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ABSTRACT. We prove function field versions of the Zilber-Pink conjectures for varieties
supporting a variation of Hodge structures. A form of these results for Shimura varieties
in the context of unlikely intersections is the following. Let S be a connected pure Shimura
variety with a fixed quasiprojective embedding. We show that there is an explicitly com-
putable function B of two natural number arguments so that for any field extension K of
the complex numbers and Hodge generic irreducible proper subvariety X ( SK, the set of
nonconstant points in the intersection of X with the union of all special subvarieties of X
of dimension less than the codimension of X in S is contained in a proper subvariety of X
of degree bounded by B(deg(X), dim(X)). Our techniques are differential algebraic and
rely on Ax-Schanuel functional transcendence theorems. We use these results to show that
the differential equations associated with Shimura varieties give new examples of mini-
mal, and sometimes, strongly minimal, types with trivial forking geometry but non-ℵ0-
categorical induced structure.

1. INTRODUCTION

On general grounds, if Y and Z are irreducible subvarieties of the smooth variety X,
then for each component U of Y ∩ Z, we have dim(U) ≥ dim(Y) + dim(Z) − dim(X)
and we expect to have actual equality. We say that U is an atypical component of the
intersection if its dimension is strictly greater than what is expected. In the case that
dim(Y) + dim(Z) < dim(X), then with the expected dimension of the intersection being
negative, we are saying that we do not expect U to exist at all! In this case, we say that U
is an unlikely component. Specializing to the case that X is a Shimura variety and Y ⊆ X
is a subvariety of X, we define the atypical locus in Y, Yatyp, to be the union of all atypical
components of intersections Y ∩ Z with Z ⊆ X being a special subvariety 1 and we define
the unlikely locus, Yunl, to be the union of the unlikely components of such intersections.

The Zilber-Pink conjecture, in Pink’s formulation, restricted to this case of pure Shimura
varieties predicts that, if Y is not contained in a proper special subvariety of X, then Yunl is
not Zariski dense in Y. One could consider an effective strengthening of the Zilber-Pink
conjecture. Fix a quasi-projective embedding of X so that the notion of the degree of a
subvariety becomes meaningful. For these effective versions of Zilber-Pink, we would ask
that if Y ⊆ X is not contained in a proper special subvariety of X, then there is a proper
subvariety Z ( Y with Yunl ⊆ Z having deg(Z) bounded by an explicitly computable
function of the degree and the dimension of Y.

T.S. is patially supported by NSF grant DMS-1800492. T.S.’s visit to Oxford was made possible by a
Simon’s Fellowship and the hospitality of the Mathematical Institute of the University of Oxford.

1We recall the precise definitions of the special and weakly special varieties in Section 2.
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In this note we prove a function field version of this effective Zilber-Pink conjecture.
Let K be a field extension of the complex numbers. We shall show that for Y ( XK
a proper, irreducible subvariety of X defined over K, not contained in a proper special
variety, there is some subvariety Z ( Y which contains all of the nonconstant points
in Yunl having deg(Z) bounded by an explicitly computable function of the degree and
dimension of Y. Indeed, our methods apply more generally, for instance, to variations
of Hodge structures. In the special case of powers of the modular curve the result is as
follows (see Corollary 3.8).

Corollary 1.1. Let n be a positive integer and S = Y(1)n. Then there is an explicit constant C =
C(n) so that for any natural number ` and any irreducible subvariety X ⊆ SK with dim(X) +

` < n, there is a proper subvariety Y ( X with (X(K)r X(C)) ∩ S [`]S ⊆ Y and deg(Y) ≤
C deg(X)dim(S).

We approach this problem by relating it to a counting problem for algebraic differen-
tial equations through finding non-linear algebraic differential equations satisfied by all
of the points in Yunl. More precisely, we deal initially with a smaller set Yft

unl of “fully
transcendental” unlikely points which do not come from constant-parameter points of
families of weakly special subvarieties; see 2.9, 2.13, 3.4, and 4.3. By exploiting known
functional transcendence theorems in the style of Ax-Schanuel and model theoretic argu-
ments we show that these algebraic differential equations cut out a differential algebraic
subset which is not Zariski dense. Results on effective bounds for the degrees of differ-
ential algebraic sets [7, 14] provide explicit bounds on the degree of the Zariski closure of
the set of solutions to these differential equations. Our techniques apply to many other
problems and our key technical result may be seen as a conditional theorem to the ef-
fect that an effective Zilber-Pink theorem may be deduced from a suitable Ax-Schanuel
theorem for a given class of varieties.

