lvdf by adjoining
a new sort K0 to be treated as an LD−ring(σ, σ−1)-structure and a new function
symbol π0 : K → K0. Moreover, we extend the function v to be defined on K0 as
well and treat k as a substructure of K0. We will interpret K0 as Km ∪ {0}. The
inclusion k ↪→ K0 comes from the valuation exact sequence on Km together with
0 7→ 0. We call this language Llt,0

vdf .
The mixed characteristic leading term language is more complicated than the

pure characteristic zero leading term language. We add new sorts Kn to be treated
as LD−ring(σ, σ−1)-structures and function symbols πn : K → Kn, πm,n : Km →
Kn, Dm,n : Km → Kn, and +m,n : K2

m → Kn. We identify k with K0 as in Llt,0
vdf

and we extend v to each Km. Since we will interpret Km as KIm
, we no longer

insist that + and D be total functions. Perhaps, one might like to think of the new
sorts as simply L(·, σ, σ−1, 1, e)-structures and the partial functions +n,m and Dn,m

as merely relations. Instead, we regard the value of any of our partial functions
applied to a point where it is not defined to be 0. This language is denoted by
Llt,ω

vdf .
The language appropriate for considering a pure characteristic zero valued D-

field with angular components is Lac,0
vdf := Llt,0

vdf(ac0) where ac0 : K0 → k is a unary
function symbol which will be interpreted as an angular component function of level
mK (and ac0(0) := 0).

The language appropriate for mixed characteristic valued D-fields with angular
components is Lac,ω

vdf , a definitional expansion of Llt,ω
vdf ({acn}n∈ω) where acn is a unary

function symbol on Kn with values in Kn. We will interpret {acn}n∈ω as a system
of angular component functions for the ideals {In : n ∈ ω}. We add new sorts Rn,
one for each n ∈ ω. We interpret Rn(K) as OK/In embedded in Kn ∪ {0}. The
partial addition functions on Kn induce the total functions on Rn(K).

5 Relative completeness and quantifier elimination

In the original version of this paper [7], the angular component and leading
term languages were considered in parallel. As noted in the introduction, while
the angular component language is more transparent, the leading term structure is
already interpretable in the language of pure valued fields and is therefore closer
to the basic language. In this section we observe that completeness and relative
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quantifier elimination for the leading term languages follow from the corresponding
theorems for the angular component language.

Definition 5.1 Let L be a many-sorted first order language. Let Σ be a set of
L-sorts. We say that Σ is closed if for any S1, . . . , Sn ∈ Σ, sort S, and non-constant
L-term t(x1, . . . , xn) with domain S1 × · · · × Sn and range S, we have S ∈ Σ.

Remark 5.2 Note that a closed set of sorts is closed under products. So in
the definition of closed we could say instead that Σ is closed under products and
consider only t unary terms.

Lemma 5.3 Suppose that L ⊆ L′ are many-sorted languages having the same
sorts. Let Σ be a closed set of sorts. Let T ′ be a complete L′-theory with T := T ′ � L′
its restriction to L′. Let L′′ be the definitional expansion of L by basic predicates
for each L-definable relation on any sort in Σ and let T ′′ ⊇ T be the theory of this
definitional expansion. Suppose that for each L formula ϕ(x) there is a quantifier-
free L′ formula θ(x) such that T ′ ` ϕ(x) ↔ θ(x). Suppose also that every quantifier-
free L′-formula is provably equivalent to a finite boolean combination of quantifier-
free L-formulas and formulas of the form ψ(t(x)) where ψ(y) is a quantifier-free L′
formula with y ranging over a sort in Σ and t is an L-term. Then T ′′ eliminates
quantifiers in L′′.

Proof Let ϕ(x) ∈ L(x) be an L-formula. By our first hypothesis there is
a quantifier-free L′ formula θ(x) such that T ′ ` ϕ(x) ↔ θ(x). By our second
hypothesis, we may assume that θ is of the form ϑ(t(x)) where ϑ(y) is a quantifier-
free L′ formula with y ranging over a sort in S and t is an L′-term. Let ζ(z) :=
(∃x)(ϕ(x) ∧ z = t(x)) considered as a quantifier free formula in L′′. So we have
T ′ ∪ T ′′ ` ζ(t(x)) ↔ ϑ(t(x)). This yields, T ′′ ` ϕ(x) ↔ ζ(t(x)) which shows that
ϕ(x) is equivalent to a quantifier-free L′′ formula.

The hypotheses of the previous lemma were quite strong but the next lemma
shows that they hold in many cases.

Lemma 5.4 Let L ⊆ L′ be two many-sorted languages having the same sorts.
We suppose that L′ \L consists of new function symbols. We assume also that Σ is
a L′-closed set of sorts and that every new function symbol f in L′ \ L has domain
Df ∈ Σ and range Rf ∈ Σ. Then every quantifier-free L′-formula is equivalent to
a finite boolean combination of quantifier-free L formulas and L′ formulas of the
form θ(t(x)) where θ(y) is a quantifier-free L′-formula with y ranging over a sort
in S and t is an L-term.

Proof Working by induction on the complexity of ϕ(x) it suffices to consider
the case of a basic relation R(t(x)) where R is a L-relation and t is an L′ term.

Claim 5.5 If s(x) is a L′ term with range the sort S /∈ Σ, then there is a L
term r(x) such that ` (∀x)r(x) = s(x).

Proof of Claim: We work by induction on the complexity of s. Write s = f ◦ t
where t is term of lower complexity (possibly empty) and f is either a basic L′-
symbol or a constant symbol. If f is a constant symbol, then by hypothesis, f is
already an L term and ` s = f . If f is a not a constant symbol and the sort of the
domain of f belongs to Σ, then as Σ is closed, necessarily the range of f is also in
Σ. If f is not a constant symbol and its domain sort does not belong to Σ, then f
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is an L-term and by induction there is some L-term t′ for which ` (∀x)t(x) = t′(x).
Thus, we may take r = f ◦ t′. a

Thus, if the range of t is not a sort in Σ, then R(t(x)) is provably equivalent to
a quantifier-free L formula.

Claim 5.6 If s(x) is a L′ term with range the sort S ∈ Σ, then there are a L
term t(x) and a L′ term r(y) with y ranging over some sort in Σ and ` (∀x)s(x) =
r(t(x)).

