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Abstract. Tate and Voloch have conjectured that the p-adic distance from

torsion points of semi-abelian varieties over Cp to subvarieties may be uni-
formly bounded. We prove this conjecture for prime-to-p torsion points on

semi-abelian varieties over Qalg
p using methods of algebraic model theory.

Let Cp denote the completion of the algebraic closure of the p-adic numbers
with p-adic valuation v normalized to have v(p) = 1. Tate and Voloch proved the
following approximation theorem on linear forms in p-adic roots of unity in [14]:
Theorem 0.1 (Tate, Voloch). Let (a1, . . . , an) ∈ An(Cp). Then there is a constant
N ∈ Z such that for any sequence (ζ1, . . . , ζn) of roots of unity, either

∑n
i=1 aiζi = 0

or v(
∑n

i=1 aiζi) ≤ N .
They observed that this theorem may be interpreted as a special case of the

following conjecture.
Conjecture 0.2 (Tate, Voloch). Let G be a semi-abelian variety over Cp. Let
X ⊆ G be a closed subscheme defined over Cp. There is a constant N ∈ Z such
that for any torsion point ζ ∈ G(Cp)tor either ζ ∈ X or d(ζ, X) ≤ N .

In the above conjecture, “d(ζ, X)” refers to the p-adic distance from P to X
which will be defined precisely in Section 1.

In the case that X is a single point, Conjecture 0.2 is a theorem of Mattuck [8].
Other instances of this conjecture have been proved by Buium, Hrushovski, Tate,
and Voloch [1, 6, 14, 16]. With the exception of Mattuck’s theorem, all previous
results require G to have an integral model with good reduction.

We prove Conjecture 0.2 under two restrictions. First, G must be defined over
Qalg

p . Secondly, we restrict to torsion points of order prime to p. The first restriction
is intrinsic to the particular method used here, but this method should give a
proof without the second restriction. We discuss possible strategies for a proof in
Section 4.

The main result of this paper is
Theorem 0.3. Let K be a finite extension of Qp. Let G be a semi-abelian variety
over K. Let X ⊆ G be a closed subvariety of G defined over Cp. There is a constant
N ∈ Z such that for any prime to p torsion point ζ ∈ G(Cp)p′−tor either ζ ∈ X(Cp)
or d(ζ, X) ≤ r.

The results in this paper appear as a chapter in my Ph. D. thesis written
under the direction on E. Hrushovski [9]. I thank him and B. Mazur for their
advice and suggestions on this topic. I thank also the referee who suggested many
improvements in the presentation of this paper.
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1. Distance Functions

In this section we give a precise definition of the p-adic distance to a subvariety.
For more information on these distance functions consult [15].
Definition 1.1. Let K be a valued field with valuation v and value group vK.
Let X ⊆ AN

K be a subvariety of affine N -space over K with defining ideal IX . If
ζ ∈ AN (K), then the v-adic distance from ζ to X is

dv(ζ, X) := min{v(f(ζ)) : f ∈ IX ∩ OK [x1, . . . , xn]}

If X is a quasi-compact variety over K, Y ⊆ X is a closed subvariety, and
U := {(Ui, ϕi : Ui → An)} is a finite affine cover, then for ζ ∈ X(K) the v-adic
distance from ζ to Y with respect to U is

dUv (ζ, Y ) := min{dv(ϕi(ζ), ϕi(Y ∩ Ui)) : ζ ∈ Ui}

When v is the p-adic valuation, we will call this distance function the p-adic
distance. We will drop v and U from the notation because v will be clear from
context and a change in U results in a constant additive change. That is, if U
and V are two finite affine covers, then there is a constant C ∈ vK such that
dUv (ζ, Y ) ≤ dVv (ζ, Y ) + C for any ζ ∈ X(K).

If we work over the ring of integers, then these distance functions have a more
geometric definition. As above, let K be a valued field with ring of integer OK .
For each non-negative element of the value group γ let Iγ := {x ∈ OK : v(x) ≥ γ}.
Let S := SpecOK , Sγ := SpecOK/Iγ , and η := Spec K. If X is a scheme over S,
let Xγ := X ×S Sγ and let πγ : X(S) → Xγ(Sγ) be the natural reduction map. If
ζ ∈ X(S), then define the geometric distance from ζ to Y to be

dg
v(ζ, Y ) := inf{γ : πγ(ζ) /∈ Yγ(Sγ)}

The reader may notice that in some circumstances this is not well-defined (for
instance, if the ideal sheaf of Y is not finitely presented and the value group is not
archimedian, then the infimum need not exist; so, in general it may be better to
define the distance as a cut in the value group), but it is well-defined when K = Cp

or when the generic fibre Yη of Y is dense in Y .
When Yη is reduced and dense in Y , for any finite affine cover U of Xη coming

from an affine cover of X one has dg
v(ζ, Y ) = dUv (ζ, Yη) for any point ζ ∈ X(S).

