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Abstract. We prove an analogue of the Manin-Mumford conjecture for Drin-

feld modules of generic characteristic.

1. Introduction

L. Denis proposed that the qualitative diophantine results known for certain
subgroups of semi-abelian varieties should hold for Drinfeld modules. In particu-
lar, the Manin-Mumford conjecture which asserts that an irreducible subvariety of
a semi-abelian variety containing a Zariski dense set of torsion points must itself
be a translate of a sub algebraic group should be true with “semi-abelian variety”
replaced by “power of the additive group considered as an Fp[t]-module via a Drin-
feld module.” In [4], Denis permits finite extensions of Fp[t] but insists that the
Drinfeld module have generic characteristic. The strengthening permits one to con-
sider general Drinfeld modules while the restriction is necessary since every point
of Ga(Falg

p ) is a torsion point for every Drinfeld module of finite characteristic. The
analogue of Boxall’s theorem [1] may still be true for Drinfeld modules of finite
characteristic for I-power torsion for some ideal I, but it is shown in [8] that the
methods of this paper cannot apply to this case.

I thank J. F. Voloch for bringing this question to my attention, Z. Chatzi-
dakis for explaining [3] to me and for comments on an earlier version of this paper,
E. Hrushovski for comments on an earlier version, B. Poonen for discussions
about Drinfeld modules, and MSRI for its hospitality during some of the research
on this paper.

2. Set Up

In this section we establish the notation to be used throughout the rest of this
paper and state the version of Denis’ conjecture to be proven. The basic reference
for this section is [6]. We follow the notation of [6] with the notable exception that
we denote the number of elements in the constant field by q, a power of p, rather
than r.

Denote by p a fixed prime number and by q a fixed power of p. Fix a smooth
absolutely irreducible projective curve C over Fq and a closed point ∞. The ring
A is H0(C \ {∞},OC), the ring of regular functions on C \ {∞} with field of
fractions k := Fq(C). As usual, Ga denotes the additive group scheme SpecZ[X]
with comultiplication defined by X 7→ X ⊗ 1 + 1⊗X. For T any scheme EndTGa
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denotes the ring of endomorphisms of Ga/T
defined over T . In all the cases we

consider T is the spectrum of an Fp-algebra, R. In this case, the map τ : Ga → Ga

defined on points by x 7→ xp belongs to EndT(Ga) and EndT(Ga) may be identified
with the ring of twisted polynomials in τ over R, R{τ} := {

∑N
i=0 aiτ

i : N ∈ N, ai ∈
R} with the commutation rule τa = apτ . We will drop the subscript from Ga/T

when the base is understood.
An A field is an Fq morphism ι : A → K from A to a field K. A Drinfeld

module (over ι) is an Fq-algebra homomorphism ϕ : A → EndKGa such that ϕ and
ι (or really the composition of ι with the inclusion χ : K ↪→ EndKGa via a 7→ aτ0)
have the same differential and ϕ(A) is not contained in χ(K). Concretely, for any
a ∈ A if ϕ(a) =

∑m
i=0 aiτ

i, then a0 = ι(a) but ϕ(a) 6= χ ◦ ι(a) for some a ∈ A. We
denote ϕ(a) by ϕa. The characteristic of ϕ is the ideal ker ι. We say that ϕ has
generic characteristic if its characteristic is (0). The endomorphism ring of ϕ over
K is EndK(ϕ) := {ψ ∈ EndKGa : (∀a ∈ A) ψ ◦ϕa = ϕa ◦ψ} considered as a subring
of EndKGa. We note, and shall use, that EndK(ϕ) is commutative whenever ϕ has
generic characteristic (Proposition 4.7.6 of [6]). Moreover, there is a finite extension
K ′ of K such that EndK′(ϕ) is a finite rank A-module and EndL(ϕ) = EndK′(ϕ)
for any field extension L/K ′ (Section 4.7 of [6]).

If ϕ : A → K is a Drinfeld module, then for any positive integer N we can regard
KN as an A-module via ϕ. Define the ϕ-torsion group of KN to be ϕtor(KN ) :=
{x ∈ KN : (∃a ∈ A)a 6= 0 and ϕa(x) = 0}. When K is understood, we may write
ϕN

tor for ϕtor(KN ). For a ∈ A \ {0} we define the a-torsion of ϕ to be the subgroup
scheme of Ga defined by ϕ[a] := kerϕa.

We call an algebraic subgroup G ≤ Ga
g of a power of the additive group an

algebraic A-module if it is stable under the action of A on Ga
g via ϕ. An algebraic

A-module is nothing more nor less than a sub T -module of a power of ϕ.
We can now state our main theorem.

Theorem 1. With the notation as above if ϕ : A → EndKGa is a Drinfeld of
generic characteristic, X ⊆ Ga

N
K is an irreducible subvariety, and X(K)∩ϕtor(KN )

is Zariski dense in X, then X is a translate of an algebraic A-module.

3. Background from the model theory difference fields

Theorem 1 is an analogue of the Manin-Mumford conjecture and our proof fol-
lows the lines of Hrushovski’s proof of that theorem [5]. The main ingredient of
Hrushovski’s proof was the model theory of difference fields of characteristic zero.
We use the model theory of positive characteristic difference fields. The main
sources for this material are [2] and [3].