Proof of Claim: Again we work by induction on the complexity of s, but this
time from the right. Write s = f ◦ s′ with f a basic function or constant symbol.
We allow the case that s′ is the empty term, interpreted as an identity function. If
the range of s′ is a sort in Σ, then by induction we may write s′ = r′ ◦ t′ with t′ an
L-term and r′ an L′-term with domain a sort in Σ. We can then take r := f ◦ r′
and t := t′. If the range of s′ is not a sort in Σ, then by Claim 5.5 s′ is provably
equal to an L-term s′′. As every new symbol in L′ \ L is a function symbol with
domain a sort in Σ, necessarily f is an L-term. Thus, we may take t := f ◦ s′′ and
r the identity function on S in this case. a

Thus, in the case that the range of t is a sort in Σ we may write t = r ◦ s with
s an L-term with range a sort in Σ and r an L′-term. We then set ϑ(y) := R(r(y))
and s plays the role of t in the statement of the lemma.

The content of Lemma 5.3 is best expressed in terms of relative quantifier
elimination.

Definition 5.7 Let L be a many sorted language and Σ a closed set of L-
sorts. Let T be a L-theory. Let L′ be the definitional expansion of L (and T ′

the definitional expansion of T to L′) by predicates for all the definable relations
on sorts in Σ. If T ′ eliminates quantifiers in L′, then we say that T eliminates
quantifiers relative to Σ.

Corollary 5.8 If L is an expansion of Lvdf by predicates on the leading terms
and the theory of some valued D-field admits quantifier elimination in the expansion
of L be angular component functions, then it also eliminates quantifiers in the
expansion of L relative to the leading terms.

Proof The new symbols in the angular component language are all function
symbols on leading terms, so we may apply Lemma 5.3.

Besides the notion of relative quantifier elimination, we also have the notion of
relative completeness.

Definition 5.9 Let L be a many sorted language and Σ a closed set of L sorts.
Let T be a L-theory. We say that T is complete relative to Σ if for any M |= T ,
the theory T ∪ Th(

⋃
S∈Σ S(M)) is complete.

In Corollary 5.8 we allow arbitrary expansions of Lvdf by predicates on the
leading terms. We express this persistence of relative quantifier elimination as
resplendent relative quantifier elimination relative to Σ. Likewise, we have the
notion of resplendent relative completeness relative to Σ.
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6 Axioms

The class of valuedD-fields considered in this paper is larger than that of [6] due
to the relaxation of three conditions on the residue field. First, we no longer insist
that the residue characteristic is zero. Secondly, we now allow for the possibility of
v(e) = 0. Finally, we do not demand that the residue field be closed under roots.
We require only that the residue field be linearly D-closed. As shown in [6], this is
an intrinsic property of D-henselian fields. We also insist on generic characteristic
zero. It ought to be possible to relax this last condition as well, but given the
current state of knowledge about the model theory of pure valued fields of positive
characteristic, I expect this would take significantly new methods.

The axioms for valued D-fields given in [6] do not suffice for the more general
valued D-fields we consider here. Since the language has been expanded and the
conditions on the residue field relaxed, we need to modify the axioms for valued
D-fields. In stating the axioms, we give the axioms for valued D-fields in the basic
language of valued D-fields, Lvdf .

The first three axioms describe valued D-fields.

Axiom 1 K is D-field, k is a D-field and Γ is an ordered abelian group. [NB:
we require a D-field to be an LD−ring(σ, σ−1)-structure in which σ is an automor-
phism with inverse σ−1 satisfying the equation σ = eD + id.]

Axiom 2 The inequality v(Dx) ≥ v(x) holds universally as does the equality
v(x) = v(σ(x)).

Axiom 3 K is a valued field with value group a subgroup of Γ via v and residue
field a subfield of k via π. The map π restricted to OK is a map of LD−ring(σ, σ−1)-
structures.

The next there axioms finish the description of D-henselian fields.

Axiom 4 The maps π and v are surjective.

Axiom 5 K has enough constants: v((KD)×) = Γ. That is, for any γ ∈ Γ
there is some x ∈ K with Dx = 0 and v(x) = γ.

Axiom 6 D-Hensel’s Lemma: If P (X) ∈ OK〈X〉D and a ∈ OK with v(P (a)) >
0 = v( ∂

∂Xi
P (a)) for some non-negative integer i, then there is some b ∈ OK with

P (b) = 0 and v(a− b) > 0.

While the axioms are given in Lvdf , we have natural expansions to the languages
Llt,0

vdf and Llt,ω
vdf .

A valued D-field with an angular component function (of level zero) is a valued
D-field given together with an angular component function ac0 : K0 → k of level
m. Likewise, a valued D-field with a system of angular component functions is an
expansion of a valued D-field to the language Lac,ω

vdf in which the angular component
function symbols are interpreted as a system of angular components for {In := {x ∈
OK : v(x) > nv(p)}}n∈ω.

Remark 6.1 In [6] the axioms for a valued D-field are given relative to a fixed
theory of the residue field and value group. We present a semantic version of that
completeness result below. The syntactic form is somewhat more complicated for
mixed characteristic valued D- fields. In particular, it does not suffice to specify
the theory of the residue field and of the value group in order to give a completion
of the theory of D-henselian fields.
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Remark 6.2 Proposition 5.3 of [6] applies to the modified axioms for D-
henselian fields also. Thus, if K is a D-henselian field, its residue field, k, is linearly
D-closed.

We can now state our main theorem.

Theorem 6.3 The theory of D-henselian fields of characteristic zero in the
language Lac,ω

vdf together with a consistent atomic diagram is resplendently complete
and resplendently eliminates quantifiers relative to the value group and the residue
rings Rn (n ∈ ω).

If we restrict to pure characteristic zero D-henselian fields, then Theorem 6.3
may be stated with Lac,0

vdf in place of Lac,ω
vdf .

Theorem 6.4 The theory of D-henselian fields of pure characteristic zero in
the language of Lac,0

vdf together with a consistent atomic diagram is respelendently
complete and resplendently eliminates quantifiers relative to the value group and the
residue field.

Bearing in mind the results of Section 5 we see that Lac,ω
vdf may be replaced by

Llt,ω
vdf relative to the leading terms. In Section 10 we discuss some other cases of

interest in which Llt,ω
vdf may be replaced by simpler languages.

7 Tests for completeness and quantifier elimination

Our proof of Theorem 6.3 passes through routine variants of standard model-
theoretic tests for completeness and quantifier elimination. In [6] an extension of
partial isomorphisms test was used to demonstrate completeness and quantifier
elimination. We use the same test here, but we also need another version which
requires some set theoretic hypotheses.

Recall that if T is a complete theory in a first-order language L and κ ≥ |L| is
a cardinal, then T has at most one saturated model of cardinality κ. Of course, if
M and N are two isomorphic L-structures, then they have the same theory. These
observations give a test for completeness of a theory.

Test 7.1 Let T be a theory in a first-order language L. Suppose that T has no
finite models and that each consistent completion of T has saturated models in each
cardinality κ > |L|. Then T is complete if and only for any two saturated models
of T of the same cardinality are isomorphic.