2. A More General Formulation

We prove Theorem 0.3 as a special case of a theorem on groups defined by
difference equations over valued fields.

In this section K is a general valued field of characteristic zero with valuation v
and value group vK. (L, v) denotes an algebraically closed valued field extending
(K, v). We will consider a version of Theorem 0.3 for torsion subgroups of semi-
abelian varieties over K satisfying certain (seemingly unnatural) conditions which
in section 3 we will verify are true in the situation of Theorem 0.3.

Throughout this section G denotes a semi-abelian variety defined over K. We
will suppose that there are only finitely many torsion points in G(K)

We list this as a hypothesis.
Hypothesis 1. There are only finitely many torsion points in G(K).
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For K a finite extension of Qp, this hypothesis is true of any G. For other valued
fields ( C((t)) for instance) this hypothesis may fail for some G.

If R is a K-algebra and σ : R → R is a K-algebra homomorphism, then σ induces
a group homomorphism (which we will continue to denote by σ) σ : G(R) → G(R).
Likewise, any power of σ also induces a group homomorphism. If P (X) ∈ Z[X] is
any polynomial with integer co-efficients, then we may interpret P (σ) as a group
homomorphism P (σ) : G(R) → G(R). That is, if P (X) =

∑
niX

i, then P (σ)(ζ) :=∑
[ni]σi(ζ) where the sum is taken with respect to the group law on G.
Fix now some P (X) ∈ Z[X]. We assume that P has no cyclotomic factors.

Hypothesis 2. P (ζ) 6= 0 for all roots of unity ζ ∈ C.
With such a G and P fixed we define functors which assign to a K-algebra R

with a specified K-algebra endomorphism certain subgroups of G(R).
Definition 2.1. If R is a K-algebra and σ : R → R is a K-algebra endomorphism,
then define:

Ω(R, σ) := ker G(R)
P (σ)◦(σ−1)−−−−−−−−→ G(R)

Λ(R, σ) := ker G(R)
P (σ)−−−−→ G(R)

Φ(R, σ) := ker G(R) σ−1−−−−→ G(R)
These symbols should suggest respectively the universal, locally modular, and

fixed field parts. We will observe later that when (R, σ) is an existentially closed
difference field extending (K, id), then Ω is the direct sum (up to finite index) of
Λ and Φ and that Λ is locally modular. These terms and their importance will be
explained in due course.

Let Γ be a torsion subgroup of G(L). In the application to Theorem 0.3 it will
be the group of prime-to-p torsion points. To simplify some of our arguments, we
will assume that if Γ contains a nontrivial `-torsion point, then it is `-pure inside
G(L).
Hypothesis 3. Γ ⊆ G(L)tor is a subgroup of the torsion subgroup of G(L). For
any integer n, if Γ ∩G[n](L) 6= 0, then for any ζ ∈ G(L), if [n]ζ ∈ Γ, then ζ ∈ Γ.

Only certain special automorphisms of L will play a role in the proving distribu-
tion properties of Γ. We make the following definition with respect to all the data
indicated so far in this section (L, v, G, Γ, and P ).
Definition 2.2. An automorphism σ of L is called good if

• for every x ∈ L× one has v(x) = v(σ(x)),
• σ|K = idK , and
• Γ ⊆ Ω(L, σ).

If in addition one has Γ ⊆ Λ(L, σ), then σ is called very good.
With these definitions and hypotheses in place we can state the Theorem 2.3,

an axiomatic version of Theorem 0.3.
Theorem 2.3. Let K, L, G, Γ and P be as above. Assume either that there exists
a very good automorphism of L or that that the common fixed field of the good
automorphisms is K.