A difference field is a a field K given together with a field endomorphism σ :
K → K. If σ is an automorphism, then we say that (K,σ) is an inversive difference
field. A difference closed field, or a model of ACFA, is a model complete difference
field. Loosely speaking, a difference closed field is a difference field in which every
consistent finite system of difference equations has a solution. The precise axioms
are given in [2]. The theory of difference closed fields is supersimple in the sense of
stability so that the ordinal valued foundation rank of forking, Lascar or SU-rank,
is defined on all complete types and by extension to all definable sets. We use
SU-rank mainly for groups of finite rank. We recall that if H ≤ G are definable
groups with SU(G) < ω, then we have SU(H) + SU(G/H) = SU(G). In particular,
if SU(H) = SU(G), then H is of finite index in G.
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If (K,σ) is a difference field and L ⊆ K is a subfield closed under σ and σ−1,
then for x ∈ K, the σ-degree of x over L, degσ(x/L), is tr.deg(L({σn(x)}n∈ω)/L).
We note that SU(x/L) ≤ degσ(x/L).

For A ⊆ K, K a difference closed field, acl(A), the model theoretic algebraic
closure of A is by definition the set of x ∈ K satisfying some formula over A
which has only finitely many solution in K. Concretely, acl(A) is the field theoretic
algebraic closure of the inversive difference field generated by A.

Following [3] a group G quantifier-free definable in a difference closed field is
called modular if every quantifier-free definable subset of any power of G is a fi-
nite Boolean combination of cosets of definable subgroups. This use of the word
“modular” conflicts with earlier model theoretic uses of the word.

4. Proof of the main theorem

Our proof of Theorem 1 proceeds in several steps. First, we recall some of the
theory of reductions of Drinfeld modules and use this to find difference equations
for a large submodule of the torsion. Secondly, we analyze these equations in light
of the dichotomy theorem of [3] to see that they define modular groups so that
the conclusion of Theorem 1 under the stronger hypothesis that X(K) contains a
Zariski dense set of points from the submodule found in the first step follows from
the general theory of quantifier-free modularity. Finally, we show how to work with
two primes of A to cover all the torsion points.

Since A, and, in fact, EndKalg(ϕ), is a finitely generated Fp-algebra, we may find
a finitely generated subalgebra B ⊆ Kalg such that the image of ϕ : A → EndKGa

is contained in EndBGa and every endomorphism of ϕ is defined over B. Let L be
the field of fractions of B. For p ∈ Spec(B) we obtain another ring homomorphism
ϕp : A → Endk(p)Ga over ιp by composing ϕ with the reduction map πp : B → k(p)
where k(p) is the quotient field of B/p and ιp := πp ◦ ι. We say that ϕ has good
reduction at p if ϕa and ϕp

a have the same degree for each a ∈ A. The scheme
Spec(B) contains an open set of primes at which ϕ has good reduction (Lemma
4.13.11 of [6]).

For p ∈ Spec(B) a smooth closed point let

• L̂unr
p be the completion of the maximal unramified extension of the com-

pletion of L at p,
• qp := pn = #k(p) (written “q” when p is clear from the context) and
• σp : L̂unr

p → L̂unr
p be a relative Frobenius lifting τn to a continuous auto-

morphism of L̂unr
p .

When p is also a point of good reduction for ϕ, then τn is integral over A in
Endk(p)(ϕp). Let Pp(t) ∈ EndL(ϕ)[t] be the minimal monic polynomial for τn. We
define P (m)

p (t) ∈ EndL(ϕ)[t] to be the minimal monic polynomial for τmn.
Until noted otherwise, we fix p ∈ Spec(B) a smooth closed point of good reduc-

tion for ϕ and an extension (K, σ) of (L̂unr
p , σp) to an ℵ1-saturated difference closed

field. We denote by L the language of inversive difference rings L(+, ·,−, σ, σ−1, 0, 1)
while for m ∈ Z+, L[m] refers to the sublanguage of L in which every instance of
σ occurs as σmn for some n ∈ Z.

Lemma 2. The A-module kerPp(σ)(K) := {x ∈ K : Pp(σ)(x) = 0} contains
ϕ[a](K) for each a ∈ A \ p.
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Proof: Let a ∈ A \ p be given. Since a /∈ p, ιp(a) 6= 0. Thus, ϕp
a is a separable

polynomial. Since ϕ has good reduction at p, degϕp
a = degϕa. Therefore, ϕ[a] is

an étale group scheme over Spec(B). In particular,

• ϕ[a](Bsh
p ) = ϕ[a](L̂unr

p ) = ϕ[a](K) where Bsh
p is the strict henselization of

B localized at p and
• the intersection of ϕ[a](Bsh

p ) with the kernel of reduction πp : Ga(Bsh
p ) →

Ga(k(p)alg) is trivial.

The first remark means that it suffices to show that kerPp(Bsh
p , σp) contains

ϕ[a](Bsh
p ). Since σp fixes B, the operator Pp(σp) maps ϕ[a](Bsh

p ) back to itself.
Since the operator Pp(σp) reduces to the zero operator on Ga(k(p)alg), it must map
all of Ga(Bsh

p ) to the kernel of reduction. By the second remark above, this means
that it annihilates ϕ[a](Bsh

p ). ♠

The next few lemmata show that the A-module kerPp(σ)(K) is modular.

Lemma 3. Any L[m]-definable A-submodule of kerP (m)
p (σm)(K) is commensurable

with an A-module of the form kerR(σm)(K) for some R(X) ∈ EndK(ϕ)[X] dividing
P

(m)
p (X) in (EndK(ϕ)⊗A k)[X].

