
Multi-experiment parameter identifiability of ODEs and model theory∗

Alexey Ovchinnikov† , Anand Pillay‡ , Gleb Pogudin§ , and Thomas Scanlon¶

Abstract. Structural identifiability is a property of an ODE model with parameters that allows for the param-
eters to be determined from continuous noise-free data. This is a natural prerequisite for practical
identifiability. Conducting multiple independent experiments could make more parameters or func-
tions of parameters identifiable, which is a desirable property to have. How many experiments are
sufficient? In the present paper, we provide an algorithm to determine the exact number of exper-
iments for multi-experiment local identifiability and obtain an upper bound that is off at most by
one for the number of experiments for multi-experiment global identifiability.
Interestingly, the main theoretical ingredient of the algorithm has been discovered and proved using
model theory (in the sense of mathematical logic). Based on the insights from the model-theoretic
argument, an algebraic proof presented in the paper was obtained. We hope that this unexpected
connection will stimulate interactions between applied algebra and model theory, and we provide a
short introduction to model theory in the context of parameter identifiability. As another related
application of model theory in this area, we construct a nonlinear ODE system with one output such
that single-experiment and multiple-experiment identifiability are different for the system. This con-
trasts with recent results about single-output linear systems.
We also present a Monte Carlo randomized version of the algorithm with a polynomial arithmetic
complexity. Implementation of the algorithm is provided and its performance is demonstrated on sev-
eral examples. The source code is available at https://github.com/pogudingleb/ExperimentsBound.

Key words. Parameter identifiability, Multiple experiments, Differential algebra, Model theory of differential
fields

AMS subject classifications. 12H05, 34A55, 92B05, 93C15, 93B25, 93B30, 03C40, 03C45, 03C60

1. Introduction. Structural identifiability is a property of an ODE system with param-
eters that allows for the parameters to be uniquely determined (global identifiability) or de-
termined up to finitely many choices (local identifiability) from noiseless data and sufficiently
exciting inputs (also known as the persistence of excitation, see [13, 29, 31]). Performing struc-
tural identifiablity analysis is an important first step in evaluating and, if needed, adjusting
the system before a reliable practical parameter identification is performed.

For an ODE model, some of the parameters or functions of parameters could be non-

∗We are grateful to Julio Banga and Alejandro Villaverde for learning from them about the importance of multi-
experiment parameter identifiability at the AIM workshop “Identifiability problems in systems biology”, to Alexandre
Sedoglavic for helpful discussion about his algorithm [24], and to the referees for their suggestions.

Funding: This work was partially supported by the NSF grants CCF-1564132 and 1563942, DMS-1760448,
1760413, 1853650, 1665035, 1760212, 1853482, 1800492, and 2054721, by the Paris Ile-de-France Region, and by
the Fields Institute for Research in Mathematical Sciences.
†Department of Mathematics, CUNY Queens College and Ph.D. Programs in Mathematics and Computer Science,

CUNY Graduate Center, New York, USA (aovchinnikov@qc.cuny.edu)
‡University of Notre Dame, Department of Mathematics, Notre Dame, IN 46556, USA (Anand.Pillay.3@nd.edu)
§LIX, CNRS, École Polytechnique, Institute Polytechnique de Paris, Palaiseau, France. Prior addresses: New

York University, Courant Institute of Mathematical Sciences; Higher School of Economics (Moscow), Department
of Computer Science (gleb.pogudin@polytechnique.edu)
¶UC Berkeley, Department of Mathematics, Berkeley, CA 94720-3840, USA (scanlon@math.berkeley.edu)

1

https://github.com/pogudingleb/ExperimentsBound
mailto:aovchinnikov@qc.cuny.edu
mailto:Anand.Pillay.3@nd.edu
mailto:gleb.pogudin@polytechnique.edu
mailto:scanlon@math.berkeley.edu

2 A. OVCHINNIKOV, A. PILLAY, G. POGUDIN, AND T. SCANLON

identifiable from a single experiment, but these parameters could become identifiable if one
conducts more than one experiment [27, 17]. Knowing the number of experiments to be con-
ducted to achieve the maximal possible identifiability (that is, if the identifiability did not
occur after this many experiments, it will not occur after additional experiments) is impor-
tant for designing experimental protocols involving several experiments [27, Section III.B]. In
particular, making this number smaller would allow for less expensive experimental protocols.
Also, knowing these bounds, one can use existing software for assessing local [24, 12, 28] or
global [9] single-experiment identifiability to check multi-experiment identifiability of param-
eters (or functions of parameters) of interest. Note that, due to [17, Theorem 19], one can al-
ternatively use software based on input-output equations [23, 16] to find the multi-experiment
identifiable functions, but this approach does not determine the number of experiments.

One can find such a number of experiments for the case of local identifiability using
the algorithm presented in [27] if all parameters are locally identifiable. In [17, Section 4],
we gave an algorithm computing, among other things, an upper bound for the number of
experiments to achieve the maximal possible global identifiability. The proposed algorithm
had two drawbacks: it used the Rosenfeld-Gröbner algorithm for differential elimination,
which may be computationally very expensive, and the resulting bound could be arbitrarily
far from the exact one.

In this paper, we present an algorithm that computes:

• the smallest number of experiments to achieve the maximal possible local identifiability,

• the number of experiments to achieve the maximal possible global identifiability so that
this number exceeds the minimal such number by at most one.

We present a randomized Monte Carlo version of this algorithm having polynomial arith-
metic complexity (see Section 6.1). We have implemented this algorithm in Julia language,
demonstrated its performance on several examples, and compared with the algorithm from [17]
(see Section 6.2).

Our algorithm is based on theoretical properties of multi-experiment identifiability that
we establish (summarized in Section 3). The process of discovery and establishing of these
properties originated from model theory (in the sense of mathematical logic), and the paper
also includes algebraic proofs of these properties for the reader’s convenience. The use of
model theory in this area is novel, so we give a brief overview here. Already differential
algebra plays a large role in structural identifiability (see, e.g., [13]). Differential algebra and
the study of solution sets of ODEs in differential rings and fields, are enhanced by model-
theoretic perspectives and methods, especially from stability theory. In particular, differential
fields of definition (of differential ideals) are special cases of canonical bases from model theory.
Using model-theoretic ideas in a non-trivial way, we will prove new quantitative results on
recovering such differential fields of definitions from sufficiently many independent solutions.
In Section 7, we will elaborate on the relationship between the setup of multi-experiment
identifiability and that of differential algebra/model theory, where we will give additional
references.

We also use model theoretic tools to construct an example contrasting with recent results
about multi-experiment identifiability of linear systems [19]. [19, Theorem 1] implies that
single-experiment and multi-experiment identifiability are the same thing for linear ODE

INPUT-OUTPUT EQUATIONS AND IDENTIFIABILITY OF LINEAR ODE MODELS 3

systems with one output. In Section 4, we show a series of non-linear systems for which this
is not the case.

The paper is organized as follows. In Section 2, we give basic definitions from differential
algebra and structural identifiability. Section 3 summarizes our main results. Section 4 con-
tains the example of a single-output system for which single-experiment and multi-experiment
identifiability do not coincide. In section 5, we give an algebraic proof of Theorem 3.1, which
is the main theoretical ingredient of our algorithm. In Section 6, we present our algorithm,
analyze its complexity, describe our implementation, and demonstrate it on a set of examples
(including comparison with the algorithm from [17]). In Section 7, we describe the connec-
tions between identifiability and model theory and explain the model-theoretic context of the
results in this paper. The section is aimed at readers who are interested in knowing why and
how model-theoretic methods are useful in or relevant to identifiability problems. Although
the reader need not be a specialist in model theory, they should either be acquainted with the
basic notions or be willing to follow up the references.

Our implementation together with all examples used in the paper can be found at https:
//github.com/pogudingleb/ExperimentsBound.

2. Preliminaries. We assume that all fields have zero characteristic.

2.1. Differential algebra.

Definition 2.1 (Differential rings and fields).

• A differential ring (R, ′) is a commutative ring with a derivation ′ : R→ R, that is, a map
such that, for all a, b ∈ R, (a+ b)′ = a′ + b′ and (ab)′ = a′b+ ab′. A differential ring that
is also a field is called a differential field.

• For an extension of differential fields F ⊂ E and elements a1, . . . , an ∈ E, let F 〈a1, . . . , an〉
denote the smallest differential subfield of E containing F and a1, . . . , an.

Definition 2.2 (Differential polynomials and differential ideals).

• The ring of differential polynomials in the variables x1, . . . , xn over a field K is the ring

K[x
(i)
j | i > 0, 1 6 j 6 n] with a derivation defined on the ring by (x

(i)
j)′ := x

(i+1)
j . This

differential ring is denoted by K{x1, . . . , xn}.
• An ideal I of a differential ring (R, ′) is called a differential ideal if, for all a ∈ I, a′ ∈ I.

For F ⊂ R, the smallest differential ideal containing set F is denoted by [F].

• For an ideal I and element a in a ring R, we denote I : a∞ = {r ∈ R | ∃` : a`r ∈ I}. This
set is an ideal in R.

2.2. Identifiability. We will consider an algebraic differential model

(2.1) Σ :=

{
x̄′ = f̄(x̄, µ̄, ū),

ȳ = ḡ(x̄, µ̄, ū),

where

• f̄ = (f1, . . . , fn) and ḡ = (g1, . . . , gm) are tuples of rational functions over C;

• x̄, ū, ȳ are state, input, and output variables, respectively;

• µ̄ = (µ1, . . . , µ`) are parameters.

https://github.com/pogudingleb/ExperimentsBound
https://github.com/pogudingleb/ExperimentsBound

4 A. OVCHINNIKOV, A. PILLAY, G. POGUDIN, AND T. SCANLON

The analytic notion of identifiability [10, Definition 2.5] is equivalent (see [10, Proposition 3.4]
and [19, Proposition 4.7]) to the following algebraic definition, which we will use.

We write f̄ = F̄
Q and ḡ = Ḡ

Q , where F̄ and Ḡ are tuples of polynomials over C(µ̄) and

Q is the common denominator of f̄ and ḡ. Here we consider C(µ̄) as a differential field of
constants. Then we define a differential ideal

(2.2) IΣ := [Qx′1 − F1, . . . , Qx
′
n − Fn, Qy1 −G1, . . . , Qym −Gm] : Q∞ ⊂ C(µ̄){x̄, ȳ, ū}.

Observe that every solution of (2.1) is a solution of IΣ.

Definition 2.3 (Generic solution). A tuple (x̄∗, ȳ∗, ū∗) from a differential field k ⊃ C(µ̄) is
called a generic solution of (2.1) if, for every differential polynomial P ∈ C(µ̄){x̄, ȳ, ū},

P (x̄∗, ȳ∗, ū∗) = 0 ⇐⇒ P ∈ IΣ.

Remark 2.4. [10, Lemma 3.2] implies that IΣ is a prime differential ideal. Therefore, it
has a generic solution.

Definition 2.5 (Identifiability: single-experimental). For a model Σ in (2.1), a rational
function h ∈ C(µ̄) is said to be globally (resp., locally) single-experiment identifiable (SE-
identifiable) if, for every generic solution (x̄∗, ȳ∗, ū∗) of (2.1) considered as a system of differ-
ential equations over C(µ̄), we have

h(µ̄) ∈ C〈ȳ∗, ū∗〉 (resp., h(µ̄) is algebraic over C〈ȳ∗, ū∗〉).

Remark 2.6. The equivalence of Definition 2.5 to the more common analytic definition
of identifiability has been established in [10, Proposition 3.4]. For a comparison with other
definitions, see [1, Section 2.1.1].

Definition 2.7 (Identifiability defect). For a model Σ in (2.1), we define the identifiability
defect as

defect(Σ) := trdegC〈ȳ∗,ū∗〉C(µ̄)〈ȳ∗, ū∗〉,

where (x̄∗, ȳ∗, ū∗) is any generic solution of (2.1) (one can show that the defect does not
depend on the choice of the generic solution).