Then for any subvariety X ⊆ G defined over L there is some constant γ ∈ vL
such that for any point ζ ∈ Γ either ζ ∈ X or d(ζ, X) ≤ γ.
Remark 2.4. Theorem 2.3 in the case that a very good automorphism exists is a
theorem of Hrushovski [6]. We include this case for the sake of completeness. The
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hypotheses in this case may be weakened somewhat. For instance, the hypothesis
that there are few torsion points of G over K is unnecessary.
Remark 2.5. Theorem 0.1 may be seen as a consequence of Theorem 2.3. Take
K = Qp and L = Cp with the p-adic valuation, G = Gr

m, Γ = {(ζ1, . . . , ζr) : ζn
i =

1 for some n ∈ Z+}, and P (X) = (X − p)(X − `) where ` is some prime different
from p. Since the extension of Qp given by adjoining all the p-power roots of unity
is linearly disjoint over Qp from the maximal unramified extension of Qp, we may
find a Frobenius σ which acts as x 7→ x` on p-power roots of unity and as x 7→ xp

on prime-to-p roots of unity (as all Frobenii do). Such a σ is very good for this
situation.

We delay the verification that Theorem 0.3 follows from Theorem 2.3 until Sec-
tion 3.

For the rest of this section the notation follows that of Theorem 2.3.

2.1. Bounding the Distance to Cosets. We will prove Theorem 2.3 by reducing
to the case that X is a translate of a semi-abelian subvariety of G. In this subsection
we show how to bound the distance from torsion points to cosets.
Lemma 2.6 (Mattuck). There is a constant γ ∈ vK such that for any torsion
point ζ ∈ G(L)tor either ζ = 0 or d(ζ, 0) < γ.

Proof: This is a theorem of Mattuck [8] at least in the case that K is a p-adic
field. The proof goes through in general.

For the reader’s convenience we sketch the proof.
Replace L with L a maximal completion. See [10] chapter 2 for a proof that L

exists and is algebraically closed.
By the semi-stable reduction theorem for semi-abelian varieties (Theorem 3.6

of [4]), we may assume that G is the generic fibre of a semi-abelian scheme G over
OL.

If ζ does not reduce to zero, then d(ζ, 0) = 0 so we need not worry about ζ.
There is a natural isomorphism {x ∈ G(OL) : π0(x) = 0} ∼= Ĝ(mL) where

Ĝ is the formal group of G. There is a neighborhood of the origin in Ĝ(mL)
on which the formal logarithm of Ĝ converges to define a homomorphism logĜ :
Ĝ(mL) → ĜM

a (mL) for some M . Moreover, there is a neighborhood of the identity
in ĜM

a (mL) on which the formal exponential of Ĝ is defined and gives an inverse
to the logarithm. Thus, a neighborhood of the identity in G is isomorphic to a
neighborhood of the identity in GM

a so that near the origin of G there can be no
other torsion points.

Lemma 2.7. If a ∈ G(L) is any point then there is a constant γ ∈ vL such that
for any torsion point ζ ∈ G(L)tor either ζ = a or d(ζ, a) ≤ γ.

Proof: Work again with a semi-abelian model G of G over OL. If a does not
extend to an integral point, then d(a, ζ) ≤ 0 for any torsion point ζ so we may
assume that a ∈ G(OL).

Let γ be the bound computed in Lemma 2.6. If ζ and ξ are distinct torsion
points and d(ζ, a) ≥ γ and d(ξ, a) ≥ γ, then πγ(ζ) = πγ(ξ) so that πγ(ζ − ξ) = 0.
That is, d(ζ − ξ, 0) ≥ γ contradicting Lemma 2.6.
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Lemma 2.8. If H is an algebraic subgroup of G defined over L and a ∈ G(L) is
any point, then there is some γ ∈ vL such that d(ζ, a + H) ≤ γ for any torsion
point ζ ∈ G(L)tor \ (a + H)(L).

Proof: Apply Lemma 2.7 to G/H.

2.2. Model Theory of Difference Fields. A difference field is a field M given
together with a field endomorphism σ : M → M . An existentially closed differ-
ence field is called a transformally closed field. The class of transformally closed
fields is elementary and its theory has been extensively studied by Chatzidakis and
Hrushovski [3]. The main results are described in [5] and [2].

In this subsection we draw some consequences of their analysis for the situation at
hand. The notation and conventions indicated before the statement of Theorem 2.3
are still in force.
Lemma 2.9 (Hrushovski). If (K, σ) is a transformally closed field extending (K, id)
and V is any subvariety of G×G, then there are varieties Y1, . . . , Yn and Z1, . . . , Zn

such that
(1) V ∩ (Λ× Φ)(K, σ) = (

⋃n
i=1 Yi × Zi) ∩ (Λ× Φ)(K, σ)

(2) each Yi is a translate of a group subvariety of G.