Proof: Let M ≤ kerP (m)
p (σm)(K)) be an L[m]-definable A-submodule over the

small inverssive difference field M⊂ K. Let n = max{degσm(a/M) : a ∈M}. Let
W ≤ Ga

n+1 be the zero component of algebraic locus of {(a, σm(a), σ2m(a), . . . , σnm(a)) :
a ∈ M}. Since M is an A-module, W is an algebraic A-module. Moreover, by
the definition of n, W is of dimension n and is thus a hypersurface defined by
some Q(x0, x1, . . . , xn) =

∑n
i=0 qi(xi) = 0 where each qi ∈ EndM(Ga) and at least

one of the qi’s is separable. Let Q(σm) :=
∑n

i=0 qiσ
mi ∈ EndK(Ga)[σm]. Let

M ′ := {a ∈ Ga(K) : P (m)
p (σm)(a) = 0 and Q(σm)(x) = 0}. M ′ is commensurable

with M . We aim to show that Q is actually in EndK(ϕ)[σm]. It then follows that
M ′ is of finite index in kerQ(σm).

Let t ∈ A such that A is a finite integral extension of Fp[t]. Let ϕ|Fp[t] : Fp[t] →
EndKGa denote the restriction of ϕ to Fq[t]. Note that EndK(ϕ) = EndK(ϕ|Fp[t])
as each such ring is commutative.

Because W is an A-module, ϕt(W ) ⊆W (image taken as an algebraic group, or
if you like, on the K-points). Since ϕt is a finite map, dimW = dimϕt(W ). As W
is connected, this implies ϕt(W ) = W . So, ϕ∗tW = W + ϕ[t]n+1. This means that
the ideals (Q(ϕt(x0), ϕt(x1), . . . , ϕt(xn)) and (

∏
α∈Q(ϕ[t]n+1(K))(Q(x0, . . . , xn)−α))

are equal. We may rewrite the product defining the second ideal as ψt ◦ Q where
ψt ∈ EndK(Ga) with kerψt = Q(ϕ[t](K)n+1).

Specializing all the xj ’s to be zero except for xi, we see that qi ◦ ϕt = ψt ◦ qi.
Taking i so that qi is separable, we see that ϕt = ψ (mod τ) and that degϕt =
degψt. Hence, ψt also defines a Drinfeld module ψ over ι|Fp[t] by sending t to ψt.
Moreover, the equation qi ◦ ϕt = ψt ◦ qi implies that qi ◦ ϕ = ψ ◦ qi so that qi is an
isogeny from ϕ to ψ. Let h be any isogeny from ψ to ϕ. (h exists by Proposition
4.7.13 of [6].) Then for any j we have the equality (h ◦ qj) ◦ϕt = h ◦ (qj ◦ϕt) = h ◦
(ψt◦qj) = (h◦ψt)◦qj = (ϕt◦h)◦qj = ϕt◦(h◦qj). Therefore, rj := h◦qj ∈ EndK(ϕ).
Set R(X) :=

∑n
i=0 rjX

j . Then kerR(σm)(K) is commensurable with M ′ and hence
with M .
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Since kerR(σm) is commensurable with a subgroup of kerPp(σm)(K) and (EndK(ϕ)⊗A

k)[X] is a PID, R divides Pp(σm) in this ring. ♠

Lemma 4. There are no infinite L[m]-definable A-submodules of kerP (m)
p (σm)(K)

of infinite index.

Proof: P
(m)
p (X) is irreducible in EndK(ϕ)[X] by its very definition. By Gauß’

lemma, it remains irreducible in (EndK ⊗A k)[X]. ♠

Lemma 5. kerP (m)
p (σm)(K) is almost minimal in (K, σm) in the sense that there is

an SU-rank 1 L[m]-definable set X and a finite set F such that kerP (m)
p (σm)(K) ⊂

aclσm(X,F ).

Proof: Let X ⊆ kerP (m)
p (σm)(K) be any definable subset of SU-rank one which

contains the origin. Let N be any definable subgroup of kerP (m)
p (σm)(K) which

is commensurable with the group generated by X. As kerP (m)
p (σm)(K) has fi-

nite rank, such a group exists. Let G ≤ N be an infinite L[m]-definable group
defined over a small inversive difference field B of minimal SU-rank. Let n =
max{degσm(a/B) : a ∈ G}. Let W be the connected component of the algebraic
locus of {(a, σm(a), . . . , σnm(a)) : a ∈ G}. Then the group H := {a ∈ Ga(K) :
(a, σn(a), . . . , σnm(a)) ∈ W} is of finite index in G and hence also minimal. Let
V =

∑
a∈A ϕaW where ϕa acts diagonally and the image is taken as an alge-

braic group. Since W is connected, each ϕaW is connected. V may be realized
as the direct limit of the image of

⊕
a∈A,v∞(a)≤m

ϕaW in Ga
n+1 under the sum

morphism. As the dimensions cannot increase indefinitely, eventually they must
stabilize. As each of these groups is connected, the direct limit reduces to a finite
sum so that V is an algebraic group. Let M = {a ∈ Ga(K) : P (m)

p (σm)(a) =
0 and (a, σm(a), . . . , σmn(a)) ∈ V}. Since V is an A-module, so is M . Observe
that M is commensurable with a finite sum of groups of the form ϕaH for some
a ∈ A. Since M is infinite, by the above corollary, it is commensurable with
kerP (m)

p (σm)(K). Hence, kerP (m)
p (σm)(K) is contained in the σm-algebraic closure

of X together with the co-efficients of finitely many elements of ϕ(A) and a finite
set of coset representative of M in kerP (m)

p (σm)(K). ♠

Proposition 6. kerPp(σ)(K) is modular.