For example, defect(Σ) = 0 implies that all the parameters are locally identifiable.

Definition 2.8 (Identifiability: multi-experimental, [17, Definition 16]).

• For a model Σ and a positive integer r, we define the r-fold replica of Σ as

Σr :=

{
x̄′i = f̄(x̄i, µ̄, ūi), i = 1, . . . , r,

ȳi = ḡ(x̄i, µ̄, ūi), i = 1, . . . , r,

where x̄1, . . . , x̄r, ȳ1, . . . , ȳr, ū1, . . . , ūr are new tuples of indeterminates (note that the vec-
tor of parameters is not being replicated).

• For a model Σ, a rational function h ∈ C(µ̄) is called globally (resp., locally) multi-
experimental identifiable (ME-identifiable) if there exists a positive integer r such that
h(µ̄) is globally (resp., locally) SE-identifiable in Σr.

INPUT-OUTPUT EQUATIONS AND IDENTIFIABILITY OF LINEAR ODE MODELS 5

Notation 2.9. For a differential model Σ we define NumExpGlob(Σ) (resp.,
NumExpLoc(Σ)) as the smallest integer r such that, for every h(µ̄) ∈ C(µ̄), the following
are equivalent:

• h is globally (resp., locally) multi-experimental identifiable for Σ;

• h is globally (resp., locally) single-experimental identifiable for Σr.

In what follows, we will frequently (but not always) omit writing “global/globally” for brevity.

Remark 2.10. A simple family of linear models Σr that reaches arbitrarily high values for
the number of experiments (more precisely, growing linearly with the number of state variables,
which can be made arbitrarily high in the model), NumExpLoc(Σr) = NumExpGlob(Σr) = r,
is [17, Example 30].

3. Main results. Our results consist of a theoretical part and algorithms building upon
the theory. The theoretical contribution is summarized in the statements below. In particular,
Theorem 3.1 is the basis for an algorithm for computing NumExpLoc(Σ) and obtaining an
upper bound for NumExpGlob(Σ) that is off at most by one.

Theorem 3.1. For every algebraic differential model Σ of the form (2.1), we have:

1. NumExpLoc(Σ) = min{r | defect(Σr) = defect(Σr+1)}.

2. NumExpLoc(Σ) 6 NumExpGlob(Σ) 6 NumExpLoc(Σ) + 1.

Note that the theorem does not imply that parameters locally identifiable from r experiments
are globally identifiable from r + 1 experiments.

Corollary 3.2. For every algebraic differential model Σ of the form (2.1) with ` parameters:

NumExpLoc(Σ) 6 ` and NumExpGlob(Σ) 6 `+ 1.

[19, Theorem 4.2] implies that, for single-output linear models, identifiable and multi-
experiment identifiable functions coincide. Proposition 3.3 indicates that this does not gener-
alize to nonlinear models.

Proposition 3.3. There is a system of the form (2.1) with a single output such that the
fields of identifiable and multi-experiment identifiable functions do not coincide.

Proofs of Theorem 3.1 and Proposition 3.3 are presented in Sections 5 and 4, respectively.
On the algorithmic side, Theorem 3.1 yields a probabilistic algorithm for computing the

value NumExpLoc(Σ) and a bound for NumExpGlob(Σ) that is off at most by one with
arithmetic complexity being polynomial in the complexity of the system (Proposition 6.5).
We implemented this algorithm, and we demonstrate its practical performance and apply it
to examples in Section 6.

4. Single-output model requiring more than one experiment. In this section, we will
prove Proposition 3.3 by showing that the SE-identifiable and ME-identifiable functions do
not coincide for the following model Σ [18, Example 5.8]:

(4.1)


x′1 = 0,

x′2 = x1x2 + µ1x1 + µ2,

y = x2.

6 A. OVCHINNIKOV, A. PILLAY, G. POGUDIN, AND T. SCANLON

We will now give a direct algebraic proof. In Section 7.2, we present the model-theoretic
argument that has been used to construct this example and can be used to construct more
complex ones.

Lemma 4.1. The field of ME-identifiable functions of (4.1) is C(µ1, µ2) but neither µ1 nor
µ2 is SE-identifiable.

Proof. We find the field of ME-identifiable functions using [17, Theorem 19]. Differenti-
ating the second equation in (4.1), we get x′′2 = x1x

′
2. Using this equation, we can eliminate

x1 from the second equation of (4.1) and obtain:

(4.2) x2x
′′
2 − (x′2)2 + µ1x

′′
2 + µ2x

′
2 = 0.

Since x2 does not satisfy any first order equation over C(µ1, µ2) modulo IΣ and (4.2) is
irreducible, the set consisting of (4.2) is a set of input-output equations for Σ. The coefficients
of (4.2) are 1, −1, µ1, and µ2. So, according to [17, Definition 15], the coefficients µ1 and µ2

are input-output identifiable. The first paragraph of [17, Theorem 19] now implies that the
coefficients µ1 and µ2 of (4.2) are ME-identifiable.

To prove that µ1 and µ2 are not SE-identifiable, consider a generic solution (x∗1, x
∗
2, y
∗)

of (4.1). Then there is a differential automorphism of C(µ̄)〈x∗1, x∗2, y∗〉 defined by

α|C〈x∗1,x∗2,y∗〉 = id, α(µ1) = µ1 + 1, α(µ2) = µ2 − x1.

Therefore, neither of µ1 or µ2 belongs to C〈y∗〉.
Remark 4.2. Using [17, Algorithm 1], one can show that the field of SE-identifiable func-

tions of (4.1) is C.

5. Bounding the number of experiments (proof of Theorem 3.1). In this section, we
will give an algebraic proof (but with a strong model theoretic flavor, which we expand in
Section 7.3) of Theorem 3.1. We start with fixing some notation for the section.

Notation 5.1.

• We use ∗̄ for tuples.

• x̄, ȳ, and z̄ denote tuples of differential indeterminates. Moreover, we will assume that
|ā| = |x̄|, |b̄| = |ȳ|, and |c̄| = |z̄| for tuples ā, b̄, and c̄ of elements from some differential
field.

• k0 will be a fixed differential ground field (in applications, k0 = Q,R,C with zero deriva-
tion). We will also consider an extension K ⊃ k0 such that K is differentially closed and
|k0|-saturated field. Saturation and differentially closed fields are defined in Section 7, in
this section we will use only the following algebraic consequence of these properties [15,
Propositions 4.2.13 and 4.3.3 and page 117]: for every differential subfield k ⊂ K of car-
dinality at most |k0| and every differential automorphism α of k, α can be extended to an
endomorphism of K.

• Let E be a field and ā be a tuple of elements from some extension of E. Then trdegE ā
denotes trdegE E(ā).

Notation 5.2. Let k ⊂ K be an intermediate differential field (in applications, we will have
k = C(µ̄)) and ā a tuple from K.

INPUT-OUTPUT EQUATIONS AND IDENTIFIABILITY OF LINEAR ODE MODELS 7

• The vanishing ideal of ā over k is denoted by

Ik(ā) := {p ∈ k{x̄} | p(ā) = 0}.

• We denote the differential-algebraic variety of ā with respect to K defined over k by

VK/k(ā) = {b̄ ∈ K |a| | p(b̄) = 0 ∀p ∈ Ik(ā)} ⊂ K |ā|.

We consider this as a differential-algebraic variety over K, and it is not necessarily irre-
ducible. For brevity, until the end of the section, by “variety” we will mean “differential-
algebraic variety”.

• The field of definition of a (differential) ideal I in k{x̄} is the smallest (differential) subfield
L of k such that I is generated as an ideal by I ∩ L{x̄}.
• FDk(ā) denotes the field generated by k0 and the field of definition of Ik(ā).

• Let 〈Ik(ā), Ik(b̄)〉 denote the ideal in k{x̄, ȳ} generated by Ik(ā) ⊂ k{x̄} and Ik(b̄) ⊂ k{ȳ}.
For tuples ā1, . . . , ān, the ideal 〈Ik(ā1), . . . , Ik(ān)〉 is defined analogously.

• For tuples ā1 and ā2 of the same length, we write Ik(ā1) ∼= Ik(ā2) if the ideals Ik(ā1) and
Ik(ā2) coincide if being considering in the same ring k{x̄}.

Lemma 5.3. Let k ⊂ K be a differential subfield and ā and b̄ tuples from K such that
Ik(ā, b̄) = 〈Ik(ā), Ik(b̄)〉. Then Ik〈b̄〉(ā) is generated by Ik(ā).

Proof. By clearing denominators, every element p ∈ Ik〈b̄〉(ā) can be written as p =

q(x̄, b̄)/d, where d ∈ k〈b̄〉 and q(x̄, ȳ) ∈ Ik(ā, b̄). The differential polynomial q(x̄, ȳ) can
be written as a combination of elements of Ik(ā) and Ik(b̄). If we plug ȳ = b̄, the terms from
Ik(b̄) will vanish, so q(x̄, b̄) can be written as a combination of elements of Ik(ā). Then the
same is true for p.

Proposition 5.4 (cf. [17, Theorem 19] – computing an upper bound for N). Let k ⊂ K be a
differential subfield and ā1, ā2, . . . be tuples of the same length from K with

Ik(ā1) ∼= Ik(ā2) ∼= . . . and Ik(ā1, . . . , ā`) = 〈Ik(ā1), . . . , Ik(ā`)〉 for every ` > 1.

Then there exists N such that (see Notation 5.2)

FDk(ā1) ⊂ k0〈ā1, . . . , āN 〉.

Proof. Let L be generated by the field of definition of J := Ik(ā1) and by k0. We consider
an arbitrary ordering of the monomials of the corresponding differential ring, and consider a
linear basis of J that is in the reduced row echelon form with respect to this ordering (this
construction is described in more details in the proof of [18, Theorem 4.7]). The elements of
this basis form a set of generators {fλ}λ∈Λ of J such that, for every λ ∈ Λ,

• the coefficients of fλ are in L and at least one of them is 1;

• for every g ∈ J \ {fλ}, the support of fλ − g is not a proper subset of the support of fλ.

Then the coefficients of {fλ}λ∈Λ generate L over k0. We fix some λ and write fλ =
m0 + c1m1 + . . . + cNmN , where m1, . . . ,mN are differential monomials and c1, . . . , cN ∈ L.

8 A. OVCHINNIKOV, A. PILLAY, G. POGUDIN, AND T. SCANLON

We will show that c1, . . . , cN ∈ Q〈ā1, . . . , āN 〉. For every j > 1, we denote the monomial mi

evaluated at āj by mj,i. Then we have a linear system in c1, . . . , cNm1,1 . . . m1,N
...

. . .
...

mN,1 . . . mN,N


 c1

...
cN

 =

−m1,0
...

−mN,0

 .

We denote the matrix of the above system by S. If detS 6= 0, then, solving the system, we show
that c1, . . . , cN ∈ Q〈ā1, . . . , āN 〉. Assume that detS = 0 and let S0 be the smallest singular mi-
nor of S. Let the index of the first row of S0 be s, and define E := k〈ā1, . . . , ās−1, ās+1, . . . , āN 〉.
Expanding the equality detS0 = 0 with respect to the first row, we obtain an element p of
IE(ās). The minimality of S0 implies that p 6= 0. Since the support of p is a proper subset
of the support of fλ, we conclude that IE(ās) is not generated by Ik(ās). This contradicts
Lemma 5.3.

Since L is finitely generated (follows, for example, from [19, Proposition 4.11]), the coeffi-
cients of finitely many fλ’s generate L over k. Taking the maximum of the corresponding N ’s
will give the desired N and finish the proof.

Lemma 5.5. Let k with k0 ⊂ k ⊂ K be a differential field differentially finitely generated
over k0 and ā a tuple from K. Then, for every component C of VK/k(ā), there exists b̄ ∈ C
such that Ik0(ā) ∼= Ik0(b̄).