Test 7.1 includes the extraneous hypothesis that the completions of T have
saturated models. In general, one needs to know T very well or make some set
theoretic hypotheses beyond ZFC (GCH, for example) in order to verify this hy-
pothesis. However, it is possible to make these hypotheses simply for the purpose
of the test and then conclude unconditionally that T is complete. That is, the
assertion that a given theory in a countable language is complete is absolute (does
not depend on the model of set theory) and the completeness of an arbitrary the-
ory is equivalent to the completeness of its (or really, the set of its consequences)
restrictions to countable sublanguages.

Test 7.2 Let T be a theory in a first-order language L. Suppose that T has no
finite models. Then the following are equivalent.

• T is complete.
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• In any model of set theory in which GCH holds, if M |= T and N |= T and
|M| = |N | > |L|, then M∼= N .

• In some model of set theory in which GCH holds and there is some cardi-
nal κ > |L| such that any two saturated models of T of cardinality κ are
isomorphic.

We have similar tests for quantifier elimination. As with completeness, the
property of a theory admitting quantifier elimination is absolute. Thus, we can
work in model of set theory in which saturated models exist abundantly. In such a
universe, quantifier elimination for a complete theory is equivalent to condition that
every partial automorphism (with a small domain) of a saturated model extends to
an automorphism. Using a back-and-forth, one finds a more constructive version
of this latter condition in terms of extending a partial automorphism to one new
element.

Test 7.3 Let T be a complete theory in a first-order language L. The following
are equivalent.

• T eliminates quantifiers: For any formula ϕ(x1, . . . , xn) ∈ L(x1, . . . , xn)
there is a quantifier-free formula ϑ(x1, . . . , xn) ∈ L(x1, . . . , xn) such that
T ` (∀x1, . . . , xn)ϕ(x1, . . . , xn) ↔ ϑ(x1, . . . , xn).

• In any model of set theory in which GCH holds, if M |= T is a saturated
model and f : A → B is an L-isomorphism where A,B ⊆ M are substruc-
tures with |A| = |B| < |M|, then there is an automorphism σ : M → M
such that σ|A = f .

• If M |= T is a |L|+-saturated model, A,B ⊆M are substructures, f : A→
B is an L-isomorphism, |A| ≤ |T |, and a ∈ M, then there is an extension
of f to an L-embedding of the structure generated by a over A into M.

Since the tests for quantifier elimination and for completeness are so similar,
we can combine them into a single extension of partial isomorphism test.

Test 7.4 Let T be a theory in a first-order language L. Suppose that T has
no finite models, that T is complete with respect to the atomic theory (that is, for
each atomic sentence ψ of L either T ` ψ or T ` ¬ψ), and that L has at least one
constant symbol. Then the following are equivalent.

• T is complete and eliminates quantifiers.
• In any model of set theory in which GCH holds, if M,N |= T are saturated

models of T of the same cardinality, A ⊆M and B ⊆ N are substructures of
cardinality strictly less than that of M, and f : A→ B is an L-isomorphism,
then there is an L-isomorphism g : M→N such that g|A = f .

• If M,N |= T are |T |+-saturated, A ⊆ M is a substructure of cardinality
at most |T |+, f : A ↪→ N is an L-embedding, and a ∈ M, then there
is a substructure A′ of M containing A and a and extension of f to an
L-embedding g : A′ ↪→ L.

• If L′ ⊆ L, M,N |= T |L′ are models of the restriction of (the set of conse-
quences of T ) to L′, A ⊆ M is a countable substructure, f : A ↪→ N is an
L′-embedding, and a ∈ M, then there is an elementary extension N ′ � N
of N , a substructure A′ ⊆ M with A ∪ {a} ⊆ A′, and extension of f to an
L′-embedding f ′ : A′ → N ′.
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It is this test that we use to prove Theorem 6.3. We take for L some expansion
of Llt,ω

vdf or Lac,ω
vdf by predicates on the leading terms. We take for T the theory of D-

henselian fields of characteristic zero together with a consistent atomic diagram and
a complete theory in the restriction of L to the leading terms. It is worth noting that
while in the definition of resplendent relative completeness and resplendent relative
quantifier elimination arbitrary expansions of the base language are permitted, it
suffices to consider only countable languages.

8 Reduction to Pure Characteristic Zero

We have stated on many occasions that the theory of the relative Frobenius
motivates our study of more general D-henselian fields. In this section we show
that the relative Frobenius fits into the framework of D-henselian fields and that
standard coarsening arguments permit us to reduce our general problem to the case
of pure characteristic zero D-henselian fields.

We start with some observations about the relation between linearD-closedness,
linear difference closedness, and D-henselianness.

Lemma 8.1 Let (K,σ) be a difference field. Let e ∈ K× be a unit. Give
K the structure of a D-field by setting D(x) := σ(x)−x

e . Then, K is linearly D-
closed if and only if K is linearly difference closed (ie for any nonzero polynomial
m∑
j=0

ajX
j ∈ K[X] the linear difference operator

m∑
j=0

ajσ
j is surjective on K).

Proof:
An easy induction shows for any natural number n thatDn = (

∏n−1
j=0 σ

j(e))σn+
{lower order terms} and σn = (

∏n−1
j=0 σ

j(e)−1)Dn+{lower order terms}. Thus, for
any sequence (a0, . . . , am) ∈ Km+1 we have

m∑
j=0

ajD
j = am(

m−1∏
j=0

σj(e))σm + lower order terms

m∑
j=0

ajσ
j = am(

m−1∏
j=0

σj(e)−1)Dm + lower order terms

So, if K is linearly difference closed and am 6= 0, then the operator
m∑
j=0

ajD
j is

equal to a difference operator having a non-zero leading co-efficient and is therefore
surjective. Likewise, linear D-closedness implies linear difference closedness. a

Corollary 8.2 If K is a field of characteristic p > 0 with no extensions of
degree p, e ∈ K×, n ∈ Z \ {0} and D : K → K is defined by D(x) := xpn

−x
e , then

K is linearly D-closed.

Lemma 8.3 If (K, v,D) is D-henselian, then K is linearly D-closed.

Proof: Let L =
n∑
j=0

ajD
j ∈ K[D] be a non-zero linear D-operator. Let α ∈ K.