Proof: By the main theorem of [3], if this proposition were false, then kerPp(σ)
would be non-orthogonal to some fixed field k of the form {x : σm(x) = τn(x)} for
appropriate integers m and n. This implies that kerP (m)

p (σm)(K) is non-orthogonal
to k in L[m]. Since kerP (m)

p (σm)(K) is almost minimal in L[m], this would imply
that kerPp(σ)(K) contains a minimal group non-orthogonal to k in L[m]. This
minimal group is definably isogenous to the group of k-points of a k-algebraic
group. Since k is perfect and kerPp(σ)(K) has exponent p, it follows that there
are ψ, θ ∈ EndKGa such that the intersection ψ(Ga(k)) ∩ θ(kerP (m)

p (σm)(K)) is
infinite. Since k is perfect, we may arrange that ψ is separable. Likewise, since
only ker θ(K) matters, we may arrange that θ is separable.
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Let R be the quotient skew-field of EndKGa. Every element of Rmay be regarded
as a multi-valued homomorphism from Ga to itself. As such, every non-zero element
of R has finite kernel. So, the above intersection being infinite means that if we write
P

(m)
p (X) =

∑N
i=0 piX

i with N = degP (m)
p (X), then Ξ :=

∑N
i=0 pi(θ−1ψ)σmi

τni is
zero in R.

We see that this cannot be by working in three different cases.
Case 1 n < 0: Let vτ be the valuation on R induced by vτ (τ) = 1. Since
each nonzero pi is separable, θ is separable, and ψ is separable, for each i either
vτ (pi(θ−1ψ)σmi

) = 0 or pi = 0. As P (m)
p (X) is monic, pN = 1 6= 0. Hence, the

term pN (θ−1ψ)σmN

τnN has valuation nN which is strictly less than the valuations
of all the other terms. That is, Ξ 6= 0.
Case 2 n = 0: This time we work with a different valuation on R, namely with
respect to the valuation v∞(γ) = −degτ γ. By a theorem of Gekeler (Theorem
4.12.8 of [6]), if M is a splitting field of P (m)

p (X) over EndK(ϕ) ⊗A k and w is an
extension of v∞ to M , then all roots to P (m)

p have the same non-zero w-valuation.
This means, in particular, that v∞(p0) < v∞(pi) for i > 0 and pi 6= 0. Thus, if
pi 6= 0 and i > 0, then v∞(pi(θ−1ψ)σmi

) = v∞(pi) + v∞(ψ) − v∞(θ) > v∞(p0) +
v∞(ψ)− v∞(θ) = v∞(p0θ

−1ψ). Thus, v∞(Ξ) = v∞(p0) + v∞(ψ)− v∞(θ) 6= ∞. In
particular, Ξ 6= 0.
Case 3 n > 0: We return to the calculation of Case 1. vτ (p0θ

−1ψ) = 0 while
every other term is either zero or has vτ (pi(θ−1ψ)σmi

τni) = ni > 0. Therefore,
Ξ 6= 0.

♠

Proposition 7. If X ⊆ Ga
n is an irreducible variety containing a Zariski dense

set of A-torsion points which are unramified at p, then X is a coset of an algebraic
group.

Proof: Since Γ := kerPp(σ)(K)n contains all the p-unramified torsion, X(K) meets
Γ in a Zariski dense set. Since Γ is modular Theorem A of [3] shows that every
quantifier free definable subset is a finite Boolean combination of definable groups.
Thus, X(K) ∩ Γ is a finite Boolean combination of cosets definable subgroups of
Ga

n. As this set is Zariski dense in X, we see that generically in ACF, the function
(x, y, z) 7→ x− y + z maps X3 to X so that X is a coset of an algebraic group. ♠

The following lemmata complete the proof that the definable subgroups of kerPp(σ)(K)
are commensurable with A-modules.

We follow the notation already established with the exception that by Γ we mean
kerPp(σ)(K). We let n := degPp.
Proposition 8. Let m ∈ Z+ be a positive integer. If X ≤ Γm is a definable
subgroup, then X is commensurable with an A-module.

The proof of Proposition 8 proceeds by induction. The cases of m = 1, m = 2,
and m > 2 require substantially different proofs. For the case of m = 1 we prove
the stronger result that SU(Γ) = 1. For the case of m = 2 we use an analytic
argument. The case of m > 2, given the case m = 2, follows from a general result
about finite rank definable groups in ACFA possessing a module structure.

Before setting out for the proof proper we begin with some lemmata about the
arithmetic of the ring K{τ}[σ].
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We denote by π : K{τ}[σ] → K[σ] the reduction map induced by τ 7→ 0.
Lemma 9. Let A,B ∈ K{τ}[σ] be separable (ie π(A) 6= 0 and π(B) 6= 0) with
deg π(A) = deg π(B). Let j := max{s : (∃α ∈ K{τ})αA ≡ B (mod τ s)}. Let
Ã, B̃ ∈ K{τ}[σ] so that ÃB = B̃A. Then either j = ∞ or there is a nontrivial
factor f of A for which f (τj) is a factor of Ã.

Proof: If j = 0, then from the equation π(Ã)π(B) = π(B̃)π(A) and the fact that
π(B) is not a multiple of π(A) one sees that π(Ã) must share a factor with π(A).

So, we may assume that j > 0. Let α ∈ K{τ} so that αA ≡ B (mod τ j).
Observe that necessarily B̃ ≡ Ãα (mod τ j). We write B = αA + Cτ j and B̃ =
Ãα + C̃τ j . The equation ÃB = B̃A yields ÃCτ j = C̃Aτj

τ j . Canceling τ j and
applying π, we see that π(Ã)π(C) = π(C̃)π(A)τj

. If π(Ã) and π(A)τj

are coprime,
then there is some γ ∈ K× for which π(C) = γπ(A)τj

. Observe then that B ≡
(α+ γτ j)A (mod τ j+1) contradicting the maximality of j. ♠

Lemma 10. If Q =
∑`

j=0 qj(xj) with qj ∈ K{τ}, t ∈ A is nonconstant, and for
some nonzero α, β ∈ K{τ} we have αQϕt = βQ, then the group {(x0, . . . , x`) ∈
K`+1 : Q(x) = 0} is commensurable with an A-module.