Proof. The ideal Ik(ā) is prime. Then the Galois group of kalg ⊂ K over k acts transi-
tively on the components of VK/k(ā). Let C0 be a component containing ā, and let α be an

automorphism of kalg over k that maps C0 to C. By Notation 5.1, since |k| = |k0|, α can be
lifted to a differential endomorphism of K which we will denote by α as well. We set b̄ := α(ā).
Then we have Ik0(ā) ∼= Ik0(b̄) due to the α-invariance of k0.

Lemma 5.6. Let k with k0 ⊂ k ⊂ K be a differential subfield. Let

• Ik(ā, b̄) = 〈Ik(ā), Ik(b̄)〉;
• c̄ from k be such that FDk(ā) ∪ FDk(b̄) ⊂ k0〈c̄〉 (see Notation 5.2);

• a component C ⊂ VK/k0〈ā〉(c̄) be such that C ⊂ VK/k0〈b̄〉(c̄).
Then C is a component of VK/k0〈ā,b̄〉(c̄).

Proof. Consider any p ∈ Ik0〈ā,b̄〉(c̄) ⊂ k0〈ā, b̄〉{z̄}. Let d ∈ k0{ā, b̄} be the product of the

denominators of the coefficients of p. Then there exists q ∈ k0{x̄, ȳ, z̄} such that q(ā, b̄, z̄) = dp.
Since q(ā, b̄, c̄) = 0, we have

q(x̄, ȳ, c̄) ∈ Ik0〈c̄〉(ā, b̄) = k0〈c̄〉{x̄, ȳ} Ik0〈c̄〉(ā) + k0〈c̄〉{x̄, ȳ} Ik0〈c̄〉(b̄),

where the latter equality follows from Ik(ā, b̄) = 〈Ik(ā), Ik(b̄)〉 and the fact that k0〈c̄〉 contains
the fields of definitions of Ik(ā) and Ik(b̄). By clearing the denominators with respect to c̄,
we conclude that there exists h(z̄) ∈ k0{z̄} such that h(c̄) 6= 0 and

h(z̄)q(x̄, ȳ, z̄) ∈ k0{x̄, ȳ, z̄} Ik0(ā, c̄) + k0{x̄, ȳ, z̄} Ik0(b̄, c̄).

Thus, h(z̄)q(ā, b̄, z̄) vanishes on VK/k0〈ā〉(c̄)∩ VK/k0〈b̄〉(c̄) and, consequently, on C. If q(ā, b̄, z̄)
does not vanish on C, then h(z̄) does. However, this is impossible due to Lemma 5.5 because
h(z̄) 6∈ Ik0(c̄).

INPUT-OUTPUT EQUATIONS AND IDENTIFIABILITY OF LINEAR ODE MODELS 9

Thus, p vanishes on C, and so C ⊂ VK/k0〈ā,b̄〉(c̄). On the other hand, VK/k0〈ā,b̄〉(c̄) ⊂
VK/k0〈ā〉(c̄), so C is a component of VK/k0〈ā,b̄〉(c̄).

Lemma 5.7. Let k with k0 ⊂ k ⊂ K be a differential field differentially finitely generated
over k0. Consider tuples ā1, . . . , ā` of the same length from K such that

Ik(ā1) ∼= . . . ∼= Ik(ā`) and Ik(ā1, . . . , ā`) = 〈Ik(ā1), . . . , Ik(ā`)〉.

Then, for every permutation π ∈ S`, there exists an endomorphism απ of K over k such that
απ(āi) = āπ(i) for every 1 6 i 6 `.

Proof. Consider the ideal J = Ik(ā1, . . . , ā`) ⊂ k{x̄1, . . . , x̄`}. We fix π ∈ S`. Let βπ be
the differential k-automorphism of k{x̄1, . . . , x̄`} defined by βπ(x̄i) = x̄π(i) for every 1 6 i 6 `.
Since the set {Ik(ā1), . . . , Ik(ā`)}, where each Ik(āj) is considered as a subset of k{x̄1, . . . , x̄`},
is βπ-invariant, so is J . Therefore, βπ yields an automorphism, say απ, of

k{x̄1, . . . , x̄`}/J ∼= k{ā1, . . . , ā`}.

απ can be lifted uniquely to an automorpism of k〈ā1, . . . , ā`〉. The resulting automorphism
can be lifted to an endomorphism of K by Notation 5.1 since |k〈ā1, . . . , ā`〉| = |k0|.

Lemma 5.8. Let k with k0 ⊂ k ⊂ K be a differential field and ā a tuple from K and let
F := FDk(ā) (see Notation 5.2) be such that trdegF k <∞. Then trdegF 〈ā〉 k = trdegF k.

Proof. Let α1, . . . , αN be a transcendence basis of k over F . Assume that α1, . . . , αN
are algebraically dependent over F 〈ā〉. Then there exists P ∈ F{x̄}[y1, . . . , yN] such that
P (ā, α1, . . . , αN) = 0 and P (ā, y1, . . . , yN) 6= 0. On the other hand, since the field of definition
of Ik(ā) is F , we have P (x̄, α1, . . . , αN) ∈ k · (Ik(ā) ∩ F{x̄}). Therefore, since the monomials
in α1, . . . , αN are F -linearly independent, every coefficient of P as a polynomial in y1, . . . , yN
vanishes at ā. Thus, P (ā, y1, . . . , yN) = 0. Contradiction.

Notation 5.9. For an irreducible differential-algebraic variety X ⊂ Kn, let adimX denote
the algebraic dimension, that is the transcendence degree of the algebra of regular functions.
The algebraic dimension of an arbitrary differential-algebraic variety is defined as the maxi-
mum of the algebraic dimensions of its components.

Proposition 5.10. Let:

• k with k0 ⊂ k ⊂ K be a differential field of finite transcendence degree over k0,

• ā1, ā2, . . . be tuples of the same length from K such that

Ik(ā1) ∼= Ik(ā2) ∼= . . . and Ik(ā1, . . . , ā`) = 〈Ik(ā1), . . . , Ik(ā`)〉 for every ` > 1,

• r the smallest integer such that trdegk0〈ā1,...,ār〉 k = trdegk0〈ā1,...,ār+1〉 k.

Then

(1) r is the smallest integer such that FDk(ā1) (see Notation 5.2) is algebraic over
k0〈ā1, . . . , ār〉;

(2) FDk(ā1) ⊂ k0〈ā1, . . . , ār+1〉.
Proof. Let c̄ be any set of generators of FDk(ā1). Consider a sequence of varieties (see

Notation 5.2):

(5.1) X0 := VK/k0(c̄) ⊃ X1 := VK/k0〈ā1〉(c̄) ⊃ X2 := VK/k0〈ā1,ā2〉(c̄) ⊃ . . .

10 A. OVCHINNIKOV, A. PILLAY, G. POGUDIN, AND T. SCANLON

Claim:. For every i > 0, if Xi and Xi+1 have a common component C, then C = {c̄}.
Let i be such that Xi and Xi+1 have a common component C. For every j > 1, we

introduce Yj := VK/k0〈āj〉(c̄). Since Xi+1 ⊂ Yi+1, we have C ⊂ Yi+1. We claim that, for every
j > i+ 1, C ⊂ Yj . Lemma 5.7 implies that there exists a k-endomorphism α of K such that
α leaves ā1, . . . , āi invariant and maps āi+1 to āj . Since C is a component of Xi, it is defined
over k0〈ā1, . . . , āi〉alg, and therefore C is α-invariant. Thus, by applying α to the inclusion
C ⊂ Yi+1, we obtain C ⊂ Yj .

By applying Lemma 5.6 iteratively to the component C and ā = (ā1, . . . , āj) and b̄ = āj+1

for j = i+ 1, i+ 2, . . ., we show that C is a component of Xj for every j > i+ 1. On the other
hand, Proposition 5.4 implies that there exists N such that XN = {c̄}. Thus, C = {c̄}, and
the claim is proved.

Since ā1, ā2, . . . have the same ideals of definition over k and ideals of the form
Ik(ā1, . . . , ās) are generated by the ideals of āi’s, we have

F := FDk(ā1) = FDk(ā1, ā2) = FDk(ā1, ā2, ā3) = . . .

Therefore, for every s > 0,

(5.2) trdegk0〈ā1,...,ās〉 k = trdegk0〈ā1,...,ās〉 c̄+trdegk0〈c̄,ā1,...,ās〉 k = trdegk0〈ā1,...,ās〉 c̄+trdegF k,

where the latter equality is due to Lemma 5.8. Thus, r is the smallest integer such that

trdegk0〈ā1,...,ār〉 c̄ = trdegk0〈ā1,...,ār+1〉 c̄.

Then adimXr = trdegk0〈ā1,...,ār〉 c̄ = trdegk0〈ā1,...,ār+1〉 c̄ = adimXr+1. Therefore, since Xr ⊃
Xr+1, the components of Xr+1 of maximal dimension are components of Xr. By the Claim,
these components are all equal to {c̄}. Therefore, every component of Xr+1 is {c̄}, and so,
Xr+1 = {c̄}. Thus, adimXr = 0. The fact that adimXr = 0 implies the first part of the
proposition, and Xr+1 = {c̄} implies the second part of the proposition.

Proof of Theorem 3.1. Consider a generic solution

(x̄∗1, . . . , x̄
∗
`+1, ȳ

∗
1, . . . , ȳ

∗
`+1, ū

∗
1, . . . , ū

∗
`+1)

of Σ`+1. We apply Proposition 5.10 with āi = (ȳ∗i , ū
∗
i) for every 1 6 i 6 ` + 1, k0 = C,

k = C(µ̄). Since the sequence trdegk0〈ā1,...,āi〉 k for i = 0, . . . , `+ 1 is nonincreasing, there will
be r 6 ` as in Proposition 5.10. Furthermore, it will be the same as r in the statement of
Theorem 3.1. We have:

• FDk(ā1) is the field of globally ME-identifiable functions (by [17, Theorem 19] or Propo-
sition 5.4) and

• the field of locally ME-identifiable functions is algebraic over FDk(ā1) because every locally
identifiable function is algebraic over the field of globally identifiable functions.

Hence, r being the smallest number such that FDk(ā1) is algebraic over k0〈ā1, . . . , ār〉 implies
that r is the smallest number such that the field of locally SE-identifiable functions of Σr

coincides with the field of locally ME-identifiable functions in Σ. Thus, NumExpLoc(Σ) =
r. Finally, FDk(ā1) ⊂ k0〈ā1, . . . , ār+1〉 implies that ME-identifiable functions in Σ are SE-
identifiable in Σr+1, so

NumExpGlob(Σ) 6 r + 1 = NumExpLoc(Σ) + 1.

INPUT-OUTPUT EQUATIONS AND IDENTIFIABILITY OF LINEAR ODE MODELS 11

6. Algorithm, implementation, and examples.

6.1. Algorithm: theory. Theorem 3.1 implies the correctness of the following algorithm.

Algorithm 6.1 Computing NumExpLoc(Σ) and estimating NumExpGlob(Σ)

In: • an algebraic differential model Σ;

• (optional; for probabilistic version) real number 0 6 p < 1;
Out: positive integer r such that NumExpLoc(Σ) = r and NumExpGlob(Σ) ∈ {r, r + 1}. In

the probabilistic version, this result will be correct with probability at least p.
Set d0 = `. For i = 1, 2, . . . , `+ 1, do:

1 Using Algorithm 6.2, compute di = defect(Σi) (see Definition 2.7);
(in the probabilistic version, the input probability for Algorithm 6.2 is 1− 1−p

`)

2 If di = di−1, stop and return i− 1.

Lemma 6.1. Algorithm 6.1 is correct.

Proof. If the outputs of Algorithm 6.2 are correct, the returned result will be correct due
to Theorem 3.1. In the probabilistic version, the probability that at least one of the instances

of Algorihm 6.2 will return wrong result does not exceed `
(

1−
(

1− 1−p
`

))
= 1− p.

Our algorithm for computing the identifiability defect will use, as a subroutine, algo-
rithm(s) described in Theorem 6.3 below.