If α = 0, then L(0) = 0 = α so that we may assume that α 6= 0. Let ε ∈ K

with Dε = 0 and v(ε) = max{v(α) − v(aj)}. Let Q(Y ) :=
n∑
j=0

ajε
α Dj(Y ) − 1. By
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our choice of ε, Q(Y ) ∈ OK〈X〉D and the reduction of Q, π(Q), is a non-constant
affine D- polynomial over the residue field of K. Since the residue field of K is
linearly D-closed, we can find some b ∈ OK such that π(Q(b)) = 0. As π(Q) is
residually affine, v( ∂

∂Xi
Q(b)) = 0 for some i. Thus, DHL applies to Q at b and

we can find some a ∈ OK with v(a − b) > 0 and Q(a) = 0. Let ã := aε. Then
L(ã) = α(Q(a) + 1) = α. Thus, L is surjective on K. a

As with pure fields, D-Hensel’s lemma takes many forms. In the next lemma we
show the equivalence between the version of D-Hensel’s lemma already given and
an ostensibly stronger version in which the approximate solution is not assumed to
be a simple solution in the residue field.

Lemma 8.4 Let (K, v,D) be a valued D-field with enough constants and lin-
early D-closed residue field. The following are equivalent.

1. For all D-polynomials P (X) ∈ OK〈X〉 and elements a ∈ OK such that
v(P (a)) > 0 = min{v( ∂

∂Xi
P (a)) : i ∈ ω}, there is some b ∈ OK with

P (b) = 0 and v(a− b) = v(P (a)).
2. Given P (X) ∈ OK〈X〉 and a ∈ OK define γ := min{v( ∂

∂Xi
P (a)) : i ∈ ω}.

If v(P (a)) > 2γ, then there is some b ∈ OK with P (b) = 0 and v(a − b) =
v(P (a))− γ.

Proof: The implication from (2) to (1) is immediate so we concentrate on proving
(1) to (2).

Let P (X) ∈ OK and a ∈ OK be given with γ = min{v( ∂
∂Xi

P (a)) : i ∈ ω}
having v(P (a)) > 2γ.

If P (a) = 0, then there is nothing to prove so we assume now that P (a) 6= 0.
Let ε ∈ KD with v(ε) = v(P (a))−γ. Let Q(Y ) := 1

P (a)P (a+ εY ). I claim that
Q(Y ) ∈ OK〈Y 〉D. To see this, expand P (a+ εY ) ≡ P (a)+

∑
∂
∂Xi

P (a)εDiY +(ε2).
Of course, P (a) divides P (a), so the constant term of Q(Y ) is integral. By our
choice of ε and the definition of γ, v( ∂

∂Xi
P (a)ε) = v( ∂

∂Xi
P (a)) + v(ε) ≥ v(P (a)).

Thus, the linear term of Q(Y ) is integral. Finally, we have v(ε2) = 2v(P (a))−2γ =
v(P (a)) + (v(P (a))− 2γ) > v(P (a))

which implies that the higher terms in Q(Y ) have co-efficients in the maximal
ideal of OK .

So, not only isQ(Y ) integral, but its reduction is a nonzero affineD-polynomial.
As the residue field is linearly D-closed, there is some b ∈ K such that v(Q(b)) > 0
and v(b) = 0. By DHL in the original form, there is some c ∈ OK such that
Q(c) = 0 and v(c − b) = v(Q(b)). Set d := a + εc. Then P (d) = 0 and v(a − d) =
v(ε) + v(c) = v(ε) = v(P (a))− γ. a

Lemma 8.5 If (K, v,D) is a D-henselian field and w is a coarsening of the
valuation v, then (K,w,D) is also a D-henselian field.

Proof: We check the axioms.
Let w̃ : vK → wK be the homomorphism for which w = w̃ ◦ v. Note that w̃ is

order preserving.
Axiom 1 makes no mention of the valuation so it remains true.
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For Axiom 2 let x ∈ K, then by hypothesis v(Dx) ≥ v(x) and v(σ(x)) = v(x).
Applying w̃, we obtain w(Dx) = w̃ ◦ v(Dx) ≥ w̃ ◦ v(x) = w(x) and w(σ(x)) =
w̃ ◦ v(σ(x)) = w̃ ◦ v(x) = w(x).

Axioms 3 and 4 state merely that the extra sorts are interpreted as the value
group and residue field. This does not change upon passage from v to w.

For Axiom 5 let γ ∈ wK. Let γ̃ ∈ vK with w̃(γ̃) = γ. By Axiom 5 for
v we can find ε ∈ K with v(ε) = γ̃ and Dε = 0. Apply w̃ and we see that
w(ε) = w̃ ◦ v(ε) = w̃(γ̃) = γ.

The only axiom requiring real proof is Axiom 6, D-Hensel’s lemma. For this
we use the strengthened version of D-Hensel’s lemma. If P (X) ∈ OK,w〈X〉 and
a ∈ OK,w with w(P (a)) > 0 = w( ∂

∂Xi
P (a)) for some i, we can scale so that

P (X) ∈ OK,v and a ∈ OK,v. (Note: this move uses the fact that (K, v,D) has
enough constants.) The hypothesis that w( ∂

∂Xi
P (a)) = 0, does not mean that

v( ∂
∂Xi

P (a)) = 0. Rather, because w is a refinement of v, we can conclude from
this and w(P (a)) > 0 that v(P (a)) > 2v( ∂

∂Xi
P (a)). By the strengthened version

of DHL, there is some b such that P (b) = 0 and v(a− b) = v(P (a))− v( ∂
∂Xi

P (a)).
We have w(a − b) = w̃ ◦ v(a − b) = w̃ ◦ v(P (a)) − w̃ ◦ v( ∂

∂Xi
P (a)) = w(P (a)) as

required. a

With the above lemmata in place, we can reduce the our main problem to the
case of pure characteristic zero valued D-fields.

Proposition 8.6 Theorem 6.4 is equivalent to Theorem 6.3.

Proof Using Test 7.4, the hypothesis of this proposition takes the form:
In any model of set theory in which GCH holds, if L ⊇ Lac,0

vdf is an expansion
of the language Lac,0

vdf by predicates on the leading terms, K and L are saturated
D-henselian fields of pure characteristic zero of the same cardinality considered as
L-structures, ΓK ≡L ΓL,

⋃
Rn(K) ≡L

⋃
Rn(L), ΓK and

⋃
Rn(K) are L-quantifier

eliminable, and f : A → B is an isomorphism between small substructures of K
and L, then f extends to an isomorphism between K and L.

Using the same test, the conclusion takes the form.
If L ⊇ Lac,ω

vdf is a countable expansion of Lac,ω
vdf by predicates on the leading

terms, K and L are ℵ1-saturated D-henselian fields of characteristic zero with L-
elementarily equivalent and quantifier eliminable value groups and residue fields,
A ⊂ K is a countable substructure, a ∈ K is an element, and f : A ↪→ L is an L-
embedding, then f extends to an embedding of A(〈a〉) into an elementary extension
of L.