Proof: Let X ≤ Ga
`+1 be the group defined by Q(x) = 0. Our hypothesis is that

X and ϕ−1
t X are commensurable. By Denis’ Lemme 4 of [4], this implies that X0

is an A-module. ♠

Proposition 11. SU(Γ) = 1. Thus, X ≤ Γ is a definable subgroup, then X is
commensurable with an A-module.

Proof: As Γ is modular, it suffices to show that if X ≤ Γ is a subgroup of SU-rank
one, then X is of finite index in Γ.
X is commensurable with a quantifier-free definable group, so we may assume

that X itself has a quantifier-free definition of the form
∑`

j=0 qj ◦ σj(x) = 0 where
qj ∈ K{τ} and ` ≤ n.

As Γ is modular, X is actually definable over acl(K) = Kalg which is contained
in the union of the fixed fields of the powers of σ. Replacing σ with a power, we
may assume that X is definable over the fixed field of σ on Kalg. To keep the
notation simple, we take a finite extension and write K for a field of definition for
X.

Let t ∈ A be nonconstant. By Denis’ Lemme 4 of [4], if X ∩ ϕ−1
t (X) is com-

mensurable with X, then X is commensurable with an A-module and is therefore
commensurable with Γ by Lemma 4. Thus, we may assume that X ∩ ϕ−1

t (X) is
finite.

By additivity of SU-rank, we see that SU(X + ϕ−1
t (X)) = 2 so that degσ(X +

ϕ−1
t (X)) = 2deg(X).
Let Ã, B̃ ∈ Kper{τ}[σ] so that degσ(Ã) = degσ(B̃) = degσ(Q), Ã and B̃ are

separable, and ker Ã ◦Q ≥ ker(Q ◦ϕt) and ker B̃ ◦Q ◦ϕt ≥ kerQ. As the σ-degree
of X + ϕ−1

t (X) is twice the σ-degree of X, the groups ker Ã ◦Q and ker B̃ ◦Q ◦ ϕt

are commensurable with X+ϕ−1
t (X). Hence, there exist separable α, β ∈ Kper{τ}

such that αÃQ = βB̃Qϕt. As π(Qϕt) = tπ(Q), the greatest j for which we can find
γ ∈ Kper{τ} with γQ ≡ Qϕt (mod τ j) is at least one. However, by Lemma 10, j
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is not equal to ∞. Hence, by Lemma 9, there is a nontrivial factor f of π(Q) for
which f (τj) is a factor of B̃.

By Lemma 5, there is an integer r ≥ 2 so that Γ is commensurable with∑r
s=0 ϕts(ϕ−1

t (X)). Let C ∈ Kper{τ}[σ] be separable and have minimal degree
in σ so that kerC ◦ B̃ ◦ Q ◦ ϕt ≥

∑r
s=2 ϕts−1(X). Then, as ker(CB̃Qϕt) and Γ

are commensurable and the prolongation of Γ is irreducible, there is some separa-
ble δ ∈ Kper{τ} such that CB̃Qϕt = δPp. Applying π, we see that f and f (τj)

are both factors of π(P ). Note that π(P ) is the polynomial P considered over k
embedded in K via ι. By Gekeler’s theorem , the roots of P all have the same
non-zero ∞-valuation (or really, the unique extension of ∞ to the splitting field of
P ). If a is a root of f , then apj

is a root of f (τj). Of course, if v∞(a) 6= 0, then
v∞(apj

) = pjv∞(a) 6= v∞(a). With this contradiction we conclude that X and
ϕ−1

t (X) are commensurable so that X is commensurable with an A-module and
hence with Γ itself. ♠

Lemma 12. If X ≤ Γ is an infinite definable subgroup, then there is a nonzero
element a ∈ A for which ϕa(X) ≥ ϕa(Γtor).

Proof: As X is an infinite definable subgroup of Γ, the group Γ/X is finite by
Proposition 11. Hence, the group Γtor/(Γtor ∩ X) is also finite. Let a ∈ A \ 0 so
that ϕ[a](K) ∩ Γ contains a set of coset representatives for X ∩ Γtor in Γtor. Then,
ϕa(Γtor) = ϕa((ϕ[a](K) ∩ Γtor) + (X ∩ Γtor)) ≤ ϕa(X). ♠

Lemma 13. The groups Γtor and ϕtor(Kunr
p ) are commensurable.

Proof: If this lemma were false, then Γ would contain infinitely many torsion
points in the kernel of reduction at p. We show that this is not possible.

Let R the ring of p-integers in the completion of Kalg.
The exact sequence 0 → mR → R → k → 0 gives rise to an exact sequence

of Galois modules 0 → Tp(ϕ(mR)) → Tp(ϕ(R)) → Tp(ϕ(k)) → 0. Let Q(X) ∈
End(ϕ)[X] be the characteristic polynomial of the reduction of σ on Tp(ϕ(k)) and
let S(X) ∈ End(ϕ)[X] be the characteristic polynomial of σ on Tp(ϕ(mR)). Of
course, Q(X) divides Pp(X). Thus, if Γ ∩mR is infinite, then S and Pp

Q must have
a common factor. Note that any root of S is a unit in R (as it is an eigenvalue of
an automorphism). We show now that no root of Pp

Q is a p-unit.
As the endomorphism ring of ϕ is commutative, we may assume that A is equal

to the endomorphism ring of ϕ, losing only the condition that A is normal. For
what follows, this is not a serious problem.