Notation 6.2. We call the complexity of a model Σ the maximum of the total number of
variables (parameters, states, inputs, and outputs) and the length of a straight-line program
(see [2, Chapter 4.1]) computing the numerators and denominators of the right-hand side
of Σ. For measuring the complexity of the algorithms in this section, we use the notion of
arithmetic complexity, that is the number of arithmetic operations in the ground field, see [30,
Chapter 12] for more details.

Theorem 6.3 ([24]). Consider the following problem:

In: an algebraic differential model Σ without parameters (that is, ` = 0);

Out: trdegC〈ȳ∗,ū∗〉C(x̄∗), where (x̄∗, ȳ∗, ū∗) is any generic solution of Σ.

Then

1. There exists a deterministic algorithm for solving this problem;

2. For Σ with coefficients in Q, there exists a probabilistic Monte Carlo algorithm with poly-
nomial arithmetic complexity with respect to the complexity of Σ.

Proof. The theorem follows from the results from [24] as follows. For part 1, we use [24,
Proposition 2.1] together with [24, Remark, p. 742] to show that trdegC〈ȳ∗,ū∗〉C(x̄∗) =

trdegG C(x̄∗), where G = C
(
ȳ∗, . . . , (ȳ∗)(n+`), ū∗, . . . , (ū∗)(n+`)

)
. Then trdegG C(x̄∗) can be

computed using [24, Corollary 2.1], in which X is x̄∗, Y is ȳ∗ and G is G.
Part 2 follows from [24, Theorem 1.1] (together with a more precise complexity bound) as

follows. The algorithm whose existence is stated in [24, Theorem 1.1] computes the smallest
number of nonobservable state variables that are assumed to be known in order to make the
system observable. The definition of observability [24, Section 2.1] implies that the components

12 A. OVCHINNIKOV, A. PILLAY, G. POGUDIN, AND T. SCANLON

of x̄∗ corresponding to such a set of state variables is a transcendence basis of Q(x̄∗) over
Q〈ȳ∗, ū∗〉, which is also a transcendence basis of C(x̄∗) over C〈ȳ∗, ū∗〉, so the cardinality of
this set is the desired transcendence degree.

Algorithm 6.2 Computing defect(Σ)

In: • an algebraic differential model Σ;

• (optional; for probabilistic version) real number 0 6 p < 1;
Out: defect(Σ). In the probabilistic version, this result is correct with probability at least p.

1 Construct two parameter-free algebraic differential models:
(a) Σ′ obtained from Σ by viewing all parameters as state variables satisfying equations

µ′i = 0 for every µi ∈ µ̄;
(b) Σ′′ obtained from Σ′ by adding a new output for each state variable corresponding to

a parameter of Σ.

2 Run any of the algorithms from Theorem 6.3 on Σ′ and Σ′′, denote the results by A and
B, respectively (in the probabilistic version, the input probability is 1+p

2).

3 return A−B.

Lemma 6.4. Algorithm 6.2 is correct.

Proof. Let (x̄∗, ȳ∗, ū∗) be a generic solution of (2.1). Then

A = trdegC〈ȳ∗,ū∗〉C(x̄∗, µ̄) and B = trdegC(µ̄)〈ȳ∗,ū∗〉C(x̄∗, µ̄).

Since one can compose a transcendence basis of (x̄∗, µ̄) over C〈ȳ∗, ū∗〉 by first taking a tran-
scendence basis of µ̄ over C〈ȳ∗, ū∗〉 which is of cardinality defect(Σ) and then taking a tran-
scendence basis of x̄∗ over C(µ̄)〈ȳ∗, ū∗〉, we have

defect(Σ) = trdegC〈ȳ∗,ū∗〉C(µ̄) = trdegC〈ȳ∗,ū∗〉C(x̄∗, µ̄)− trdegC(µ̄)〈ȳ∗,ū∗〉C(x̄∗, µ̄) = A−B.

Hence, if both A and B have been computed correctly, the returned result is correct. In the
probabilistic version, the probability of at least one of them being incorrect does not exceed

2
(

1− 1+p
2

)
= 1− p.

Proposition 6.5. If Algorithm 6.2 uses the second algorithm from Theorem 6.3, then Algo-
rithm 6.1 is a probabilistic Monte Carlo algorithm of polynomial arithmetic complexity with
respect to the complexity of Σ.

Proof. First we will prove that the arithmetic complexity of Algorithm 6.2 is polyno-
mial. The first and the last steps have polynomial complexity. The fact that the arithmetic
complexity of the second step is polynomial follows from Theorem 6.3 and the fact that the
complexities of Σ′ and Σ′′ are polynomial in the complexity of Σ.

Let ` be the number of parameters. Since di 6 ` for every i > 0 except for the last and
d0 > d1 > d2 > . . ., the counter i in Algorithm 6.1 will not exceed ` + 1. Then there will
be at most ` + 1 runs of Algorithm 6.2, and each run will be on a system of complexity at
most `+ 1 times the complexity of Σ. Therefore, the total arithmetic complexity will be still
polynomial in the complexity of Σ.

INPUT-OUTPUT EQUATIONS AND IDENTIFIABILITY OF LINEAR ODE MODELS 13

6.2. Algorithm: implementation and examples. We implemented the probabilistic ver-
sion of Algorithm 6.1 for computing the bound from Theorem 3.1 in Julia language using
Oscar and Nemo libraries [4] together with a version of the algorithm by Sedoglavic from
Theorem 6.3. The code and examples described below are available at https://github.com/
pogudingleb/ExperimentsBound.

Below we will demonstrate the algorithm and the bound on several examples and compare
with the algorithm presented in [17] (see Example 6.13 and Table 3). All of the runtimes
reported below have been measured on a laptop with 1.6 GHz processor (Intel Core i5) and
16GB RAM. All of the computations reported below have been performed with the correctness
probability of 99% (see the specification of Algorithm 6.1).

Remark 6.6. For some of the examples below, we were able to obtain the exact values of
NumExpGlob(Σ) using SIAN [9]. SIAN is software that can check single experiment identifi-
ability of any fixed function of parameters. We used it as follows:
1. If, for some r, all parameters of Σr are globally identifiable, then NumExpGlob(Σ) 6 r.

2. If, for some r, the parameter identifiability of Σr and Σr+1 are not the same, then
NumExpGlob(Σ) > r + 1.

Example 6.7 (The counterexample from Section 4). In Section 4, we have shown that
NumExpGlob(Σ) > 1 for the following system Σ:

x′1 = 0,

x′2 = x1x2 + µ1x1 + µ2,

y = x2.

Our implementation shows that NumExpLoc(Σ) = 2 and NumExpGlob(Σ) ∈ {2, 3}. The
computation took 0.01 seconds. Using SIAN as describe in Remark 6.6, we find that both
parameters µ1 and µ2 are globally identifiable in Σ2. Combining it with NumExpGlob(Σ) ∈
{2, 3} obtained by the algorithm, we conclude that

NumExpLoc(Σ) = NumExpGlob(Σ) = 2.

The same bound is given by [17, Theorem 21]. The computation took 0.3 seconds.

Example 6.8 (SEIR epidemiological model). Consider the following SEIR model [25, Equa-
tion (2.2)]:

(6.1)


S′ = −β SIN ,
E′ = β SIN − νE,
I ′ = νE − αI,
R′ = αI,

where S, E, I, R are the numbers of individuals susceptible to the infection, exposed, infected,
and recovered, respectively, and N := S +E + I +R is the total population which is known.
Note that (6.1) implies that N ′ = 0. The output we will consider will be γI + δE, where γ
and δ are constants corresponding to factors such as, for instance, accuracy of the tests for the

https://github.com/pogudingleb/ExperimentsBound
https://github.com/pogudingleb/ExperimentsBound

14 A. OVCHINNIKOV, A. PILLAY, G. POGUDIN, AND T. SCANLON

infection or the percentage of individuals going to a doctor after noticing the symptoms. We
will assume that there are several experiments with the same values of α, β, ν, δ but varying
values of γ (e.g., before and after improving the accuracy of the test).

To encode these assumptions into our framework, we will make γ a constant state variable
and add an output for it. We will also replace the equation for R from (6.1) with N ′ = 0 as
R does not appear in other equations other than inside N . This yields the following model Σ:

(6.2)



S′ = −β SIN ,
E′ = β SIN − νE,
I ′ = νE − αI,
N ′ = γ′ = 0,

y1 = γI + δE,

y2 = γ, y3 = N.

Our implementation shows that NumExpLoc(Σ) = 1 and NumExpGlob(Σ) ∈ {1, 2}. The
computation took 0.05 seconds. Using SIAN as described in Remark 6.6, we find that all
the parameters are only locally identifiable from a single experiment but become globally
identifiable after 2 experiments. Therefore, NumExpGlob(Σ) = 2, so the bound given by the
algorithm is exact in this case.

The program for computing a bound for the number of experiments provided in [17] did
not finish on this example after two hours of computation.

Example 6.9 (Linear compartment models with controlled rates). Linear compartment mod-
els typically represent a set of compartments in which material is transferred from some com-
partments to other compartments. It is also allowed to have a leakage of material from some
compartments out of the system and input of material into some compartments from outside
the system.

Linear compartment models are typically represented as directed graphs with edges labeled
by scalar parameters (called rate constants). An example of such a representation is shown
in Figure 1. The rules of transforming such a graph into a system of ODEs are the following:

• (compartments) each vertex of the graph corresponds to a state variable (a compartment);

• (transfers) for each edge i→ j with a rate constant aji, we add a term ajixi to the equation
for x′j and a term −ajixi to the equation x′i (the corresponding terms for the edge 1→ 2
on Figure 1 are underlined in the system);

• (leaks) for each edge from vertex i without a target (such as an edge from vertex 1 in
Figure 1) with a rate constant a0i, we add a term −a0ixi to the equation for x′i (such a
term for a01 is in boldface in Figure 1);

• (outputs) outgoing edge with a small circle at the end marks state variables taken as
outputs (e.g., x1 in Figure 1);

• (inputs) for an incoming edge without a source (such as the one pointing at node 3 in
Figure 1), we add an input variable to the corresponding compartment (added variable u
in the equation for x′3).

INPUT-OUTPUT EQUATIONS AND IDENTIFIABILITY OF LINEAR ODE MODELS 15

1

2

3

a21a12

a13

a 01


x′1 = −a01x1 − a21x1 + a12x2 + a13x3

x′2 = a21x1 − a12x2

x′3 = −a13x3 + u

y = x1

Figure 1: Example of a linear compartment ODE model and of the corresponding graph

We will consider three series of models: cyclic, catenary, and mammilary. These linear
compartment models and their modifications have recently been actively studied from the
identifiability perspective [26, 8, 7, 6]. The corresponding graphs are given in Figure 2.
Since these models are linear and have a single output, [19, Theorem 1] together with [17,
Theorem 21] implies that NumExpGlob(Σ) = NumExpLoc(Σ) = 1 for every such model Σ.

1

2 3

n n− 1

...

a32

a21

a1n

an (n−1)

a01

(a) Cycle model

1 2 n− 1 n

a21

a12 a(n−1)n

an (n−1)

· · ·

(b) Catenary model

1

2

3

n

a21
a12

a31

a13

an 1

a1n

...