In [1, 2], Aslanyan proves uniform Zilber-Pink-type theorems for products of modu-
lar curves. Our methods are similar in places, and there is some overlap in the results.
However the motivations are quite different. Aslanyan was motivated by extensions of
the Zilber-Pink conjecture in the modular case to include derivatives, and hence is con-
cerned with varieties defined over the constants in that setting. Our objective is to con-
sider the Zilber-Pink conjecture itself in a function field, with varieties defined over the
function field, and in general Shimura varieties (and even variations of Hodge structures),
with a view getting effective results following [12]. In [2], the modular Ax-Lindemann-
Weierstrass theorem with derivatives [21] as expressed differentially algebraically is used
to deduce uniformities from the compactness theorem of first-order logic. When special-
ized to this case, the main differences between the results of the present paper and those
of [2] are that we work with algebraic varieties over function fields so that their zero-
dimensional and more generally non-strongly atypical unlikely intersections are con-
trolled (while these are necessarily ignored in [2]) and we use effective elimination theory
to give explicit upper bounds rather than the compactness theorem to show the existence
of bounds. Nevertheless, with Theorem 4.3 we show that the qualitative version of our
theorem describing unlikely intersections follows formally from uniform versions of the
Zilber-Pink conjecture in the style of Aslanyan’s by using results of Chatzidakis, Ghioca,
Masser and Maurin [10] on unlikely intersections for pairs of fields.
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Differential algebraic arguments of the kind we use here were employed in [12] to iden-
tify definable sets relative to the theory of differentially closed fields exhibiting hitherto
unobserved behaviors. In Section 5 we extend this analysis to those differential equa-
tions associated to covering maps of Shimura varieties. In particular, we show that for
irreducible Shimura varieties, the associated differential equations give new examples of
strongly minimal, geometrically trivial, non-ℵ0-categorical types relative to DCF0. Inter-
estingly, by considering the differential equations associated to families of special subva-
rieties, we produce examples of types whose Lascar and Morley ranks differ.

2. CONVENTIONS, NOTATION AND BASIC DEFINITIONS

In this section we recall some basic notions and set our notation.
We follow a notation similar to that of [4] to speak of double coset spaces, though with

the next definition, we allow for somewhat greater generality.

Definition 2.1. Let G be a connected real Lie group, M ≤ G a compact subgroup and
Γ ≤ G a discrete subgroup. Then SΓ,G,M := Γ\G/M is regarded (for now) as a real
analytic space. We call SΓ,G,M a quotient space.

Given such triples (G, M, Γ) and (G′, M′, Γ′), a map of Lie groups ϕ : G′ → G and an
element g ∈ G for which ϕ(Γ′) ≤ Γg := gΓg−1 and ϕ(M′) ≤ M, the function G′ → G
given by x 7→ gϕ(x) induces a map of analytic spaces SΓ′,G′,M′ → SΓ,G,M. These are the
morphisms between quotient spaces.

For our purposes, we will be most concerned with the case that SΓ,G,M has the structure
of a complex analytic space.

Definition 2.2. Let G be a connected real algebraic group and B ≤ G an algebraic sub-
group. Set G := G(R)+, the connected component of the identity with respect to the Eu-
clidean topology and suppose that M := B(R) ∩ G is compact, Ď := G/B is an algebraic
variety 2, and that D := G/K ⊆ Ď(C) is an open domain. For Γ ≤ G discrete, the quotient
map q : D → Γ\D = Γ\G/M = SΓ,G,M gives SΓ,G,M the structure of a complex analytic
space. In general, we say that SΓ,G,M is a complex quotient space if it arises in this manner.
Note that if SΓ′,G′,M′ and SΓ,G,M are complex quotient spaces and ρ : SΓ′,G′,M′ → SΓ,G,M is
a map of quotient spaces, then it is complex analytic.

Convention 2.3. For us, the word definable means definable in the o-minimal structure
Ran,exp, the real field augmented by restricted analytic functions and the real exponential
function.

Definition 2.4. Let SΓ,G,M be a complex quotient space, S a quasi-projective complex alge-
braic variety and f : S → SΓ,G,M a map from S (regarded as a complex analytic space) to
SΓ,G,M. We say that this map is definably bi-algebraic (or just bi-algebraic) if there is a defin-
able fundamental domain F ⊆ D for which the fibre product {(a, b) ∈ F× S(C) : q(a) =
f (b)} is definable.