Let h be the height of ϕp. Write Pp =
∑
pjX

j . Let ` be minimal so that vp(p`) =
0. Observe that if ` < h, then

∑
ϕp(pj)τ j

q ≡ ιp(p`)τ `
q + (mod τ `+1

q ) contradicting
the fact that ϕp(Pp) vanishes on τq. Thus, ` ≥ h. Factor P =

∏
(X − αj) and

observe that ` is equal to the number of roots αj which are not p-units. Hence, P
has at least h roots (counting multiplicity) which are not units at p. Note that the
rank of Tp(k) is equal to rank of ϕ (which is the degree of P ) minus h so that no
root of Pp

Q is a p-unit. ♠

Lemma 14. acl(K) ∩ Γ = Γtor
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Proof: We have the inclusion kerPp(σ)(K)∩Fix(σm) ≤ kerP (m)
p (σm)(K)∩Fix(σm) ≤

ϕ[P (m)
p (1)](K) ≤ Γtor. As acl(K) =

⋃∞
m=0 Fix(σm), we have acl(K)∩Γ ≤ Γtor. The

reverse inclusion is clear. ♠

We deal now with the case of m = 2.

Proposition 15. If X ≤ Γ2 is a definable subgroup, then X is commensurable with
an A-module.

Proof: As X is commensurable with a quantifier-free group, we may suppose that
X is already quantifier-free definable. In fact, we may assume that X is defined as
a subgroup of Γ2 by an equation of the form Q(x) = R(y) where R,Q ∈ K{τ, σ}
have degree ` < n in σ and at least one of Q and R is separable. By swapping x and
y if need be, we will assume that R is separable. As Γ is modular, we may actually
take the defining equations to have coefficients algebraic over K and by replacing
σ with a power and K with a finite extension we may take R,Q ∈ K{τ}[σ].

Let X̃ ≤ (Ga
2)`+1 be the prolongation of X.

We denote by π1 : Γ2 → Γ the projection onto the first factor and by π2 : Γ2 → Γ
the projection onto the second factor. We abuse notation somewhat and continue
to denote by π1 and π2 the restrictions of these maps to X.

If either π1(X) or π2(X) is finite, then the result follows from Proposition 11. If
SU(X) > 1, then as SU(Γ2) = 2 by Proposition 11 and Γ is modular, we conclude
that X is commensurable with Γ2 itself. Hence, we may assume that SU(X) = 1
and both π1(X) and π2(X) are infinite. By Lemma 12, we may find some a ∈ A
so that ϕa(π1(X)) ≥ Γtor and ϕa(π2(X)) ≥ Γtor. As X is commensurable with
{(x, y) ∈ Γ2 : ϕa(x, σ(x), . . . , σ`(x); y, . . . , σ`(y)) ∈ ϕa(X̃)}, we may assume that
π1(X) ≥ Γtor and π2(X) ≥ Γtor.

If (x, y) ∈ X, then y ∈ acl(K,x) = K(x, σ(x), . . . , σn−1(x))alg. Hence, in the
equation for X we may assume that R ∈ K{τ}. As noted above, we have already
reduced to the case that R is separable. By Lemma 14 we know that Γ∩ acl(K) =
Γtor. Hence, if (x, y) ∈ X and x ∈ Γtor, then y is torsion as well. Thus, we may
take b ∈ A \ {0} so that X ∩ 0× Γ ≤ 0× ϕ[b]. So if (ξ, ζ) ∈ X and ξ ∈ Γtor, then
ϕb(ζ) ∈ ϕtor(K(ξ)).

By Lemma 13 the group Γtor is commensurable with ϕtor(Kunr
p ). Replacing σ

with a power and K with a finite extension, we may assume that Γtor = ϕtor(Kunr
p ).

Thus, the extension K(Γtor)/K is Galois and its Galois group is topologically gen-
erated by σ.

Let Ξ := {(ξ, σ(ξ), . . . , σn−1(ξ)) : ξ ∈ Γtor}. Let

X̂ := (ξ, . . . , σn−1(ξ); ζ, . . . , σn−1(ζ)) : (ξ, ζ) ∈ X}

Write Q =
∑n−1

j=0 qjσ
j where qj ∈ K{τ}. Let Q̃ :=

∑`
j=0 qj(xj). The variety

X̂ is a subvariety of the prolongation of X and may be described by the equa-
tions Q̃(x0, . . . , xn−1) = R(y0), Q̃σ(x1, . . . , xn−1, Sn(x0, . . . , xn−1) = Rσ(x1), . . .,
Q̃σn−1

(xn−1, Sn(x0, . . . , xn−1), . . . , S2n−1(x0, . . . , xn−1)) = Rσn−1
(xn−1) where

Sn+j(x, σ(x), . . . , σn−1(x)) = σn+j(x)

for x ∈ Γ. Our goal is to show that X is commensurable with an A-module. To do
this, we show that X̂ is commensurable with an A-module.
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We work now in the ∞-adic topology. Near zero in the ∞-adic topology we
may invert R (and hence Rσj

for any integer j) as an analytic function since R is
separable. Let U be a small enough neighborhood of zero in Ga

n(C∞) in which
the compositional inverse to (R,Rσ, . . . , Rσn−1

) is given by a convergent analytic
function. In U2, X̂ is the graph of a (partial) analytic function. Set gj := (Rσj

)−1 ◦
Q̃σj

(xj , . . . , xn−1, Sn(x0, . . . , xn−1), . . . , Sn+j−1(x0, . . . , xn−1)). Then, X̂ ∩ U2 is
defined by y = (y0, . . . , yn−1) = (g0(x), . . . , gn−1(x)) = g(x). If we show that ϕb ◦ g
commutes with the action of A, then the same is true of g which would imply that
X̂ is commensurable with an A-module.