(c) Mammilary model

Figure 2: Considered classes of linear compartment models represented by their graphs

We will consider a modification of these models similar to [27, Section III.B]. The mod-
ification is motivated by voltage clamp protocols used to identify parameters in ion channel
models [5]. Ion channel models are often modelled using Markov models, which are similar to
linear compartment models but with parameters depending on input functions (see [27, Sec-
tion III.B] and [22, Section 3.2]). In the context of ion channel models, it may be nonrealistic
to include a generic time-dependent input into the model. Instead of this, several experiments
are performed such that the parameters depend on a constant input that takes different values
for different experiments [5, §5 and §7]. Such a constant input can be encoded into our frame-
work by adding a new state variable x0 satisfying x′0 = 0 and a new output equal to x0. We
will consider the case in which all of the parameters depend linearly on the constant input x0,
that is: aij = bij + cijx0 for all i and j, where bij and cij are new parameters. A dependence
of this form was used for some of the parameters in [3, Supplementary Material] and can be

16 A. OVCHINNIKOV, A. PILLAY, G. POGUDIN, AND T. SCANLON

viewed as a linear approximation to the dependencies used in [27, 5]. For example, the cycle
model (Figure 2a) with n = 4 will be represented as shown on Figure 3 (cf. [27, III.B])

2 3

41

b21 + c21x0

b32 + c32x0

b43 + c43x0

b14 + c14x0



x′0 = 0

x′1 = (b14 + c14x0)x4 − (b21 + c21x0)x1

x′2 = (b21 + c21x0)x1 − (b32 + c32x0)x2

x′3 = (b32 + c32x0)x2 − (b43 + c43x0)x3

x′4 = (b43 + c43x0)x3 − (b14 + c14x0)x4

y1 = x0, y2 = x1

Figure 3: Cyclic model with n = 4 compartments with constant input in the reaction rates:
graph (left) and ODE model (right)

We have analysed models from families in Figure 2 with introduced constant input x0

as described above using our implementation. The resulting values of the bound and the
runtimes are summarized in Table 2. The algorithm for computing a bound for the number of
experiments described in [17, Remark 22] did not finish on any of the models even for n = 3
after two hours of computation.

Model
NumExpLoc(Σ) NumExpGlob(Σ) ∈ runtime (sec.) max n feasible

n = 3 4 6 n 6 15 n = 3 4 6 n 6 15 n = 10 n = 15 for SIAN∗

Cycle 3 3 {3, 4} {3, 4} 9.5 41 4

Catenary 4 5 {4, 5} {5, 6} 45.6 330 3

Mammilary 4 5 {4, 5} {5, 6} 45.8 320 3

Table 2: Results and runtimes of our implementation on cyclic, catenary, and mammilary
models (see Figure 2) with a constant input acting on reaction rates as on Figure 3.
∗: for details on SIAN usage in this case, see Remark 6.10

Remark 6.10. For NumExpGlob(Σ), we tried to refine the result to obtain the exact value
using SIAN [9] as described in Remark 6.6. The results are the following:

• for the cycle model, we have found that NumExpGlob(Σ) > 4 for n = 3, 4 as described in
the second item of Remark 6.6. Combined with the bound given by our implementation,
we obtain NumExpGlob(Σ) = 4 for n = 3, 4, so the bound is exact in this case. Already
for n = 5, the computation with SIAN did not finish in 10 hours on a server and used
more than 20GB of memory.

• for the catenary and mammilary models, a computation with SIAN showed that, for
n = 3, none of the individual parameters was identifiable after 5 experiments. Therefore,

INPUT-OUTPUT EQUATIONS AND IDENTIFIABILITY OF LINEAR ODE MODELS 17

we cannot use SIAN to determine the exact bound in the way we did it for the cycle
model. For n = 4, the computation with SIAN did not finish in 10 hours on a server and
used more than 40GB of memory.

Remark 6.11. For all three series of models, the output of the algorithm stabilizes from
n = 4. It is natural to conjecture that the result will be the same for all larger values of n. It
would be interesting to have a mathematical argument showing this or maybe even a formula
for the number of experiments in terms of numerical characteristics of the graph of a model.

Remark 6.12. The same procedure of linearly perturbing the rate constants can be applied
to general chemical reaction networks, which yield, in general, highly nonlinear ODEs. In this
setup, we also observe that the necessary number of experiments may become larger than 1:
for example, for the perturbed version of the phosphorylation model [10, Example 6.1], we
get NumExpLoc(Σ) = 2 and NumExpGlob(Σ) ∈ {2, 3}.

Example 6.13 (Examples from [17]). As we mentioned, the algorithm from [17, Remark 22]
does not produce any bound for Examples 6.8 and 6.9 in reasonable time. For the sake of
comparison, we run our algorithm on the examples collected in [17, Section 5]. The comparison
is reported in Table 3, in which we also included the above examples for completeness.

Model
Approach from [17] Our algorithm

time (sec.) bound time (sec.) bound

Lotka-Volterra w/control [17, Section 5.1] 0.3 1 0.005 2

Slow-fast ambiguity [17, Section 5.2] 0.37 2 0.024 2

Lotka-Volterra w/mixture [17, Section 5.3] 15 4∗ 0.01 2

SEIR - prevalence [17, Section 5.4] 1 1 0.021 2

SEIR - incidence [17, Section 5.4] 340 1 0.032 2

Counterexample from Section 4 (Example 6.7) 0.3 2 0.01 3

SEIR w/ mixture (Example 6.8) > 2 h. N/A 0.05 2

Cycle for n = 3∗∗ (Example 6.9) > 2 h. N/A 0.3 4

Catenary for n = 3∗∗ (Example 6.9) > 2 h. N/A 0.6 5

Mammilary for n = 3∗∗ (Example 6.9) > 2 h. N/A 0.6 5

Table 3: Comparison of bounds for NumExpGlob and runtimes with [17].
∗: obtained by a modification of the method, see [17, Section 5.3]; [17, Theorem 21] gives 35
∗∗: our algorithm from the present paper can tackle larger n as well, see Table 2

7. Model theory and identifiability. The goal of this section is to explain the connections
between identifiability and model theory and give an idea how the algebraic arguments from
the preceding sections have been inspired and informed by model-theoretic considerations.
The section is structured as follows. Section 7.1 introduces some fundamental notions of
model theory in the context of differential fields and explains their close relations with the
concept of identifiability; the section culminates in the identifiability–model theory dictionary

18 A. OVCHINNIKOV, A. PILLAY, G. POGUDIN, AND T. SCANLON

in Table 4. Section 7.2 is about some model theory of differential fields behind (4.1) and
Proposition 3.3. Specifically we describe canonical bases of types over constant fields. In
Section 7.3, we give model-theoretic proofs of the key ingredients of the proof of Theorem 3.1,
Propositions 5.4 and 5.10. Some of the ideas from these proofs were crucial in the algebraic
proof of Theorem 3.1.

Model theory is a kind of abstract algebra, which gives a common environment and com-
mon tools for studying algebraic structures such as group, fields, and fields equipped with
derivations or automorphisms. Among these tools are canonical bases coming from an area
of model theory called stability theory, and which implicitly play an important role in this
paper.

7.1. Setup. We will use basic notions from model theory (such as language, structure,
theory, and model). The reader is referred to [15, Chapter 1] for additional details. In this
section, we will introduce relevant notions from model theory. We will specialize some of them
for simplicity to the case of differential fields and explain their relation to the identifiability
problem. Further details can be found in [14] (also [15, 20]). The correspondence between
notions from identifiability and model theory is summarized in Table 4 at the end of this
section.

One expresses system (2.1) by a formula in the appropriate language (i.e. the conjunction
of the system of finitely many equations) as defined below.

Definition 7.1 (Extensions of languages). For a language L, a structure M in L, and a
subset A ⊆ M , let LA denote the extension of language L by adding a constant for each
element of A.

The reader should be careful to distinguish “constants” in the sense of constant symbols in
logic from constants in the sense of elements of a differential field on which the derivation is
zero.

Example 7.2 (Language of differential fields). We work in the language of differential fields

LDF := {+, ·,′ , 0, 1}.

This language allows one to express differential equations with rational coefficients (not arbi-
trary complex numbers as in (2.1)), and this is not sufficient to write a system of the form (2.1).
However, every equation in (2.1) is a formula in LDF,C in variables x̄, ȳ, ū, µ̄.

We will work not in the theory of differential fields but in the theory of differentially closed
fields. This ensures that the equations of interest have sufficiently many solutions.

Definition 7.3 (Differentially closed fields, [15, Definition 4.3.29]). A differential field K is
called differentially closed if, for all differential polynomials f, g ∈ K{x} \ {0} with ord f >
ord g, there is a ∈ K such that f(a) = 0 and g(a) 6= 0 (for p ∈ K \{0}, we define ord p := −1).

These fields share many properties with algebraically closed fields such as the Nullstellen-
satz: if a system of equations over K has a solution in some extension of K, then it has a
solution in K as well [14, Corollary 2.6]. The property of being differentially closed can be
written as a list of axioms in LDF . We denote the resulting theory of differentially closed
fields by DCF0.

INPUT-OUTPUT EQUATIONS AND IDENTIFIABILITY OF LINEAR ODE MODELS 19

Once we have put the system (2.1) into the model-theoretic context, we would like to
be able to talk about its solutions and generic solutions. This is done using the language of
formulas and types.

Definition 7.4 (Types, [15, Definition 4.1.1]). Let M be an L-structure and A a subset of
M . Then an n-type over A, relative to the structure M , is a set Φ of formulas in LA with free
variables x1, . . . , xn such that there exists an LA-structure N containing M (could be equal
to M) such that
• all LM -sentences true in M are also true in N (such N is called an elementary extension

and we write M ≺ N);
• there exist a1, . . . , an ∈ N satisfying all the formulas in Φ.

Such a set or tuple a1, . . . , an is called a realization of the type.

Example 7.5 (Important classes of types). In this paper, we will encounter mostly types
of the following forms:

• Types defined by finitely many formulas (that is, |Φ| <∞ in Definition 7.4). For example,
the system (2.1) (or any other system of differential-algebraic equations) defines such a
type over any differential field containing at least one solution of (2.1). Using conjunction,
every such type can be defined by a single formula.

• Let M be a model, A ⊂ M be any subset, and ā be a tuple from M . Then tpM (ā/A)
denotes the set of all formulas in LA satisfied by ā in M . Note that if M ≺ N , then
tpN (ā/A) = tpM (ā/A).

• Let M be an L-structure, A a subset of M , and p an n-type over A relative to the structure
M . Then p is complete if, for every φ(x̄) in LA, either φ or ¬φ is in p. The complete
n-types over A relative to M are precisely of the form tpN (ā/A) for N an elementary
extension of M .
For any automorphism f of M , we define a map on the set of complete types over M by
applying f to the formulas contained in the types.

Remark 7.6 (Types in differentially closed field). The theory DCF0 admits quantifier elim-
ination [15, Theorem 4.3.32], that is, for every formula φ, there is a quantifier-free formula
equivalent to φ in DCF0. Therefore, every type can be defined by a set of quantifier-free
formulas.

In particular, if K and L are differentially closed fields and A, ā ⊂ K ∩ L, then the types
tpK(ā/A) and tpL(ā/A) are the same. Hence, working in the context of differentially closed
fields, we will write simply tp(ā/A) without specifying the ambient differentially closed field.

Example 7.7. Consider a generic solution (x̄∗, ȳ∗, ū∗) of (2.1) (see Definition 2.3) in a
differentially closed field K ⊃ C(µ̄). Then we will call tp((x̄∗, ȳ∗, ū∗)/C(µ̄)) the type of a
generic solution of (2.1). This type contains all equations (2.1), but also, for example, any
inequation (say, x′1 6= 0) that is true for at least one solution of (2.1) and thus must be true
for a generic one.

Model theory provides tools to construct large enough differential fields containing real-
izations of types of generic solutions of all the systems of interest (and in many copies so that
we can talk about multiple experiments as well).

20 A. OVCHINNIKOV, A. PILLAY, G. POGUDIN, AND T. SCANLON

Definition 7.8 (Saturation, [15, Definition 4.3.1]). Let κ be an infinite cardinal. A model
M of theory T is called κ-saturated if every complete type Φ such that

|{m ∈M | m appears in Φ}| < κ

has a realization in M . M is called saturated if it is |M |-saturated.

Remark 7.9. If M is a model of theory T and A ⊂M is a subset and M is saturated with
|M | > max(|A|, |T |), then, for every ā, b̄ in M ,

tpM (ā/A) = tpM (b̄/A) ⇐⇒ ∃ automorphism α : M →M such that α(ā) = b̄ and α|A = id

(see [15, Propositions 4.2.13 and 4.3.3]).