Proof: By Lemma 3.60 of [5] the group Λ(K, σ) is locally modular and stably
embedded. Hence every definable subset is a Boolean combination of cosets of
definable subgroups. By Theorem 5.5 of [3] Λ(K, σ) is orthogonal to the fixed
field. This implies by Lemma 3.24 of [5] every definable subset of the product
(Λ×Φ) (K, σ) is a Boolean combination of products of definable subsets of Λ(K, σ)
with definable subsets of Φ(K, σ). In the statement above

⋃n
i=1 Yi×Zi is the Zariski

closure of V ∩ (Λ× Φ) (K, σ).

Lemma 2.10. In Lemma 2.9, if K ′ is a subfield of K closed under σ and σ−1 and
V is defined over K ′, then each of the Yi’s and Zi’s are defined over K ′alg.

Proof: If Σ ⊆ K is any subset, then the algebraic closure of Σ in the model
theoretic sense (ie the set of elements of K which satisfy a formula with parameters
from Σ having only finitely many solutions) is equal to the algebraic closure in
the sense of field theory of the field generated by {σn(x) : x ∈ Σ, n ∈ Z} (see [3]
Proposition 1.7). If Σ = K ′ is a field which is already closed under σ and σ−1, then
the model theoretic algebraic closure is just K ′alg.

Each Yi and Zi is algebraic over K ′ model theoretically and therefore alge-
braically.

Lemma 2.11. Let V ⊆ G×G be a subvariety defined over L. There is a finite set
Ξ of subvarieties of V defined over L such that

(1) If Y ∈ Ξ, then each irreducible component of Y is of the form W ×Z where
W is a translate of a group subvariety of G.

(2) If (K, σ) is a transformally closed field extending (K, id) given with a fixed
embedding of L, then for some Y ∈ Ξ one has V ∩ (Λ × Φ)(K, σ) = Y ∩
(Λ× Φ)(K, σ).
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Proof: This follows by the compactness theorem of first order logic from Lem-
mas 2.9 and 2.10.

That is, if there were no uniform choice for Ξ, then the following set of sentences
would be consistent.

(1) (K, σ) is a transformally closed field extending (K, id) and is given with a
field embedding of L.

(2) {
∧

Y ∈Ξ X ∩ (Λ × Φ)(K, σ) 6= Y ∩ (Λ × Φ)(K, σ) : Ξ a finite set of varieties
as in the statement of the Lemma }

By the compactness theorem, all of these sentences can be realized simultane-
ously. This contradicts Lemmas 2.9 and 2.10.

Lemma 2.12. If σ ∈ Gal(L/K) is good, then Λ(L, σ) + Φ(L, σ) ⊇ Γ

Proof: If (K, σ) is any transformally closed field extending (L, σ), then |Ω(K, σ)/[Λ(K, σ)+
Φ(K, σ)]| is finite (see the proof of Theorem 5.4 of [2]).
Claim 2.13.

Λ(L, σ) + Φ(L, σ) = (Λ(K, σ) + Φ(K, σ)) ∩ Ω(L, σ)

Proof of Claim: Since Λ = ker P (σ) and Φ = ker(σ − 1), Λ(K, σ) ∩ Φ(K, σ) ⊆
G[P (1)](Fix(σ)) which is finite because P (1) 6= 0. Thus if x = a + b with (a, b) ∈
Λ(K, σ) × Φ(K, σ)), then a and b are model-theoretically algebraic over x. By the
criterion for algebraicity in transformally closed fields, if x ∈ G(L), then a, b ∈
G(L).

Thus the map Ω(L, σ)/[Λ(L, σ) + Φ(L, σ)] −−−−→ Ω(K, σ)/[Λ(K, σ) + Φ(K, σ)]
is injective. So m := |Ω(L, σ)/[Λ(L, σ) + Φ(L, σ)]| ≤ |Ω(K, σ)/Λ(K, σ)| < ∞.

As σ is good, Ω(L, σ) ⊇ Γ. So Λ(L, σ) + Φ(L, σ) ⊇ [m]Ω(L, σ) ⊇ [m]Γ = Γ.