Let a ∈ A. Let f := ϕb◦(g◦ϕa−ϕa◦g). Observe that f ≡ 0 mod (x0, . . . , xn−1)2.
Thus, provided that U ⊆ mn

C∞ , we have f(U) ⊆ U and more importantly, if x ∈ U
and is not zero, then |f(x)|∞ < |x|∞.

We note that either f ≡ 0 or there is an integer N such that for any x if

f(x) = 0, then [K(x) : K] ≤ N . In the latter case we see that if

` times︷ ︸︸ ︷
f ◦ · · · ◦ f (x) = 0,

then the extension of fields [K(x) : K] decomposes into ` subextensions each of
degree at most N . Since the Galois groups Gal(Kunr

p /K) and Gal(Falg
q /Fq) are

isomorphic via the reduction map, we see that there are torsion points ζ ∈ Γtor

with [K(ζ) : K] prime and arbitrarily large. Thus, we can find ζ ∈ Γtor so that
ξ := (ζ, σ(ζ), . . . , σn−1(ζ)) ∈ Ξ and for all positive integers ` we have f (`)(ξ) 6= 0.
By the above comment on rationality, we see that f (`)(ξ) ∈ K(ξ). By the fact
that f is a contraction mapping, we see that the set {f (`)(ξ) : ` ∈ Z+} is infinite.
However, no finitely generated field can contain infinitely many ϕ-torsion points.
Hence, we must have f ≡ 0. As f ≡ 0 for any choice of a ∈ A, we see that g
commutes with ϕ so that X̂ and hence X are commensurable with A-modules. ♠

Remark 16. The reader may recognize Tamagawa’s proof of Poonen’s theorem on
the rigidity of Drinfeld modules in parts of the last proof.

We now finish the proof of Proposition 8. The remaining case applies more
generally than the groups considered in this paper.

Proof: We are now in the case of m > 2.
If SU(X) = m, then X is commensurable Γm and we are done. Thus, after

reordering the coordinates we see that if ν : Γm → Γm−1 is the projection onto the
first m − 1 coordinates, then ν is finite on X. Let Y := ν(X). By induction, we
know that Y is commensurable with an A-module. Passing to that commensurate
A-module Z and replacing X with ν−1(Z), we may assume that Y itself is an A-
module. Let ϑ : Γm−1 → Γg be a projection so that ϑ(Y ) is commensurable with
Γg and g = SU(Y ). Let a ∈ A\{0} so that ϕ[a]m−1 contains the kernel of ϑ. Define
ψ : ϑ(Y ) → Γm−1 by x 7→ ϕa(ϑ−1(x)). Let X̂ := {(x, y) ∈ Γg × Γ : (ψ(x), y) ∈ X}.
Since ψ is a map of A-modules, if X̂ is commensurable with an A-module, so is X.

If g < m− 1, then we are done by induction. Thus, we have reduced to the case
that SU(X) = m− 1 and π(X) = Y is commensurable with Γm−1. As has become
standard by now, we may also assume that X is quantifier-free definable and that
its defining equations correspond to a connected algebraic group. Let ` be large
enough and X̃ ≤ (Ga

m)` so that X = {x ∈ Ga
m(K) : (x, σ(x), . . . , σ`−1(x)) ∈ X̃).

Note that because the eventual σ-degree of Γ is one, ` = n+ 1 suffices.
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As m > 2, m − 1 ≥ 2. Thus, there are infinitely many distinct connected
algebraic A-submodules of Ga

m−1 of codimension one. Let {Mj}j∈ω enumerate
these. Observe that (Mj(K) × Γ) ∩ X has SU-rank m − 2 but that for j 6= j′ we
have SU([(Mj(K) × Γ) ∩ X] ∩ [(Mj′(K) × Γ) ∩ X]) = m − 3. By the case of the
previous paragraph we see that each of the groups (Mj(K)×Γ)∩X is commensurable
with an A-module Kj . Replacing Kj with its quantifier-free connected component,
we may assume that Kj ≤ X. The above phrase means that we assume that
Kj = {x ∈ Ga

m(K) : (x, . . . , σ`−1(x)) ∈ K̃j} with K̃j = K̃0
j . Note also that Kj is

not commensurable with Kj′ for distinct j and j′.
If a ∈ A is nonzero, then for any index j we have K̃j = ϕa(K̃j). Thus,

ϕa(X̃) contains
⋃∞

j=0 K̃j as does X̃. If X̃ 6= ϕa(X̃), then Z := {x ∈ Ga
m(K) :

(x, . . . , σ`−1) ∈ X̃ ∩ ϕa(X̃)} is a proper quantifier-free definable subgroup of X
(and hence has SU-rank less than m − 1) which contains infinitely many pairwise
incommensurable subgroups of SU-rank m − 2 (and hence has SU-rank at least
m − 1). This is impossible. Therefore, X̃ = ϕa(X̃) and this holds for any a ∈ A.
So, the original X is commensurable with an A-module. ♠

Our task now is to extend this result to all the torsion points. We accomplish this
by showing that the proof of Proposition 7 yields uniform estimates on the number
and degrees of the components of the Zariski closures of the intersections of varieties
with kerPp(σ)(K). Combining this estimate with a similar estimate at another
prime of good reduction will prove Theorem 1. This technique is modification of
the quantitative version Hrushovski’s proof of the Manin-Mumford conjecture in [5].
Lemma 17. Let r := rank(ϕ). Let d := [k(τn) : k] where qp = pn and the extension
takes place inside End(ϕp)⊗A k.