Now we define identifiability in the language of model theory.

Definition 7.10 (Definability, [15, Definition 1.3.1]). A subset X ⊂ Mn of a structure M
in a language L is called definable over a subset A ⊂ M if there exists a first-order formula
φ(x1, . . . , xn) in LA such that

(a1, . . . , an) ∈ X ⇐⇒ φ(a1, . . . , an) is true in M .

Example 7.11. Let K be a differential field over a differential subfield k0, and ā and b̄ are
tuples of elements of K. It follows from [15, Proposition 1.3.5] and [11, Theorem 2.6] that

ā definable over b̄ in LDF,k0 ⇐⇒ ā ∈ k0〈b̄〉

(where, for a set A, a ∈ A means ai ∈ A for each i 6 length(a)). Comparing this with
Definition 2.5 , we see that h(µ̄) ∈ C(µ̄) is identifiable if and only if it is LDF,C-definable over
(ȳ∗, ū∗) for every generic solution (x̄∗, ȳ∗, ū∗) of (2.1).

Remark 7.12. For a saturated model M , definability can be restated in terms of automor-
phisms [15, Proposition 4.3.25]: for ā, b̄ ∈M , ā is definable over b̄ if and only if

∀ automorphism α : M →M α(b̄) = b̄ =⇒ α(ā) = ā.

Informally, this can be stated as if b̄ is fixed, then ā is also fixed. Syntactically, this is very
similar to the analytic definition of identifiability [10, Definition 2.5]. This partially explains
why model theoretic tools were used in proving the equivalence [10, Proposition 3.4] of the
analytic definition and Definition 2.5.

In order to define multi-experiment identifiability in model-theoretic terms, we will define
the notion of independence.

Definition 7.13 (Stationarity, nonforking, and independence). Let k be a differential subfield
of a differentially closed field K and let n be a positive integer. Let ā be n-tuple of elements
from K and x̄ denote n-tuple of differential variables.

• Recall from Notation 5.1 that the vanishing ideal Ik(ā) of ā over k is {P ∈ k{x̄} : P (ā) =
0}. Note that Ik(ā) depends only on p := tp(ā/k). Moreover, by quantifier elimination of
DCF0 (see Remark 7.6), it also determines tp(ā/k).

INPUT-OUTPUT EQUATIONS AND IDENTIFIABILITY OF LINEAR ODE MODELS 21

• Let L be a differential field with k ⊂ L ⊂ K. We say that ā is independent from L over k
if IL(ā) is a prime component of Ik(ā)⊗k L. We also express this by saying that tp(ā/L)
does not fork over k, or that tp(ā/L) is a nonforking extension of tp(ā/k).

• We say that tp(ā/k) is stationary if Ik(ā) is “absolutely prime”, namely for each L ⊃ k,
Ik(ā)⊗k L is prime. It is enough to require this for L = K.

• If b̄ is another finite tuple from K, we say that ā and b̄ are independent over k if b̄ is
independent from k〈ā〉 over k. A sequence of tuples ā1, ā2, . . . is called independent over
k if, for every i > 1, āi+1 is independent from k〈ā1, ..., āi〉 over k.

• In general, given subsets A ⊆ B of K, we say that ā is independent from B over A, or
tp(ā/B) does not fork over A, if ā is independent from L2 over L1, where L1 and L2 are
the differential fields generated by A and B, respectively.

Example 7.14 (Generic solution of (2.1) is stationary). Let ā := (x̄∗, ȳ∗, ū∗) be a generic
solution of (2.1) (see Definition 2.3). Then, by the definition, IC(µ̄)(ā) = IΣ. [10, Proof of
Lemma 3.2] implies that the ideal IΣ is prime and remains prime under any field extension.
Therefore, tp(ā/C(µ̄)) is stationary.

Remark 7.15 (Some properties of independence and forking). In this remark, we use the
notation from Definition 7.13.
(1) One can show that finite tuples ā, b̄ are independent over k if and only if the ideal Ik(ā, b̄) ⊆

k{x̄, ȳ} is a prime component of the ideal I of k{x̄, ȳ} generated by Ik(ā) and Ik(b̄). Indeed,
ā, b̄ are independent over k if and only if Ik〈b̄〉(ā) is a prime component of Ik(ā)⊗kk〈b̄〉. Let

ϕ : k{x̄, ȳ} → k〈b̄〉{x̄} be the canonical differential ring homomorphism such that ϕ(ȳ) = b̄.
We have kerϕ = Ik(b̄), ϕ(Ik(ā, b̄)) ⊗k k〈b̄〉 = Ik〈b̄〉(ā), and ϕ(I) ⊗k k〈b̄〉 = Ik(ā) ⊗k k〈b̄〉.
Hence, since both Ik(ā, b̄) and I contain kerϕ, we obtain that Ik(ā, b̄) is a prime component
of I if and only if Ik〈b̄〉(ā) is a prime component of Ik(ā) ⊗k k〈b̄〉, which finishes the

argument. Moreover, if both tp(ā/k) and tp(b̄/k) are stationary, I is itself prime by
definition of stationarity.

(2) Since the ideal Ik(ā) is prime, the ideal Ik(ā) ⊗k L is equidimensional (the transcedence
bases corresponding to its prime components are all the same) for every L ⊃ k. Hence,
IL(ā) is a prime component of Ik(ā) ⊗k L if and only if the transcendence basis corre-
sponding to IL(ā) over L is the same as that of Ik(ā) over k. Therefore, ā is independent
from L ⊃ k over k if and only if, for every m, we have

trdegk k
(
ā, ā′, . . . , ā(m)

)
= trdegL L

(
ā, ā′, . . . , ā(m)

)
.

Together with [21, Proposition 1.16], this implies that the definition of independence in
DCF0 we gave agrees with the general model-theoretic one (as e.g., in [20, §2.2, page 28]).

(3) The definition of stationarity implies that, for every stationary type p over k and every
differential field L ⊃ k, there is a unique complete type q that extends p and that does not
fork over k. Such a type q will be referred to as the nonforking extension of p. Note that the
type q is again stationary. One can show that the converse (the uniqueness of nonforking
extension of p implies the stationarity of p) is also true by using the characterization of
independence from the previous item and the fact that, after the extension of scalars, an
irreducible variety becomes equidimensional. Indeed, let p = tp(ā/k) be not stationary

22 A. OVCHINNIKOV, A. PILLAY, G. POGUDIN, AND T. SCANLON

and so let L ⊃ k be such that the ideal Ik(ā) ⊗k L is not prime. Let P1 = IL(b̄) and
P2 = IL(c̄) be any two of its prime components. Note that P1 and P2 have the same
dimension since Ik(ā)⊗k L is equidimensional. Since P1 and P2 are prime components of
P1 ∩ k{x̄} ⊗k L and P2 ∩ k{x̄} ⊗k L, respectively, the tuples b̄ and c̄ are each independent
from L over k. Thus, tp(b̄/L) and tp(c̄/L) are two different extensions of tp(ā/k) that do
not fork over k.

Example 7.16. Consider the differential field k = Q(t) with respect to the derivation d
dt

and a saturated model K ⊃ k of DCF0. Every formula in the type p := tp(t/Q) is implied
by the single formula x′ = 1. Then type q := tp(t/Q(t)) is an extension of p, and it contains
a new formula x = t, which is not implied by x′ = 1. We have

trdegQ t = 1 6= 0 = trdegQ(t) t,

so the extension of p by q is forking.
Also, from the differential equations theory, we know that the general solution of x′ = 1

is of the form x = t+ c, where c is a constant. So we can construct a nonforking extension of
p to Q(t) as tp((t+ c)/Q(t)), where c ∈ K is a transcendental constant (exists because K is
saturated).

Example 7.17 (Multi-experiment identifiability via independence). Let ā = (x̄∗1, ȳ
∗
1, ū
∗
1) and

b̄ = (x̄∗2, ȳ
∗
2, ū
∗
2), where (x̄∗1, x̄

∗
2, ȳ
∗
1, ȳ
∗
2, ū
∗
1, ū
∗
2) is a generic solution of Σ2 (see Definition 2.8).

By the definition of IΣ2 , it is generated by two copies of IΣ, so ā and b̄ are independent over
C(µ̄). Moreover, ā and b̄ are independent realizations of the type of a generic solution of (2.1)
(see Example 7.7). Combining this with Example 7.11, we have that
h(µ̄) ∈ C(µ̄) is multi-experiment identifiable if and only if it is definable in LDF,C over some
finite number of independent realizations of tp((ȳ∗, ū∗)/C(µ̄)), where (x̄∗, ȳ∗, ū∗) is a generic
solution of (2.1).

Finally, it has been shown in [17, Theorem 19] that the field of multi-experiment identifi-
able functions coincides with the field of definition of the ideal of input-output relations. Any
set of generators of the field of definition is called a canonical base in model theory:

Definition 7.18 (Canonical base, [15, Definition 8.2.2]). Let M be a saturated model of
the theory DCF0 (that is, large enough differentially closed field, see Definition 7.8), and p be
a complete type over M . Then a set A ⊂M is called a canonical base of p if and only if

∀ automorphism α : M →M α(p) = p ⇐⇒ α|A = id,

where the automorphism acts on the type by acting on the formulas defining the type (which
are defined over M , see also Example 7.5). In particular, an automorphism fixes a complete
type if it leaves the corresponding set of formulas invariant.

Every canonical base of a complete type p generates the same differential field over k [15,
Lemma 8.2.4]. This field will be denoted by Cb(p) and referred to as the canonical base
(see [20, p. 29]). If k is a differential subfield of a differentially closed K and ā is a tuple from
K such that tp(ā/k) is stationary, then Cb(ā/k) denotes the canonical base of the nonforking
extension of tp(ā/k) to K (see Definition 7.13).

INPUT-OUTPUT EQUATIONS AND IDENTIFIABILITY OF LINEAR ODE MODELS 23

Example 7.19. In the theory of differential fields, the canonical base of stationary tp(ā/k)
is the field of definition of Ik(ā) (see Notation 5.2). Therefore, [17, Theorem 19] can be
rephrased as follows:
the field of multi-experimental identifiable functions is Cb((ȳ∗, ū∗)/C(µ̄)), where (x̄∗, ȳ∗, ū∗)
is any generic solution of (2.1).
This fact sounds natural if one looks at Definition 7.18: the canonical base is fixed if and only
if the set of all experimental outcomes for fixed generic parameters is invariant.

We will conclude this subsection by summarizing some properties of forking extensions
which will be used in the subsequent proofs.

Remark 7.20 (Properties of forking). We fix a differentially closed field K ⊃ k0, its subsets
A ⊆ B ⊆ C, and a tuple ā from K.
(1) (transitivity, [20, Proposition 2.20(iii)]) tp(ā/C) does not fork over A if and only if it does

not fork over B and tp(ā/B) does not fork over A.
(2) (symmetry, [20, Proposition 2.20(v)]) tp(ā/B) does not fork over A if and only if, for

every b̄ from B, tp(b̄/A ∪ ā) does not fork over A.
(3) ([20, Proposition 2.20(iv)]) Assume that two distinct types tp(ā/B) and tp(b̄/B) do not

fork over A. Assume also that tp(ā/A) = tp(b̄/A). Then there exists an equivalence rela-
tion E(x1, x2) defined over A with finitely many classes such that, for every ā∗ satisfying
tp(ā/B) and b̄∗ satisfying tp(b̄/B), we have ¬E(ā∗, b̄∗). In geometric terms, one can think
of E being the relation “belong to the same component of the variety defined by tp(ā/A)”.

(4) (forking and canonical bases) Let p be a stationary type over A, and let F be the differen-
tial field generated by A. Then Cb(p) ⊆ F [20, Remark 2.26(i)] and coincides with Cb(q)
whenever q is the nonforking extension of p to a larger set B ⊇ A (this follows from the
sentence immediately before [20, Remark 2.26]: if q is a nonforking extension of p, then
p and q have a common nonforking extension, namely, q, so that Cb(p) = Cb(q)). Also
tp(ā/B), which is a type over B, does not fork over A ⊆ B iff Cb(tp(ā/B)) is contained
in the algebraic closure of F (by [20, Remark 2.26(ii)]).