Remark 2.5. If f : S → SΓ,G,M is definably bi-algebraic, then by the o-minimal definable
Chow theorem [20] the fibre equivalence relation on S× S given by x ∼ y :⇐⇒ f (x) =
f (y) is algebraically constructible. Thus, at the cost of replacing S with the constructible

2For some definability results, it is necessary to require Ď to be projective.
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quotient S/ ∼, we may assume that f : S → SΓ,G,M is an inclusion. From now on, we
tacitly make this assumption and regard S as a (not necessarily closed) analytic subvariety
of SΓ,G,M.

Definition 2.6. If G = G(R)+ where G is a semisimple Q-algebraic group, and Γ ≤ G is
an arithmetic lattice, then we call SΓ,G,M an arithmetic quotient.

The main theorems, Theorems 1.1 and 1.3 of [4], express the senses in which arithmetic
quotients are definable and period mappings associated to variations of Hodge structures
are bi-algebraic. We summarize these results with the following theorem.

Fact 2.7 ([4]). Each arithmetic quotient SΓ,G,M is definable, even relative to just Ralg, the ordered
field of real numbers. Relative to this definable structure, each morphism of arithmetic quotients
SΓ′,G′,M′ → SΓ,G,M is definable.

If S is an irreducible quasi-projective complex algebraic variety supporting a polarized variation
of Hodge structure V → S of some fixed weight k, G is the associated adjoint Q-semisimple
group of the generic Mumford-Tate group MT(V), D = G/M is its associated Mumford-Tate
domain, and Γ ≤ G is the image of the monodromy representation, then the period mapping
ΦS : S→ Γ\D = SΓ,G,M is definably bi-algebraic.

Of particular interest to us, is the case that S is a Shimura variety and ΦS = idS : S →
SΓ,G,M expresses S as a locally symmetric space.

The main results of [3] extend Fact 2.7 to show that the period map associated to a
variation of mixed Hodge stuctures is definable. There is an interesting subtlety in this
theorem in that it is necessary to make a choice of the definable structure on the space
Γ\D.

Definition 2.8. A weakly special subvariety of the complex quotient variety SΓ,G,M is a
an analytic subvariety of SΓ,G,M obtained as the image of a map SΓ′,G′,M′ → SΓ,G,M of
complex quotient varieties.

From our definition of weakly special varieties, for any complex quotient SΓ,G,M and
point x ∈ SΓ,G,M, the zero dimensional space {x} is a weakly special variety. More gen-
erally, for any complex quotient SΓ′,G′,M′ , the space {x} × SΓ′,G′,M′ ⊆ SΓ,G,M × SΓ′,G′,M′ =
SΓ×Γ′,G×G′,M×M′ is a weakly special subvariety. We describe this construction and isolate
those special subvarieties which come from such horizontal special varieties with the next
definition.

Definition 2.9. Let T be a complex analytic space. Given complex quotient spaces SΓ,G,M,
SΓ1,G1,M1 , and SΓ2,G2,M2 , a point x ∈ (SΓ1,G1,M1)T, the base change of SΓ1,G1,M1 to T, and a fi-
nite map of quotients ρ : SΓ1×Γ2,G1×G2,M1×M2 → SΓ,G,M, the variety ρ({x}× (SΓ2,G2,M2)T) ⊆
(SΓ,G,M)T is called T-weakly special. When T is a single point with the usual reduced struc-
ture (so there has been no base change) and dim SΓ1,G1,M1 ≥ 1, we call ρ({x} × SΓ2,G2,M2)
semiconstant. A special subvariety which is not semiconstant is called strongly special.

Remark 2.10. In practice, T will be the analytic spectrum of some subfield K of the field
M of germs of meromorphic functions at some point on the complex plane. In this case,
we will say “K-weakly special” or “T-weakly special”.

Remark 2.11. Definition 2.9 degenerates in the case that dim SΓ,G,M = 0.
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With the definition of the strongly special subvarieties in place, we define the strongly
special loci.

Definition 2.12. Let SΓ,G,M be a complex quotient. For each positive integer ` ≤ dim SΓ,G,M

we let S [`] = S [`]SΓ,G,M
be the union of all strongly special subvarieties of SΓ,G,M of dimen-

sion `. We set S [≤`] :=
⋃`

i=1 S [i].
If f : S → SΓ,G,M is definably bi-algebraic, then we define S [`]S := f−1S [`] and S [≤`]S :=

f−1S [≤`], each of which is a countable union of complex algebraic subvarieties of S.