Then, deg(Sp) = qd
p and degX Pp = d.

Proof: That the degree of Pp is d is immediate from its definition. The calculation
of the degree of the hypersurface Sp is based on Gekeler’s theorem (Theorem 4.12.8

of [6]) that the roots of Pp all have normalized | · |∞ absolute value of q
1
r
p so that

the absolute value of any co-efficient of Pp is at most q
d
r
p with the constant term

actually achieving this. By the definition of the rank of ϕ, this means that the
co-efficients of Pp have degree (as polynomials in τn) of at most d (again, being
achieved for the co-efficent of τ0). So, the degree of Sp is qd

p. ♠

The above Lemma implies a uniform bound on the degree of the Zariski closure
of the intersection of a variety X with the kernel of Pp(σ).
Proposition 18. With the notation as above, for any variety X ⊆ Ga

m if S
is the kernel of Pp(σ), then the Zariski closure of X ∩ S is a union of at most
(qrm

p deg(X)d+1)2
(d+1) dim(X)

translates of algebraic A-modules. In fact, the degree
of this Zariski closure is bounded by this number.

Proof: This is an immediate application of Corollary 2.6 of [5] using the calculation
of Lemma 17. ♠

We fix now a second prime q of good reduction with ρ an extension of K of a
relative Frobenius at q so that (K, ρ) |= ACFA. Working first with σ and then with
ρ we complete the proof of Theorem 1 following the argument of Section 5 of [5].
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Proof of Main Theorem: We fix some more notation. Up is the A-module of ϕ-
torsion points unramified at p. Fp is the A-module of ϕ-torsion points in the kernel
of reduction at p. We let d := degX Pq and write Pp(X) =

∑d
i=0 aiX

i. We write ϕ
for the composite of ϕ with the diagonal inclusion of EndK(Ga) in EndK(Ga

ν) for
any given ν.

Since kerPp(σ)(K) is modular, up to commensurability there are only ℵ0 de-
finable subgroups of any of its Cartesian powers. It folows by compactness that
for X given as in the statement of the theorem, there is a finite set T (X) of con-
nected algebraic A-modules such that the components of the Zariski closures of
a+X(K) ∩ kerPp(σ)(K)m are of the form b+N for appropriate b ∈ Ga

m(K) and
N ∈ T (X).

Let Γ := {x = (x0, . . . , xd) ∈ (Ga
m)dm+1 :

∧d(m−1)+1
i=0

∑d
j=0 ϕaj (xj+i) = 0}. Γ

is the dm-th prolongation of kerPq(ρ)(K)m. That is, it is the Zariski closure of
{(x, ρ(x), . . . , ρdm(x)) : x ∈ Ga

m(K) and Pq(ρ)(x) = 0}. Notice that dim Γ = dm.
For each N ∈ T (X), let ΣN := {(x, y) ∈ (Ga

m)dm+1 × (Ga
m)dm+1 : x ∈ Γ and∧dm+1

i=0 xi + yi +N ⊆ X, but for any M ∈ T (X) one has dim(xi + yi +M ∩X) ≤
dimN}.

Let π2 : (Ga
m)dm+1 × (Ga

m)dm+1 → (Ga
m)dm+1 be the projection (x, y) 7→

y. Let ΥN be the Zariski closure of (kerPp(σ)(K)m)dm+1 ∩ π2(ΣN ). Then by
Proposition 7, ΥN is a finite union of translates of algebraic A-modules.

Let πN : (Ga
m)dm+1 → (Ga

m/N)dm+1 be the quotient map. Let ΞN :=
πN (ΥN ). So, ΞN is a finite union of translates of A-modules. Note that dim ΞN =
dim Γ = dm < dm+ 1.

By Lemma 5.12 of [5] it follows that

Ξ̃N := {(x, y) ∈ Ga
m×Ga

m(K) : (x, ρ(x), . . . , ρdm(x);πN (y), ρ(πN (y)), · · · , ρdm(πN (y))) ∈ ΞN}
is a finite boolean combination of cosets of A-modules. Moreover, by the definition
of ΥN , if (x, y) ∈ Ξ̃N , then x0 + y0 +N ⊆ X.

Let X̂ := {(x, y) ∈ Ga
m ×Ga

m : x+ y ∈ X}. Then

X ∩ ϕm
tor = {x+ y : (x, y) ∈ X̂ ∩ Um

p × Fm
p }

=: +(X̂ ∩ Um
p × Fm

p )

⊆ +(X̂ ∩ ∪N∈T (X)Ξ̃N )
⊆ X

The set on the penultimate line is a finite union of cosets of A-modules. So we
find that X ∩ ϕm

tor is contained in a finite union of of translates of A-modules each
of which is contained in X. Thus, the Zariski closure of X ∩ ϕm

tor is a finite union
of translates of algebraic A-modules. ♠

Remark 19. The proof given here certainly generalizes to give a stronger theorem.
For instance, it applies immediately to T -modules obtained as subquotients of prod-
ucts of Drinfeld modules of generic characteristic. One obtains uniform bounds on
the degrees of the Zariski closures of the intersection of a varietyX ⊆ Ga

m with ϕn
tor

depending only on m,deg(X), qp, and qq from the above proof as in Hrushovski’s
version of the Manin-Mumford conjecture [5]. This proof also yields uniform p-adic
estimates on the distance from torsion points to varieties as in [7].
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