A version of the next lemma appears as Proposition 6.3 of [7] and in a more
general form as Proposition 4.2.3 of [9].
Lemma 2.14. Let Y,Z ⊆ An

L be subvarieties of affine n-space over L. Let σ be an
automorphism of L satisfying v(σ(x)) = v(x) for any x ∈ L×. Let D ⊆ An(m+1)

L be
a subvariety of affine n(m + 1)-space over L.

Define D(L, σ) := {x ∈ An
L : (x, σ(x), . . . , σm(x)) ∈ D(L)}.

If Y (K) ∩ D(K, σ) = Z(K) ∩ D(K, σ) for any difference field (K, σ) extending
(L, σ) then there are constants n ∈ Z+ and γ ∈ vL such that d(ζ, Y ) = n·d(ζ, Z)+γ
for any ζ ∈ D(L) ∩ An(OL).

Proof:
If the lemma were false, then for each n ∈ N and γ ∈ vL there is a point

ζ(n,γ) ∈ D(OL, σ) such that d(ζ(n,γ), Y ) > n · d(ζ(n,γ), Z) + γ.
Let F be an ultrafilter on N × vL containing {[(n, γ),∞) := {(m, δ) : m ≥ n, δ ≥
γ} : (n, γ) ∈ N× vL}.
Let (L,v) be the ultrapower

∏
/F (L, v).

Let ζ be the image of (ζ(n,γ)) in OL.
Let δ := dv(ζ, Z).
Let p := {x ∈ R : (∀(n, γ) ∈ N× vL) v(x) > n · δ + γ}.
Claim 2.15. p is prime.
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Proof of Claim: Let x, y ∈ OL \p. We have v(x) ≤ n ·δ+γ and v(y) ≤ m ·δ+γ′

for some m,n ∈ N and γ, γ′ ∈ vL. Thus, v(xy) ≤ (n + m)ξ + (γ + γ′) so that
xy /∈ p.

The localization of OL at p is OL,p = {x ∈ L : (∃(n, γ) ∈ Z×vL) v(x) > n·ξ+γ}.
Since v(σ(x)) = v(x) for x ∈ L, by  Los’ Lemma v(x) = v(σ(x)) on L.

L× ↪→ O×
L,p via the diagonal map so that composing with the quotient map we

obtain a map of difference fields L → K := OL,p/p.
Let ζ continue to denote its image in D(K, σ). By construction, ζ ∈ (Z ∩

D)(K, σ) \ (Y ∩D)(K, σ). This is a contradiction.

Remark 2.16. A direct proof of Lemma 2.14 is hampered by the fact that we have
information only about points of Y ∩D over difference fields. If we were to take Y , Z,
and D to be schemes over OL and to assume that D(R, σ)∩Y (R) = D(R, σ)∩Z(R)
for any difference ring (R, σ) extending (OL, σ), then the lemma would be trivial
with n = 1 and γ = 0.

Behind the ultraproduct argument is an analysis of the intersections D∩(Y×Y σ×
· · ·×Y σm

) and D∩(Z×Zσ×· · ·×Zσm

). Our hypothesis does not imply that these
two schemes are equal. There may be extraneous and non-reduced components.
Lemma 2.17. Let V ⊆ G×G and let Ξ be as in Lemma 2.11. There are constants
n ∈ N and γ ∈ vL such that for any good σ and Y ∈ Ξ such that Y ∩ (Λ ×
Φ)(K, σ) = V ∩ (Λ × Φ)(K, σ) for any difference field (K, σ) extending (L, σ) one
has d(ζ, V ) ≤ n · d(ζ, Y ) + γ for ζ ∈ (Λ× Φ)(K, σ) ∩ (Γ× Γ).

Proof: Working with respect to a finite affine cover of G × G coming from a
covering of a semi-abelian variety over OL, we may assume that one each affine
patch each element of Γ × Γ is affine. By Lemma 2.14, for any particular choice
of σ on each affine patch the required constants exist. Since the covering is finite,
for any particular choice of σ the constants exist (and are valid for any ζ which is
integral with respect to each chart). By the compactness theorem, n and γ may be
found so as to be valid for all σ.

2.3. Proof of Theorems. We now give the proof of Theorem 2.3

Proof: From Lemmas 2.8, 2.9, and 2.17 the case where a very good automorphism
of L exists follows easily. For the rest of this argument we work under the hypothesis
that the common fixed field of the good automorphisms is K.

Since with respect to a fixed cover the distance to union is the maximum of the
distances to each component, we may assume that X is irreducible.