So we may assume the continuum hypothesis and take two saturated mixed
characteristic valued D-field K and L of size ℵ1 satisfying the above hypotheses for
some langauge L. We may (and do) assume that the map f actually induces an
L-isomorphism between

⋃
n∈ω Rn(K) and

⋃
n∈ω Rn(L) and between ΓK and ΓL

Let wK be the valuation on K having valuation ring OK [ 1p ] and wL the valua-
tion on L with valuation ring OL[ 1p ]. The structures (K,wK , D) and (L,wL, D) are
valued D-fields of pure characteristic zero. Our task is to show that the hypotheses
of Theorem 6.3 are true of these structures and that an embedding with respect to
an expansion of Llt,0

vdf by predicates on w-zero leading terms induces an embedding
of K into L for Lac,ω

vdf .
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The saturation hypotheses on L and K imply that we may recover the wK-
residue field of K (respectively, the wL-residue field of L) from the residue rings
Rn(K) and Rn(L). That is, ℵ1-saturation implies that the natural maps

OK,v/mK,wK

ψK−−−−→ lim
←−
n→∞

Rn(K)

and
OL,v/mL,wL

ψL−−−−→ lim
←−
n→∞

Rn(L)

are isomorphisms of multiplicative monoids. These maps preserve more than
just the multiplicative structure. They are isomorphisms of LD−ring(σ, σ−1)-structures
as well: if x, y ∈ K and wK(x + y) = wK(x) = wK(y), then for some n ∈ ω we
have v(x+ y) < min{v(x) + nv(p), v(y) + nv(p)} so that for m > n the expression
π2m(x)+2m,m π2m(y) = πm(x+ y) is well-defined. Likewise, the D and σ-structure
on KmK,wK

is determined by the structure on {Kn}n∈ω. Thus, the map f induces
an isomorphism between the zero-leading term structure of K (with respect to wK)
and the zero-leading term structure of L (with respect to wL).

We need to work to produce an angular component function for the coarsened
valuation as the Lac,0

vdf structure is not canonically determined by the Lac,ω
vdf structure.

However, the indeterminacy may be traced to the choice of a section of K×/O×
K,v →

K×/OK,v[ 1p ]
× so that we can keep it under control.

The angular component functions

K× acn−−−−→ (OK/pn+OK)×

patch together to give a section

K×/1 + p∞OK
α−−−−→ (OK/p∞OK)×

of the inclusion (OK/p∞OK)× ↪→ K×/1 + p∞OK . However, α is not an angular
component function. For α to be an angular component function we would need α
restricted to OK [ 1p ]

×/1 + p∞OK to be the identity, but this is not the case as, for
instance, α(p) = 1.

The coarsened valuation wK corresponds to the exact sequence

1 → OK [ 1p ]
×/O×

K → K×/O×
K → K×/OK [ 1p ]

× → 1
| | | | | |

1 → Γw|v → Γv → Γw → 1

Let ψ : Γv → Γw|v be a section of the inclusion Γw|v ↪→ Γv.
From the splittings

K×/1 + pnOK
acn−−−−→ (OK/pnOK)×

we obtain splittings
Γv

χn−−−−→ K×/1 + pnOK
of the sequences

1 −−−−→ (OK/pnOK)× −−−−→ K×/1 + pnOK
v−−−−→ Γv −−−−→ 1

.
Let χ := lim

←−
n→∞

χn : Γv → lim
←−
n→∞

K×/1 + pnOK = KmK,w
. Let β : K× →

(OK [ 1p ]/p
∞OK [ 1p ])

× be defined by β(x) := α(x)χ(ψ(v(x))). This function will
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serve as ac0 for the coarsened valuation. We check now that it has the requisite
properties.

First, we remark that β does take values in (OK [ 1p ]/p
∞OK [ 1p ])

× as claimed. For
any x ∈ K we have ψ(v(x)) ∈ Γw|v so that χn(ψ(v(x)) ∈ OK [ 1p ]

×/1+pnOK . Thus,
χ(ψ(v(x)) ∈ OK [ 1p ]

×/1 + p∞OK = OK [ 1p ]
×/1 + p∞OK [ 1p ] = (OK/p∞OK [ 1p ])

×.
By construction, α(x) ∈ O×

K/1 + p∞OK ↪→ (OK [ 1p ]/p
∞OK [ 1p ])

×. Thus, β(x) ∈
(OK,w/mK,w)×.

Secondly, β is a homomorphism. This is clear from the construction.
Thirdly, β is a section. Let x ∈ (OK,w/mK,w)×. Write x = x̃χ(v(x)). Note

that v(x̃) = 0 so that x̃ ∈ O×
K,v/1 + mK,w. We compute

β(x) = α(x̃ · χ(v(x))) · χ(v(x̃ · χ(v(x))))
= α(x̃) · α(χ(v(x))) · χ(v(x̃)) · χ(v(χ(v(x))))
= x̃ · 1 · 1 · χ(v(x))
= x

As noted in the section on leading terms, the fact that β is a section of
(OK,w/mK,w)× ↪→ KmK,w

implies already that β preserves addition as far as this
makes sense.

Fourthly, β preserves the difference structure.

β(σ(x)) = α(σ(x)) · χ(ψ(v(σ(x))))
= lim

←−
n→∞

acn(σ(x)) · lim
←−
n→∞

χn(ψ(v(x)))

= lim
←−
n→∞

σ(acn(x)) · lim
←−
n→∞

χn(ψ(v(x)))

= σ(α(x)) · χ(ψ(v(x)))
= σ(α(x) · χ(ψ(v(x)))
= σ(β(x))

The penultimate equality uses the fact that the image of χ is contained in the
fixed field of σ. Why is this? An element x is equal to χ(γ) if and only if v(x) = γ
and α(x) = 1. The element σ(x) satisfies the same defining conditions.

Finally, β preserves the D-structure as far as this makes sense. The section χ
also maps to D-constants as we have the functional equality α◦χ ≡ 1. Thus, for any
γ we have w(D(χ(γ))) > w(χ(γ)) = γ for otherwise α(D(χ(γ))) = D(α(χ(γ))) =
D(1) = 0 which is impossible.