Definition 2.13. Let f : S → SΓ,G,M be bi-algebraic and let K be a C-algebra. We say
that a K-rational point a ∈ S(K) is semiconstant if there is some semiconstant weakly
special subvariety Y ⊆ SΓ,G,M for which a ∈ f−1(Y)(K). Otherwise, we say that a is fully
transcendental. We write S(K)ft for the set of fully transcendental points in S(K).

Remark 2.14. If Y is a weakly special subvariety of SΓ,G,M, then f−1(Y) ⊆ S is an algebraic
subvariety of S so that it makes sense to evaluate its set of K-rational points.

With these definitions in place we may state our functional version of the Zilber-Pink
conjecture for unlikely intersections in a qualitative form.

Theorem 2.15. Let ΦS : S → SΓ,G,M be a period mapping associated to a variation of Hodge
structures, ` be a positive integer with ` + dim(S) < dim(SΓ,G,M), K be a C-algebra, and
X ⊆ SK be an absolutely irreducible subvariety of base change of S to K for which f (X) is not
contained in any proper special subvariety, then (X(K)r X(C))∩ S [`]S is not Zariski dense in X.

Remark 2.16. In [16], the corresponding Zilber-Pink conjecture (without the restriction to
fully transcendental points) is expressed with a weaker dimension theoretic condition.
The version in Theorem 2.15 is an artifact of the statement of the existing Ax-Schanuel
theorem for PVHS.

Let us recall the construction of prolongation spaces and how these are used to de-
scribe algebraic differential equations. Let (K, ∂) be a differential field with field of con-
stants K∂ := {a ∈ K : ∂(a) = 0} equal to C. Let m ∈ N be a natural number. Then
we have two K-algebra structures on K[ε]/(εm+1), one coming from the usual inclusion
ι : K ↪→ K[ε]/(εm+1) and the other coming from exponentiating the distinguished deriva-
tion: exp(ε∂) : K → K[ε]/(εm+1) given by a 7→ ∑m

j=0
1
j! ∂

j(a)εj. The map ι may be seen as
the exponential of the trivial derivation.

Definition 2.17. Let (K, ∂) be a differential field with field of constants C and m ∈ N be
a natural number. For X a K-scheme, the mth prolongation space τmX is the K-scheme
which represents the functor T 7→ (X⊗K,exp(ε∂) K[ε]/(εm+1))(T ⊗K,ι K[ε]/(εm+1)).

For any differential K-algebra (R, ∂R), there is a map ∇m : X(R) → τmX(R) corre-
sponding to the map of sets X(R) → (X ⊗K,exp(ε∂) K[ε]/(εm+1))(R[ε]/(εm+1) given by
post-composition with exp(ε∂R).

Remark 2.18. The construction of τm is functorial. If X is obtained from a C-scheme by base
change, then τmX is usually referred to as a jet scheme or truncated arc space. We prefer to
use the language of arc spaces and will write this asAmX. We drop the subscript m when
it is understood.
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Definition 2.19. If (K, ∂) is a differential field, and X is a K-scheme, then a differential
subscheme V of X is given by a subscheme Vm ⊆ τmX of a prolongation space τmX
for some natural number m. If (R, ∂R) is a differential K-algebra, then V(R) := {a ∈
X(R) : ∇m(a) ∈ Vm(R)}. A finite Boolean combination of differential subschemes of
X is called a differential constructible subset of X. A differential constructible f function on
X to the K-scheme Y is given by a differential constructible subset of X × Y which when
evaluated on any differential K-algebra is the graph of a function.

The equations giving the constants determine a particularly important class of differ-
ential varieties.

Definition 2.20. Let (K, ∂) be a differential field and let X be a scheme over K∂, the con-
stants of K. The constant part of X, written X∂, is the differential subscheme of X defined
by X0

1 ⊆ τ1X = A1X = TX where X0
1 is the image of the zero section of X inside its

tangent bundle, which in this case that X is defined over the constants, may be identified
with the first prolongation space τ1X.

We shall make use of the Seidenberg embedding theorem [25, 26] in the form that if
K ⊆M(U) is a differential subfield of the fieldM(U) of germs of meromorphic functions
on some connected open domain U containing 0, K is finitely generated as a differential
field over C, and L is a countably generated as a differential field extension of L, then L
may be realized as a sub differential field of the fieldM of germs at some point in U of
meromorphic functions on the disc over the natural embedding K ↪→M.