We prove the theorem by induction on the dimension of X. If dim X = 0, then
we are in the situation of Lemma 2.7.

In general, let X̃ := +∗X := {(x, y) ∈ G × G : x + y ∈ X}. We may choose
coverings of G and of G × G so that d((x, y), X̃) = d(x + y, X). Let Ξ be the set
of subvarieties of X̃ produced by Lemma 2.11 with V = X̃. Let Π and Υ be the
sets of irreducible varieties with the property that the irreducible components of
elements of Ξ are of the form W × Z with W ∈ Π and Z ∈ Υ.

Each W ∈ Π is a translate of a group so that by Lemma 2.8 there is some
constant γW ∈ vL such that if ζ /∈ W is a torsion point, then d(ζ, W ) ≤ γW .
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By induction, if Z ∈ Υ and dim Z < dim X, then there is some constant γZ ∈ vL
so that any point ζ ∈ Γ \ Z satisfies d(ζ, Z) ≤ γZ . Let n and γ be the constants
produced by Lemma 2.17 so that for any transformally closed field (K, σ) extending
(K, id) for which we have X̃ ∩ (Λ×Φ)(K, σ) = Y ∩ (Λ×Φ)(K, σ) for some Y ∈ Ξ,
then for x ∈ (Λ× Φ)(L, σ) ∩ (Γ× Γ) the inequality d(x, X̃) ≤ nd(x, Y ) + γ.

Let γ′ := min{nγY + γ : Y ∈ Π or (Y ∈ Υ and dim Y < dim X)} holds.
Let σ be a good automorphism.
By Lemma 2.12, since σ is good, (Λ(L, σ) ∩Γ) + (Ψ(L, σ) ∩Γ) ⊇ Γ. So if ζ ∈ Γ

and d(ζ, X) is large, there are a ∈ Λ(L, σ) ∩ Γ and b ∈ Ψ(L, σ) ∩ Γ with a + b = ζ

and d((a, b), X̃) large.
Let Y ∈ Ξ such that X̃ ∩ (Λ × Φ)(L, σ) = Y ∩ (Λ × Φ)(L, σ). Write Y =⋃N

i=1 Wi × Zi with Wi ∈ Π and Zi ∈ Υ.
By the definition of d

d((y, z),
n⋃

i=1

Wi × Zi) = max d((y, z),Wi × Zi)

d((y, z),Wi × Zi) = min{d(y, Wi), d(z, Zi)}
Thus, if ζ ∈ Γ and d(ζ, X) > γ′, it must be that for any good σ one can write

ζ = a + b with (a, b) ∈ (Λ× Φ)(L, σ) ∩ (Γ× Γ) and

d(a,W ) >
γ′ − γ

n
and

d(b, Z) >
γ′ − γ

n
for some W ∈ Π and Z ∈ Υ.

By the definition of γ′, the only way we can have d(a,W ) > γ′−γ
n for a a torsion

point is to have a ∈ W . If dim Z < dim X, then having d(b, Z) > γ′−γ
n would also

violate the definition of γ′ unless b ∈ Z. Since W ×Z ⊆ X̃, if (a, b) ∈ W ×Z, then
ζ = a + b ∈ X.

So we must have a ∈ W and dim X = dim Z. Since W × Z ⊆ X̃, we have
W + Z ⊆ X. Since X is irreducible it must be that W = a + H and Z = X − a
where H is the stabilizer of X. Let m be the least common multiple of the orders
in G/H of y + H such that y + H ∈ Π and y ∈ Γ. Let π : G → G/H denote the
quotient map. We may arrange that d(ζ, X) = d(π(ζ), π(X)) for ζ ∈ G(L).

Then we have that π([m]ζ) = π([m](a + b)) = π([m]b) ∈ π(Φ(L, σ)). That is, for
any choice of a good σ, π([m]ζ) ∈ π(Φ(L, σ)). Since the common fixed field of the
good σ’s is K, π([m]ζ) ∈ π(G(K)). Since there are only finitely many torsion points
in G(K), there are only finitely many choices for π([m]ζ) and hence for ζ + H.

Let δ := max{d(ξ, X) : ξ /∈ X, π([m]ξ) ∈ π(Γ ∩G(K))} ∪ {γ′}.
Then d(ζ, X) ≤ δ for ζ ∈ Γ \X. This completes the induction.

3. Prime to p Torsion

In this section we prove that Theorem 0.3 follows from Theorem 2.3. The nota-
tion follows that of Theorem 0.3.