So, let x ∈ K×/1 + mK,w. Let x̃ ∈ K× lift x. We suppose that w(Dx̃) = w(x̃).
This means that v(Dx̃) = v(x̃) + γ < v(x̃) + nv(p) for some n ∈ Z+. Write
x = x̄χ(v(x)). Let ˜̄x ∈ K× lift x̄. Then as w(Dy) > w(y) for any y lifting χ(v(x))
we have Dx̃ = (D ˜̄x) · χ(v(x))(1 + mK,w). We compute

β(Dx̃) = β((D ˜̄x)χ(v(x)))
= β(D ˜̄x)χ(ψ(v(χ(v(x))))
= α(D ˜̄x)χ(ψ(v(D ˜̄x)))χ(ψ(v(x)))
= Dα(x̄)χ(ψ(γ))χ(ψ(v(x)))
= Dα(x̄)χ(ψ(γ + v(x))
= D(α(x̄) · χ(ψ(v(Dx̃))))
= D(β(x))
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In order to meet the hypotheses of Theorem 6.3, we replace L by a |K|+-
saturated elementary extensionM of L. (Note that (L,wL) is not even ℵ1-saturated.)
By Lemma 8.5, (L,wL, D) is D-henselian. So, assuming Theorem 6.4 we obtain an
embedding g : (K,wK , D) → (M,w,D).

We use now the flexibility in the choice of L. The w-residue field inherits a
trace of the valuation v on K. That is, we may (and do) continue to consider
kK,w has having the valuation v. From this (and w) we fully recover v. Thus the
embedding K →M can be taken to preserve v as well!

9 The proofs in equicharacteristic zero

In the previous section we reduced the proof of the main theorem to the case
of pure characteristic zero D-henselian fields. The proof we present in this section
is a variant of the proof of the main theorem in [6]. While the statement The proof
of the main theorem in [6] goes through with only minor changes. may be true, we
present the details especially where the “minor changes” are not obvious.

Let us recall what needs to be proved. We are given two ℵ1-saturated valued D-
fields of pure characteristic zeroM1 andM2 in some countable language L extending
Lac,0

vdf with some not necessarily new predicates on the residue field and on the value
group. We assume that kM1 ≡ kM2 , ΓM1 ≡ ΓM2 , and that the residue field and
value group eliminate quantifiers in L. We assume that A ⊆ M1 is a countable
substructure and that f : A ↪→ M2 is an L-embedding and that a ∈ M1. We need
to show that f extends to an embedding of A(〈a〉) into M2.

Convention 9.1 For the remainder of this section, “valued D-field” means
“valued D-field of equicharacteristic zero with an angular component function of
level m.”

Definition 9.2 If P (X) =
∑
pα

∏
(DjX)αj ∈ K〈X〉D is a D-polynomial over

the valued D-field K and x ∈ K is an element with v(x) = γ ∈ ΓK , then one
expects v(P (x)) = min{v(pα) + |α|γ : α ∈ ω<ω}. We say that P has the expected
(or generic) valuation at x if v(P (x)) is as expected.

The next lemma shows that if we control the valuation well enough, then we
also control the angular component structure.

Lemma 9.3 If K is a valued D-field, P (X) ∈ K〈X〉D is a D-polynomial,
x ∈ K with v(x) = γ ∈ ΓK , v(Djx) = γ for j ≤ ordP , and P has the expected
valuation at x, then ac0(P (x)) =

∑
{α:v(pα)+|α|γ=v(P (x))} ac0(pα)

∏∞
j=0D

jac0(x)αj .

Proof Our hypothesis is that v(Djx) = γ for j ≤ ordP implies that v(pα
∏

(Djx)αj ) =
v(pα)+ |α|γ for each multi-index α. Let T := {α : v(pα)+ |α|γ = v(P (x))}. By the
ultrametric triangle inequality, we have v(P (x)) = v(

∑
α∈T pα

∏
(DjX)αj ). Thus,

by Lemma 3.3 we have ac0(P (x)) =
∑
α∈T ac0(pα

∏
(DjX)αj ) =

∑
α∈T ac0(pα)

∏
(Dj(ac0(x))αj

as claimed.

Lemma 9.4 Let K be a valued D-field considered as an L-structure with L
and L′ two immediate extensions. If L ∼=LvdfK

L′, then L ∼=LK
L′.

Proof Let g : L→ L′ be an LvdfK-isomorphism. Then g induces the identity
map on L0 = K0 = L′0. As the new functions and relations in LK are all defined
on the leading terms exclusively, the map g respects them as well.
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We need to pin down the structure on the henselization of a valued D-field in
terms of the structure on the original field.

Lemma 9.5 If K is a valued D-field considered as an L-structure, then the
henselization Kh of K (or more accurately, the field of fractions of the henselization,
OhK , of the ring of integers of K) has a unique structure of a valued D-field in the
language LK .

Proof Lemma 7.11 of [6] shows that when v(e) > 0, there is a unique LvdfK-
structure on Kh. In the case that v(e) = 0, D is interdefinable with σ (and with
σ−1). By the universal property of the henselization σ : OK → OK ↪→ OhK induces
a unique map σ : OhK → OhK as does σ−1. Hence, in this case as well there is a
unique LvdfK-structure on Kh.

As a general rule K0 = (Kh)0. Thus, by Lemma 9.4 the LK-structure on Kh

is also determined.

The next lemma concerns the structure of an extension obtained by adjoining
a new element to the residue field. The proof of the corresponding lemma in [6]
(Lemma 7.12) used the hypothesis that v(e) > 0 substantially, though the use is re-
movable. The proof given below recasts that proof with this extraneous hypothesis
removed.

Lemma 9.6 If K is a valued D-field considered as an L-structure, p(x) ∈
S1,k(kK) is a one-type in the residue field sort, P (X) ∈ OK〈X〉D is a D-polynomial
over K for which

• p(x) ` π(P )(x) = 0,
• P and π(P ) have the same total degree, and
• if Q(X) ∈ OK/mK〈X〉 with p(x) ` Q(x) = 0, then π(P ) � Q;
then there is a unique LK-structure on L = K(〈b〉) for which P (b) = 0, v(b) ≥ 0,

and π(b) |= p.

Proof Lemma 7.12 of [6] shows the existence and uniqueness of the LvdfK-
structure on L in the case of v(e) > 0. Moreover, every element c of L is of the
form R(b)

Q(b) with R,Q � P . It follows that R(X) and Q(X) have the expected
valuation at b, and, therefore, by Lemma 9.3 ac0(c) may be computed from ac0(b).
As there is no extension of the valuation group, this observation shows that the
LK-structure is pinned down.

In the case of v(e) = 0, we need a different argument. We prove uniqueness
first and then show existence. In the course of showing that the LvdfK-structure is
uniquely determined, we will show that every new element of the residue field is a
OK/mK-rational function of ac0(b) and its conjugates under integral powers of σ.
Thus, included in the proof of the uniqueness of the LvdfK-structure is a proof of
the uniqueness of the LK-structure.

As in the proof of Lemma 9.5, it suffices to work with σ and σ−1 polynomials
rather thanD-polynomials. Substituting e−1(σ−id) for the operatorD and abusing
notation, we regard P as a σ-polynomial.