Identifiability Model theory

Solution of (2.1) Realization of the formula (2.1)

Generic solution (x̄∗, ȳ∗, ū∗)

of (2.1)

Realization of the generic type defined by (2.1)

(Example 7.7)

Identifiability (Definition 2.5) Definability over (ȳ∗, ū∗) (Example 7.11)

Multi-experiment identifiability

(Definition 2.8)

Definability over some finite number of independent

realizations of tp((ȳ∗, ū∗)/C(µ̄)) (Example 7.17)

Field of multi-experiment

identifiable functions

The canonical base Cb((ȳ∗, ū∗)/C(µ̄))

(Example 7.19 and Propositions 5.4 and 7.25)

Table 4: Identifiability - Model theory dictionary

24 A. OVCHINNIKOV, A. PILLAY, G. POGUDIN, AND T. SCANLON

7.2. Single-output model requiring more than one experiment revisited. In this section,
we will discuss a model-theoretic construction used to find (4.1). We will work over the field
C, that is, in the language LDF,C. Consider a constant differential field k = C(µ̄). Let K be
a saturated differentially closed field containing k. Let C denote the constants of K. We will
use two technical lemmas.

Lemma 7.21. For every tuple ā from K, Cb(ā/C) = C ∩ C〈ā〉.
Proof. First we observe that, since C is algebraically closed [14, Lemma 2.1], the type

tp(ā/C) is stationary due to [20, Chapter 1, Remark 2.25(i)], so we can use Definition 7.18.
Consider any automorphism α of K such that α(ā) = ā. Since C is the field of constants
of K, we have α(C) = C. Then α fixes IC(ā) setwise, so it fixes the nonforking extension of
tp(ā/C) to K (see Definition 7.13). By Definition 7.18, we conclude that α fixes Cb(ā/C).
Thus, Remark 7.12 implies that Cb(ā/C) ⊂ C〈ā〉.

In the other direction, consider b ∈ C〈ā〉∩C. There exists a differential rational function f
over C such that b = f(ā). Therefore, the formula b = f(x̄) belongs to tp(ā/C), so it belongs
to its nonforking extension p to K. Then any automorphism α of K fixing p fixes b̄. Then
Definition 7.18 implies that b ∈ Cb(ā/C).

Lemma 7.22. Let ā be a tuple from K and c̄ any set of generators of Cb(ā/C) as a field
over C. Then

1. Cb(ā/k) = Cb(c̄/k);

2. C〈ā〉 ∩ k = C(c̄) ∩ k.

Proof.
1. Lemma 7.21 implies that c̄ is a tuple from C〈ā〉. Therefore, using Remark 7.12, we obtain

Cb(c̄/k) ⊂ Cb(ā/k).
Consider an automorphism α of K that fixes the nonforking extension p of tp(c̄/k) to
K. Then α fixes K ⊗k Ik(c̄) setwise, so tp(c̄/k) = tp(α(c̄)/k). Then Remark 7.9 implies
that there exists an automorphism β of K that fixes k and β(α(c̄)) = c̄. Then tp(ā/C) =
tp(β(α(ā))/C), so tp(ā/k) = tp(β(α(ā))/k). Since β−1 fixes k, we have

tp(ā/k) = tp(β(α(ā))/k) = tp(β−1(β(α(ā)))/k) = tp(α(ā)/k).

Therefore, Ik(ā) = Ik(α(ā)), so these types have the same nonforking extensions to K.
Hence α fixes Cb(ā/k). Thus, Cb(ā/k) ⊂ Cb(c̄/k).

2. Using Lemma 7.21, since k is constant, we have

C〈ā〉 ∩ k = (C〈ā〉 ∩ C) ∩ k = C(c̄) ∩ k.

Let (x̄∗, ȳ∗, ū∗) be a generic solution of an algebraic differential model Σ as in (2.1). Then
the desired non-equality of the fields of SE- and ME-identifiable functions can be restated,
using Examples 7.11 and 7.19, as

(7.1) C〈ȳ∗, ū∗〉 ∩ C(µ̄) 6= Cb((ȳ∗, ū∗)/C(µ̄)).

We will first construct an example having constant dynamics and satisfying the non-
equality (7.1) (as, for example, in [10, Example 2.14]). We then use Lemma 7.22 to “pack”
two output variables of the example into a single output variable while preserving (7.1):

INPUT-OUTPUT EQUATIONS AND IDENTIFIABILITY OF LINEAR ODE MODELS 25

(Step 1) Let µ̄ = (µ1, µ2), and introduce a constant state variable x1. We introduce two
auxiliary outputs z1 = x1 and z2 = µ1x1 + µ2. The defining differential ideal of
(z1, z2) is generated by z′1, z2−µ1z1−µ2, so Cb((z1, z2)/C(µ̄)) = C(µ̄). On the other
hand, since the automorphism of C(x1, µ1, µ2) defined by

x1 → x1, µ1 → µ1 + 1, µ2 → µ2 − x1

fixes z1 and z2 but does not fix µ1 or µ2, we conclude that µ1, µ2 6∈ C(z1, z2).
(Step 2) Now we introduce a new state variable x2 satisfying x′2 = z1x2+z2 and set the output

y = x2. Then we have Cb(y/C) = C(z1, z2). Therefore, using Lemma 7.22,

Cb(y/C(µ̄)) = Cb((z1, z2)/C(µ̄)) = C(µ̄) 6= C(z1, z2) ∩ C(µ̄) = C〈y〉 ∩ C(µ̄).

So we get exactly (4.1).

Remark 7.23. Instead of x′2 = z1x2 + z2, we could take any other equation containing z1

and z2 among the coefficients, for example, x′2 = z1x
2
2 + 2z2x2 − 3z3

1 . This would yield an
example with the same property (7.1).

Remark 7.24. Another way to obtain an example with the property from Proposition 3.3
is to remove the first output (the equation y1 = x0) from any of the models in Example 6.9,
which can be directly verified using our implementation https://github.com/pogudingleb/
ExperimentsBound.

7.3. Model theory way of proving Theorem 3.1. In this section, we will use Notation 5.1
and 5.2. In particular, we work over a fixed ground differential field k0 (that is, in LDF,k0).
Therefore, all fields are assumed to be generated over k0 and, in particular, whenever we write
tp(ā/A), this is equivalent to tp(ā/k0〈A〉).

An interested reader could deduce the following proposition from [20, Chapter 1,
Lemma 3.19] (see also [15, Exercise 8.4.12]).

Proposition 7.25 (Model theoretic reformulation of Proposition 5.4). Let k ⊂ K be a differ-
ential subfield, p a stationary type over k, and a sequence ā1, ā2, . . . of independent realizations
of p in K. Then there exists N such that

Cb(p) ⊂ k0〈ā1, . . . , āN 〉.

Lemma 7.26 (cf. Lemma 5.3). Let k0 ⊂ k ⊂ K be a differential field. Consider tuples ā, b̄
from K such that tp(ā/k) is stationary and b̄ is independent from ā over k. Then Cb(ā/k) =
Cb(ā/k〈b̄〉).

Proof. Let p1 := tp(ā/k) and p2 := tp(ā/k〈b̄〉). Consider a subfield F ⊂ k. Then
• the independence of ā and b̄ together with Remark 7.20(2) implies that p1 does not fork

over F iff p2 does not fork over F ;
• since p1 is the restriction of p2 to k, p1 restricted to F is stationary iff p2 restricted to F

stationary.
Applying Remark 7.20(4) twice, with A = Cb(p1) and A = Cb(p2), we conclude Cb(p1) =
Cb(p2).

https://github.com/pogudingleb/ExperimentsBound
https://github.com/pogudingleb/ExperimentsBound

26 A. OVCHINNIKOV, A. PILLAY, G. POGUDIN, AND T. SCANLON

Proposition 7.27 (Model theoretic version of Proposition 5.10). Let:

• k with k0 ⊂ k ⊂ K be a differential field of finite transcendence degree over k0,
• p a stationary type over k (in particular, p is a complete type),
• a sequence ā1, ā2, . . . of independent realizations of p in K,
• r the smallest integer such that

trdegk0〈ā1,...,ār〉 k = trdegk0〈ā1,...,ār+1〉 k.

Then
(1) r is the smallest integer such that Cb(p) is algebraic over k0〈ā1, . . . , ār〉;
(2) Cb(p) ⊂ k0〈ā1, . . . , ār+1〉.

Proof. Let c̄ be any finite tuple of generators of Cb(ā1/k). For every nonnegative integer
`, we set Ā` := (ā1, . . . , ā`). We consider the following sequence of types (cf. the varieties Xi

in the proof of Proposition 5.10):

tp(c̄/Ā0) ⊂ tp(c̄/Ā1) ⊂ tp(c̄/Ā2) ⊂ . . .

Claim: c̄ is algebraic over k0〈Ās〉 iff trdegk0〈Ās〉 c̄ = trdegk0〈Ās+1〉 c̄. If the equality of the
transcendence degrees does not hold, trdegk0〈Ās〉 c̄ > 0, so c̄ is not algebraic over this field.

We will now show the reverse implication. The equality of transcendence degrees implies
that tp(c̄/k0〈Ās+1〉) does not fork over k0〈Ās〉. The symmetry of forking (Remark 7.20(2))
implies that tp(ās+1/(Ās, c̄)) does not fork over Ās. Therefore, by Remark 7.15(2), we have

(7.2) trdegk0〈Ās〉 ās+1 = trdegk0〈c̄,Ās〉 ās+1.

Since ā1, . . . , ās+1 are independent, tp(ās+1/k0〈c̄, Ās〉) does not fork over k0〈c̄〉. Therefore,
Remark 7.20(4) (applying with A = k0〈c̄〉) implies that

Cb(ās+1/(Ās, c̄)) = k0〈c̄〉.

On the other hand, Remark 7.20(4) applied with A = k0〈Ās〉 together with (7.2) imply that
Cb(ās+1/(Ās, c̄)) is algebraic over k0〈Ās〉. So, the claim is proved.

Fix s > 1. Since c̄ generates Cb(Ās/k), then Remark 7.20(4) implies that tp(Ās/k) is a
nonforking extension of tp(Ās/k0〈c̄〉). Let d̄ be any finite tuple of generators of k over k0. The
symmetry of forking (Remark 7.20(2)) implies that tp(d̄/k0〈c̄, Ās〉) does not fork over k0〈c̄〉.
Thus,

trdegk0〈Ās〉 k = trdegk0〈Ās〉 c̄+ trdegk0〈c̄,Ās〉 k = trdegk0〈Ās〉 c̄+ trdegk0〈c̄〉 k.

Therefore, (cf. Lemma 5.8 and (5.2))

trdegk0〈Ās〉 c̄ = trdegk0〈Ās+1〉 c̄ ⇐⇒ trdegk0〈Ās〉 k = trdegk0〈Ās+1〉 k.

Together with the claim, this proves the first statement of the proposition.
Now we prove the second part of the proposition. We will do this by showing that

(P1) tp(ār+2/k〈Ār+1〉) does not fork over k0〈Ār+1〉 and

INPUT-OUTPUT EQUATIONS AND IDENTIFIABILITY OF LINEAR ODE MODELS 27

(P2) tp(ār+2/k0〈Ār+1〉) is stationary.
If we prove these two statements, then, by Remark 7.20(4), we will have

Cb
(
ār+2/k〈Ār+1〉

)
⊂ k0〈Ār+1〉.

Then Lemma 7.26 will imply that Cb(ār+2/k) = Cb
(
ār+2/k〈Ār+1〉

)
⊂ k0〈Ār+1〉.