Fix a semi-abelian model G of G over OQalg
p

. Without loss of generality we may
assume that G is over OK . Let Fq be the residue field of K. Let Frq ∈ Gal(Falg

q /Fq)
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be the q-power Frobenius x 7→ xq. Let Frq also denote the endomorphism of
G0 induced by Frq. Let P (X) ∈ Z[X] be the minimal polynomial over Z of Frq

considered as an element of End(G0).
Lemma 3.1. P (X) has no cyclotomic factors.

Proof: By the Riemann hypothesis for semi-abelian varieties over finite fields, all
the roots of P in C have size q or

√
q.

Definition 3.2. A continuous automorphism σ ∈ Gal(Cp/K) is called a Frobenius
if for every x ∈ OCp

one has σ(x) = xq mod mCp
.

It is well-known that Frobenii exist and that the common fixed field of the
Frobenii is K.
Lemma 3.3. If H is any semi-abelian variety over K, then H(K)tor is finite.

Proof: Replacing K with a finite extension can only increase the number of torsion
points, so we may assume (via semi-stable reduction) that H is the generic fibre of
a semi-abelian scheme H over OK . By Lemma 2.7, there is some γ such that for
any two distinct torsion points ζ and ξ one has d(ζ, ξ) > γ. Thus, on the torsion
points the reduction map πγ : H(OK) → Hγ(OK/Iγ) is injective. Since K is finite
over Qp, the ring OK/Iγ and hence the set Hγ(OK/Iγ) are finite.

Lemma 3.4 (Grothendieck). Let n := rkZ`
T`Gη − rkZ`

T`G0 for any prime ` 6= p.
Let Q ∈ Z[X] be the minimal polynomial of Frn!

q on G0. If σ ∈ Gal(Cp/K) is a
Frobenius, then Q(σn!) ◦ (σn! − 1) vanishes on G(OCp

)p′−tor.

Proof: By Corollary 4.4 of [4] for any prime ` 6= p, there is a Galois invariant
submodule U of the `-Tate module of G which is isomorphic to T`G0 as a Ga-
lois module (if one identifies the Galois group of the residue field with the group
Gal(Kunr/K)). Moreover, the Galois group has as eigenvalues n!-th roots of unity
on T`G/U . The result should now be clear.

At this point we replace q with qn! and P with Q.
These lemmas give a proof of Theorem 0.3.

Proof: The above lemmas ensure that the hypotheses of Theorem 2.3 hold.

4. Concluding Remarks

The number theoretic cost of applying Theorem 2.3 comes from verifying the hy-
potheses. The main challenge in applying Theorem 2.3 to the case of Γ = G[p∞](Cp)
is finding good automorphisms. If one restricts for the moment to the considera-
tions of points in the formal group, then one might try to find the equations as a
characteristic polynomial of some element of the inertia group acting on the Tate
module of the formal group. Theorems of Serre, Tate, and Sen describe the image
of this Galois representation (see [13], [12], and [11]) so one might hope to deduce
from their results the existence of good automorphisms. One would then like to
proceed by an analysis of the monodromy of the Galois representation on the full
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Tate module at p to argue that P (σ) ◦ (σ − 1) vanishes on G[p∞] for some P with
no cyclotomic factors and good σ.

This approach may work in general, but it seems that the current state of knowl-
edge about the Galois representation on the Tate module of the formal group is
insufficient. There are cases, however, where this will work. For instance, if the
formal group has rank at most one, then it is quite easy to choose a Frobenius
which acts on the formal group by multiplication by a rational integer distinct from
±1. In general, if the maximal abelian quotient of the reduction of G is ordinary,
then one can find elements of the inertia group which act on the formal group with
characteristic polynomials over Z having no cyclotomic factors. However, once the
p-rank of the reduction surpasses one, it is not clear that the automorphism may
be chosen to be a Frobenius.

This brings us to another case which is closer to Conjecture 0.2. To handle the
case of Γ = G(Cp)tor one needs to treat the p-power torsion together with the
prime-to-p torsion. Ideally, we would work with Frobenii that also behaved well
on the formal group. As mentioned above, even in the cases where one can find
automorphisms behaving well on the formal group, it is not so easy to find Frobenii
with this property. One could work with the theory of transformally closed fields
with respect to several automorphisms instead. Our methods should work in this
case, though the translation is not immediate.
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