Let d := ordP . Let Kn := K(b, . . . , σn(b)) for n ≥ 0, K−1 := K, and L+ :=⋃
n∈ωKn.

We show now that the LvdfK-structure on Kn is uniquely determined. When
n ≤ d, then every element of Kn may be expressed as quotient of σ-polynomials
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simpler than P . Just as in the case of v(e) > 0, the LvdfK-structure is determined
on Kn.

The case of n = d + j with j ≥ 0 requires some work. Write P (X) =
F (X,σ(X), . . . , σd(X)) with F (X0, . . . , Xd) ∈ OK [X0, . . . , Xd]. SetG(Y ) := F (b, . . . , σd−1(b), Y ).
Then G(Y ) is a minimal polynomial of σd(b) over Kd−1. By hypothesis, π(b) is a
simple root of π(G)(Y ). As σ induces an automorphism of the residue field, σj(b)
is a simple root of π(σj(G))(Y ) for each j ≥ 0. Thus, Kd+j is contained in the
strict henselization of Kd for each j ≥ 0. Moreover, for each j ≥ 0, as a valued field
the extension Kd+j/Kd+j−1 is characterized over Kd+j−1 and kK(〈π(b)〉) by σj(b)
is the unique solution to σj(G)(Y ) = 0 and π(Y ) = σj(π(b)).

To get all of L we need to consider
⋃∞
n=0 σ

−1(L+). We do this by working with
H(Y ) := F (Y, σ(b), . . . , σd(b)) instead of G(Y ).

For existence, pick some realization b̄ |= p. Give K ′ := K(X0, . . . , Xd−1) the
structure of a valued field with residue field contained in OK/mK(〈b̄〉) by defining
v(

∑
pαX

α) := min{v(pα)} and π(Xi) := σi(b̄). It is a routine matter to check that
this defines a valuation.

Let L be the strict henselization ofK ′. Let y ∈ OL with F (X0, . . . , Xd−1, y) = 0
and π(y) = σd(b̄). Note that Hensel’s Lemma guarantees the existence of y.

Define σ̃ : K ′ → L by σ̃|K := σ, σ̃(Xi) := Xi+1 for 0 ≤ i < d−1 and σ̃(Xd−1) :=
y. By the irreducibility of P , X1, . . . , Xd−1, y are algebraically independent over K.
Hence, a unique field homomorphism is specified by the above conditions. Using
the fact that v(y) > 0 and σ preserves the valuation on K, we see that the image
of σ̃ on OK′ is contained in OL. Thus, by the universality property of the strict
henselization, there is an extension of σ̃ to OL. The extension need not be unique,
but on the (inversive) difference field generated by X0 over K, K(〈X0〉), it is unique
as it is the only such map lifting σ. Likewise, we find an map σ̃−1 : OL → OL
which when restricted to OK(〈X0〉) is an inverse to σ̃. As both σ̃ and σ̃−1 preserve
the valuation ring, they must preserve the valuation itself.

As remarked in the introduction, the main reason for introducing angular com-
ponent functions is to deal with radical extensions. We do this with the next two
lemmata.

Lemma 9.7 If K is a valued D-field and π : OK → kK is surjective, then for
any b ∈ K× there is some ε ∈ K with v(ε) = v(b) and ac0(ε) = 1 (and, therefore,
v(Dε) > v(ε)).

Proof As π is surjective, there is some c ∈ O×
K with π(c) = ac0(b)−1. Set

ε := c · b.

Lemma 9.8 If K is a valued D-field and η ∈ K× with ac0(η) = 1 and
tp(v(η)) ` n|x but v(η) /∈ mvK for any m > 1 with m|n, then the field K(〈ε〉)
where εn = η has a unique LK-structure with ac0(ε) = 1.

Proof That the valuation structure on K(ε) is determined is well-known.
Moreover, since ε has the expected valuation for every polynomial over K of degree
less than n, the angular component structure is pinned down. There is no residue
extension, so we need not worry about the possible new LK-relations. The new
elements of the value group all lie in the group generated by vK and v(ε) which is
definable from v(η).
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In the case that e = 0, there is nothing more to do as in this case Dε ∈ K(ε).
We assume now that e 6= 0.

As σ must preserve the valuation, we see that σ(ε) = ω ·ε where v(ω) = 0. As σ
commutes with ac0, we see that π(ω) = ac0(ω) = 1. The image of ε under σ must be
a root to Xn = σ(η). Hence, ω is a root to Xn = ση

η . Note that π(σ(η)
η ) = 1. As the

residue characteristic is zero, there is a unique element ω̃ of the henselization ofK(ε)
with π(ω̃) = 1 and ω̃n = σ(η)

η . Thus, by the universal property of the henselization,
there is a unique embedding of K(〈ε〉) into its henselization compatible with σ|K ,
σ(ε)n = σ(η), and ac0(σ(ε)) = 1.

The next lemma is the analogue of the above lemma for transcendental valua-
tions.

Lemma 9.9 If K is a valued D-field, p(x) ∈ S1,Γ(vK), and p(x) ` {nx 6= v(b) :
n ∈ Z+, b ∈ A}, then K(ε) has a unique LK-structure with Dε = 0, ac0(ε) = 1, and
v(ε) |= p.

Proof Lemma 7.8 of [6] shows that K(ε) has a unique LvdfK-structure with
v(ε)modelsp and Dε = 0. As there is no extension of the residue field and p
determines the extension on the value group, this structure is also determined. As
every polynomial over K has the generic valuation at ε, the expansion to Lac,0

vdf K
is

also determined.

We proceed now to prove Theorem 6.4 (and, hence, Theorem 6.3).

Proof of Main Theorem:
We follow the strategy and arguments of [6] quoting the above lemmata in some

places to guarantee that the arguments work in L with v(e) ≥ 0. We extend the
embedding f : A ↪→M2 in stages.

We find a countable elementary submodel N1 ≺M1 with A(〈a〉) ⊆ N1.
We extend f so that π(OA) = kN1 using Lemma 9.6. That is, if b̄ ∈ kN1 \

π(OA), then we choose P (X) ∈ OA〈X〉D so that T.degπ(P ) = T.deg(P ) and π(P )
is a minimal D-polynomial for b over OA/mA. As we have assumed quantifier
elimination for the residue field, we may extend f to b. As N1 is D-henselian, there
is some b̃ ∈ ON1 with π(b̃) = b̄. Likewise, there is some c̃ ∈ OM2 with π(c̃) = f(b̄).

As the residue characteristic is zero, DHL applies to P at b̃, and, hence, also to
f(P ) at c̃. Let b ∈ ON1 with P (b) = 0 and π(b) = b̄ and c ∈ OM2 with f(P )(c) = 0
and π(c) = f(b̄). By Lemma 9.6 there is an extension of f to A(〈b〉) determined by
b 7→ c.