By the first part of the proposition, Cb(ār+2/k) is algebraic over k0〈Ār〉 ⊂ k0〈Ār+1〉.
Lemma 7.26 implies that Cb(ār+2/k) = Cb(ār+2/k〈Ār+1〉). Then Remark 7.20(4) applied to
type tp(ār+2/k〈Ār+1〉) and A = k0〈Ār+1〉 implies that the type does not fork over A. This
proves (P1).

It remains to prove (P2). Assume the contrary, that is, tp(ār+2/k0〈Ār+1〉) has at least
two nonforking extensions to k〈Ār+1〉. One of them is p0 := tp(ār+2/k〈Ār+1〉). Since ār+2

and Ār+1 are independent over k, p0 does not fork over k (see Definition 7.13). Since the
type tp(ār+2/k) is stationary, Remark 7.15(3) implies that the type p0 is stationary. We
denote an extension different from p0 by q0 := tp(b̄/k〈Ār+1〉). Since tp(ār+2/k〈Ār〉) is sta-
tionary (similarly to p0), the restrictions p1 and q1 of p0 and q0, respectively, to k〈Ār〉 are
distinct. Moreover, since p0 does not fork over k0〈Ār〉, the same is true for q0. Therefore, Re-
mark 7.20(3), applied to p0 and q0 as distinct nonforking extensions of tp(ār+1/k0〈Ār〉) yields
a finite equivalence relation E defined over k0〈Ār〉 such that ¬E(ār+2, b̄). Since b̄ and ār+2

are of the same type over k0〈Ār+1〉, we have ¬E(ār+1, ār+2). Since the type p is stationary
and ār+1, ār+2, . . . are independent over k〈Ar〉, we have (cf. [20, Lemma 2.28]) that, for every
i 6= j such that i, j > r,

tp((āi, āj)/k〈Ar〉) = tp((ār+1, ār+2)/k〈Ar〉).

Therefore, we have ¬E(āi, āj). This contradicts the fact that E defines only finitely many
equivalence classes. The contradiction finishes the proof of (P2).

REFERENCES

[1] F. Anstett-Collin, L. Denis-Vidal, and G. Millérioux, A priori identifiability: An overview on
definitions and approaches, Annual Reviews in Control, 50 (2020), pp. 139–149, https://doi.org/10.
1016/j.arcontrol.2020.10.006.

[2] P. Bürgisser, M. Clausen, and A. Shokrollahi, Algebraic complexity theory, Springer-Verlag Berlin
Heidelberg, 1997, https://doi.org/10.1007/978-3-662-03338-8.

[3] C. E. Clancy and Y. Rudy, Na+ channel mutation that causes both brugada and long-QT syndrome
phenotypes, Circulation, 105 (2002), pp. 1208–1213, https://doi.org/10.1161/hc1002.105183.

[4] C. Fieker, W. Hart, T. Hofmann, and F. Johansson, Nemo/Hecke: Computer algebra and number
theory packages for the Julia programming language, in Proceedings of ISSAC 2017, New York, NY,
USA, 2017, ACM, pp. 157–164, http://doi.acm.org/10.1145/3087604.3087611.

[5] M. Fink and M. Noble, Markov models for ion channels: Versatility versus identifiability and speed,
Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 367 (2009), pp. 2161–
2179, http://www.jstor.org/stable/40485576.

[6] S. Gerberding, N. Obatake, and A. Shiu, Identifiability of linear compartmental models: the effect
of moving inputs, outputs, and leaks, Linear and Multilinear Algebra, (2020), pp. 1–22, https://doi.
org/10.1080/03081087.2020.1812497.

[7] E. Gross, H. Harrington, N. Meshkat, and A. Shiu, Linear compartmental models: Input-output
equations and operations that preserve identifiability, SIAM Journal on Applied Mathematics, 79
(2019), pp. 1423–1447, https://doi.org/10.1137/18m1204826.

https://doi.org/10.1016/j.arcontrol.2020.10.006
https://doi.org/10.1016/j.arcontrol.2020.10.006
https://doi.org/10.1007/978-3-662-03338-8
https://doi.org/10.1161/hc1002.105183
http://doi.acm.org/10.1145/3087604.3087611
http://www.jstor.org/stable/40485576
https://doi.org/10.1080/03081087.2020.1812497
https://doi.org/10.1080/03081087.2020.1812497
https://doi.org/10.1137/18m1204826

28 A. OVCHINNIKOV, A. PILLAY, G. POGUDIN, AND T. SCANLON

[8] E. Gross, N. Meshkat, and A. Shiu, Identifiability of linear compartment models: the singular locus,
Advances in Applied Mathematics, 133 (2022), p. 102268, https://doi.org/10.1016/j.aam.2021.102268.

[9] H. Hong, A. Ovchinnikov, G. Pogudin, and C. Yap, SIAN: software for structural identifiabil-
ity analysis of ODE models, Bioinformatics, 35 (2019), pp. 2873–2874, https://doi.org/10.1093/
bioinformatics/bty1069.

[10] H. Hong, A. Ovchinnikov, G. Pogudin, and C. Yap, Global identifiability of differential models,
Communications on Pure and Applied Mathematics, 73 (2020), pp. 1831–1879, https://doi.org/10.
1002/cpa.21921.

[11] I. Kaplansky, An introduction to differential algebra, Hermann, 1957.
[12] J. Karlsson, M. Anguelova, and M. Jirstrand, An efficient method for structural identifiability

analysis of large dynamic systems, IFAC Proceedings Volumes, 45 (2012), pp. 941–946, https://doi.
org/10.3182/20120711-3-BE-2027.00381.

[13] L. Ljung and T. Glad, On global identifiability for arbitrary model parametrizations, Automatica, 30
(1994), pp. 265–276, https://doi.org/10.1016/0005-1098(94)90029-9.

[14] D. Marker, Model theory of differential fields, in Model Theory of Fields, Springer, Berlin, 1996, pp. 38–
113, http://projecteuclid.org/euclid.lnl/1235423156.

[15] D. Marker, Model theory: An introduction, Springer, New York, 2002, https://doi.org/10.1007/b98860.
[16] N. Meshkat, C. Kuo, and J. DiStefano, On finding and using identifiable parameter combinations in

nonlinear dynamic systems biology models and COMBOS: A novel web implementation, PLoS ONE,
9 (2014), p. e110261, https://doi.org/10.1371/journal.pone.0110261.

[17] A. Ovchinnikov, A. Pillay, G. Pogudin, and T. Scanlon, Computing all identifiable functions of
parameters for ODE models, Systems & Control Letters, 157 (2021), p. 105030, https://doi.org/10.
1016/j.sysconle.2021.105030.

[18] A. Ovchinnikov, G. Pogudin, and P. Thompson, Parameter identifiability and input-output equations,
Applicable Algebra in Engineering, Communication and Computing, (2021), https://doi.org/10.1007/
s00200-021-00486-8.

[19] A. Ovchinnikov, G. Pogudin, and P. Thompson, Input-output equations and identifiability of linear
ODE models, IEEE Transactions on Automatic Control, (2022), https://doi.org/10.1109/TAC.2022.
3145571.

[20] A. Pillay, Geometric stability theory, no. 32 in Oxford logic guides, Clarendon Press, 1996.
[21] A. Pillay, Lecture notes: applied stability theory, 2003, https://www3.nd.edu/∼apillay/pdf/lecturenotes.

applied.pdf.
[22] Y. Rudy and J. R. Silva, Computational biology in the study of cardiac ion channels and cell elec-

trophysiology, Quarterly Reviews of Biophysics, 39 (2006), pp. 57–116, https://doi.org/10.1017/
s0033583506004227.

[23] M. Saccomani and L. D’Angió, Examples of testing global identifiability with the DAISY software, IFAC
Proceedings Volumes, 42 (2009), pp. 48–53, https://doi.org/10.3182/20090706-3-FR-2004.00007.

[24] A. Sedoglavic, A probabilistic algorithm to test local algebraic observability in polynomial time, Journal
of Symbolic Computation, 33 (2002), pp. 735–755, https://doi.org/10.1006/jsco.2002.0532.

[25] N. Tuncer and T. T. Le, Structural and practical identifiability analysis of outbreak models, Mathe-
matical Biosciences, 299 (2018), pp. 1–18, https://doi.org/10.1016/j.mbs.2018.02.004.

[26] J. van den Hof, Structural identifiability of linear compartmental systems, IEEE Transactions on Auto-
matic Control, 43 (1998), pp. 800–818, https://doi.org/10.1109/9.679020.

[27] A. Villaverde, N. Evans, M. Chappell, and J. Banga, Input-dependent structural identifiability of
nonlinear systems, IEEE Control Systems Letters, 3 (2019), pp. 272–277, https://doi.org/10.1109/
LCSYS.2018.2868608.

[28] A. F. Villaverde, A. Barreiro, and A. Papachristodoulou, Structural identifiability of dynamic
systems biology models, PLOS Computational Biology, 12 (2016), p. e1005153, https://doi.org/10.
1371/journal.pcbi.1005153.

[29] A. F. Villaverde, N. D. Evans, M. J. Chappell, and J. R. Banga, Sufficiently exciting inputs
for structurally identifiable systems biology models, IFAC-PapersOnLine, 51 (2018), pp. 16–19, https:
//doi.org/10.1016/j.ifacol.2018.09.015.

[30] A. Wigderson, Mathematics and Computation, Princeton University Press, 2019, https://doi.org/10.
1515/9780691192543.

https://doi.org/10.1016/j.aam.2021.102268
https://doi.org/10.1093/bioinformatics/bty1069
https://doi.org/10.1093/bioinformatics/bty1069
https://doi.org/10.1002/cpa.21921
https://doi.org/10.1002/cpa.21921
https://doi.org/10.3182/20120711-3-BE-2027.00381
https://doi.org/10.3182/20120711-3-BE-2027.00381
https://doi.org/10.1016/0005-1098(94)90029-9
http://projecteuclid.org/euclid.lnl/1235423156
https://doi.org/10.1007/b98860
https://doi.org/10.1371/journal.pone.0110261
https://doi.org/10.1016/j.sysconle.2021.105030
https://doi.org/10.1016/j.sysconle.2021.105030
https://doi.org/10.1007/s00200-021-00486-8
https://doi.org/10.1007/s00200-021-00486-8
https://doi.org/10.1109/TAC.2022.3145571
https://doi.org/10.1109/TAC.2022.3145571
https://www3.nd.edu/~apillay/pdf/lecturenotes.applied.pdf
https://www3.nd.edu/~apillay/pdf/lecturenotes.applied.pdf
https://doi.org/10.1017/s0033583506004227
https://doi.org/10.1017/s0033583506004227
https://doi.org/10.3182/20090706-3-FR-2004.00007
https://doi.org/10.1006/jsco.2002.0532
https://doi.org/10.1016/j.mbs.2018.02.004
https://doi.org/10.1109/9.679020
https://doi.org/10.1109/LCSYS.2018.2868608
https://doi.org/10.1109/LCSYS.2018.2868608
https://doi.org/10.1371/journal.pcbi.1005153
https://doi.org/10.1371/journal.pcbi.1005153
https://doi.org/10.1016/j.ifacol.2018.09.015
https://doi.org/10.1016/j.ifacol.2018.09.015
https://doi.org/10.1515/9780691192543
https://doi.org/10.1515/9780691192543

INPUT-OUTPUT EQUATIONS AND IDENTIFIABILITY OF LINEAR ODE MODELS 29

[31] X. Xia and C. Moog, Identifiability of nonlinear systems with application to HIV/AIDS models, IEEE
Transactions on Automatic Control, 48 (2003), pp. 330–336, https://doi.org/10.1109/tac.2002.808494.

https://doi.org/10.1109/tac.2002.808494

	Introduction
	Preliminaries
	Differential algebra
	Identifiability

	Main results
	Single-output model requiring more than one experiment
	Bounding the number of experiments (proof of Theorem 3.1)
	Algorithm, implementation, and examples
	Algorithm: theory
	Algorithm: implementation and examples

	Model theory and identifiability
	Setup
	Single-output model requiring more than one experiment revisited
	Model theory way of proving Theorem 3.1