We then extend f so that vA = ΓN1 . There are two different steps involved
with this kind extension.

If γ ∈ ΓN1 but nγ /∈ vA for all n ∈ Z+, then Lemma 9.9 γ = v(b) for some b in
the domain.

In the other case, take n minimal with nγ ∈ vA. If n = 1, there is nothing
to do. Otherwise, since OA/mA = kN1 and π is surjective on ON1 , by Lemma 9.7
there is some η ∈ A with v(η) = nγ and ac0(η) = 1. Let ε̃ ∈ N1 with v(ε̃) = γ and
ac0(ε̃) = 1. Applying Hensel’s Lemma to Xn − η

ε̃n at 1 we find that there is some
ε ∈ N1 with εn = η and ac0(ε) = 1. Likewise, there is some ζ ∈M2 with ζn = f(η)
and ac0(ζ) = 1. By Lemma 9.8 we may extend f to A(〈ε〉) by sending ε 7→ ζ.



22 Thomas Scanlon

We have reduced to the case that N1 is an immediate extension of A. If one is
willing to carefully examine the proofs in section 7.2 of [6], then one sees that the
hypothesis that A has enough constants is not used when dealing with algebraic
extensions or when dealing with extensions for which D(b) is rational over b. This
shows that it is possible to extend the embedding inside N1 so that A has enough
constants. However, as I have disavowed such tests of the readers’ patience, we
must follow a different route.

We will find a countable unramified extension A(2) of A on which an extension
of f is defined and which has enough constants. We then take N1 � N

(2)
1 ≺ M1

a countable model with A(2) ⊆ N
(2)
1 . We repeat the above arguments extending

so that N (2)
1 is an immediate extension of the domain of f . We then find A(3), a

countable unramified extension of A(2) on which an extension of f is defined and
which has enough constants, and so on. Eventually, we let N be the direct limit of
the N (i)

1 ’s and we will have that N is a countable elementary submodel of M1, is
an immediate extension of the domain of f , and a ∈ N .

To extend f so that the domain has enough constants, take γ ∈ ΓA. As M1

is D-henselian and ℵ1-saturated, we can find ε ∈ M1 with Dε = 0, v(ε) = γ,
and ac0(ε) /∈ kalgA . One computes easily that every polynomial over A has the
expected valuation at ε so that the LA-structure on the unramified extension A(〈ε〉)
is determined by p(x) := tp(ac0(ε)/kA). Using the fact that M2 is an ℵ1-saturated
D-henselian field we find ζ ∈ M2 with v(ζ) |= f(tp(γ/ΓA)), Dζ = 0, and ac0(ζ) |=
f(p).

From now on, we may assume that A has enough constants and that N is an
immediate extension of A. Given Lemma 9.4, the proof for this last step is (almost)
the same as the proof in [6]. The sole use of the hypothesis v(e) > 0 in the original
proof is cosmetic: in the last paragraph of Lemma 7.47 the fact that De(R) is
henselian is used. However, when v(e) = 0, this ring is isomorphic to R × R so
that one should apply the universal property of the Cartesian product and of the
henselization to find the unique extension ψ.

Proposition 7.51 of [6] shows that there is an extension of f to an LvdfK-
embedding of N into M2. By Lemma 9.4, this is also an LK-embedding.

z

10 Eliminating the leading terms

The angular component functions and leading term structures used in this
paper clutter our results. In this section we note that the results of the previous
section suffice for a complete axiomatization of the theory of a D-henselian field of
characteristic zero.

To begin, we note Theorem 6.3 implies a complete axiomatization in Lvdf .

Theorem 10.1 Let K be a D-henselian field of characteristic zero. Then the
theory of K in Lvdf is determined by the theory of D-henselian fields of character-
istic zero, the atomic theory of K, the theory of the value group and the theory of⋃
n∈ω OK/pn+OK considered as a many sorted structure.

Proof: As the statement of this theorem is absolute, we may and do assume GCH.
Let K ′ � K be a saturated elementary extension of K ′. Let χ : vK ′ → ((K ′)D)×

be a section of the valuation on K ′. If the residue characteristic of K is p, define
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acn(x) := x
χ(v(x)) + pn+OK′ for x ∈ (K ′)× and n ∈ ω. If the residue characteristic

is zero, set ac0(x) := x
χ(v(x) + mK′ for x ∈ (K ′)×. With these functions K ′ is a D-

henselian field of characteristic zero with a system of angular component functions.
By Theorem 6.3, the theory of K ′ in Lac,ω

vdf is determined by this fact and the
theory of its value group and of

⋃
Rn(K ′). Hence, the theory of its reduct to Lvdf

is determined by the same things and thus, the same is true of K. a

If we specialize K, then the statement of Theorem 10.1 becomes cleaner.

Corollary 10.2 The completions of the theory of D-henselian fields of pure
characteristic zero are determined by specifying the atomic theory, the theory of the
residue field, and the theory of the value group.

Remark 10.3 The generalized power series construction of [6] shows that we
may take any D-linearly closed field of characteristic zero and choose for e any
element of non-negative valuation in the generalized power series ring.

Corollary 10.4 Let p be a rational prime. Let k be a field of characteristic
p having no degree p extensions. Let K := Wp∞(Falgp )[ 1p ] be the field of fractions
of the Witt vectors over Falgp . Let σ : K → K be the relative Frobenius. Let
v : K → Z ∪ {∞} be the p-adic valuation on K. Then the theory of (K, v, σ)
is axiomatized by saying that the function D(x) := σ(x) − x makes K into a D-
henselian field of characteristic zero with e = 1, residue field satisfies Th(k), the
value group is a Z-group with least positive element v(p), and D(x) ≡ xp − x
(mod p) for x ∈ OK . Moreover, we have quantifier elimination in Lvdf({acn}n∈ω)
relative to the residue field. In particular, when k = kalg, we have absolute quantifier
elimination.

Proof The rings Rn(K) are definably isomorphic to Wpn(k) which are them-
selves bi-interpretable with k.

The reader may substitute finitely ramified extensions of Wp∞(k)[ 1p ] where k
is an algebraically closed field of characteristic p and powers of the relative Frobe-
nius in the above corollary to obtain other axiomatizations of concrete theories of
standard valued difference fields.

Remark 10.5 The Lvdf -structure on Wp∞(Falgp )[ 1p ] is an expansion of the
Teichmüller structure considered in [8] as the Teichmüller representives are defined
by the equation σ(x) = xp.

Remark 10.6 There are D-henselian fields of mixed characteristic in which
the residue field is differential field. Since we must require the residue field to be
D-linearly closed, the residue fields necessarily have infinite degree of imperfection.
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