At various point we will make use of differential algebra in the sense of Ritt and
Kolchin. See [18] for details.

Remark 2.21. Thus our results can be equally stated in terms of a field extension K of the
complex numbers, a fieldM of germs of meromorphic functions as above, or of a finitely
generated field K where “constant” means “algebraic”.

3. DIFFERENTIAL EQUATIONS FOR SPECIAL SUBVARIETIES

The special subvarieties of complex quotient spaces are themselves images of homo-
geneous spaces. Using the notion of the generalized Schwarzians as developed in [24]
and then expanded in [19], we may recognize these homogeneous spaces using algebraic
differential equations. The theorem on generalized logarithmic derivatives of [24] per-
mits us to see all of the special varieties in bi-algebraic varieties in terms of finitely many
algebraic differential equations.

Let us recall the construction of the generalized Schwarzians. We are given an algebraic
group G over C and an action G y X of G on the algebraic variety X. For each m ∈ N,
this action induces an action AmG y AmX of the mth arc space of G (which is itself an
algebraic group) on the mth arc space of X. Via the section s : G → AmG, we obtain
an action G y AmX. The quotient G\AmX might not be an algbebraic variety, but it
is a constructible set. For any differential field (K, ∂) with field of constants C, we may
consider the G(C)-orbit equivalence relation on X(K). That is, for a, b ∈ X(K) we have
a ∼ b just in case there is some g ∈ G(C) with g · a = b. By [24, Proposition 3.9], if m
is large enough, then SG,X : X(K) → (G\AmX)(K) given by sending a to the image of
∇m(a) in (G\AmX)(K) has the property that SG,X(a) = SG,X(a) if and only if a ∼ b. We
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refer to SG,X as the generalized Schwarzian associated to the action G y X and to G\AmX
as the Schwarzian variety. By making use of partial differential operators, better control on
m may be attained (see [19]).

Consider now a bi-algebraic variety f : S → SΓ,G,M, following the notation of Defini-
tions 2.2 and 2.4. By the main theorem of [24] (it is stated there in the case that f = idS,
but the proof goes through whenever f : S → SΓ,G,M is bi-algebraic), the ostensibly dif-
ferenital analytically constructible function χ := SG,Ď ◦ q−1 is differentially constructible.

We now use these constructions to capture the special varieties.

Lemma 3.1. Let f : S → SΓ,G,M be bi-algebraic and H ≤ G be an algebraic subgroup of G.
There is a differentially constructible set ΞH ⊆ S defined over C having the property that for any
point a ∈ S(M), we have a ∈ ΞH(M) if and only if there is some ã ∈ Ď(M), b ∈ Ď(C),
g ∈ G(C), and h ∈ H(M) with q(ã) = f (a) and ã = hg · b = ghg−1 · b.

Proof. Let Ξ̃H ⊆ Ď be defined by Ξ̃H = HG∂ · Ď∂ = G∂ · H · Ď∂. This differential con-
structible set is defined by Ξ̃H,m := G0

m · AmH · Ď0
m ⊆ AmĎ for m large enough. Letting

Ξ̃H,m be the image of Ξ̃H,m in the Schwarzian variety, we see that Ξ̃H is defined by the
differential equation SG,Ď(x) ∈ Ξ̃H,m. Let ΞH be defined by χ(x) ∈ Ξ̃H,m. If a ∈ ΞH(M),
let ã = q−1 f (a) for any choice of a branch of q−1. Then χ(a) = SG,Ď(ã) so that ã ∈ Ξ̃H.
Thus, there is some g ∈ G(C), b ∈ Ď(C) and h ∈ H(M) with ã = hg · b. Conversely, if
a ∈ S(M) and f (a) lifts to some ã ∈ Ď(M) for which there are g ∈ G(C), b ∈ Ď(C),
and h ∈ H(M) with ã = hg · b, then χ(a) = SG,Ď(ã) ∈ Ξ̃H,m so that a ∈ ΞH(M) as
claimed. �

Remark 3.2. The differential constructible sets ΞH and Ξ̃H are not closed in general. For
each d ≤ dim B, consider Ξ̃H,d defined by

Ξ̃H,d(M) := {a ∈ Ξ̃H(M) : dim StabG(C)(a) ≥ d} .

We let ΞH,d be defined by

ΞH,d(M) := {a ∈ ΞH(M) : (∃ã ∈ Ξ̃H,d(M) : q(ã) = f (a)} .

Then ΞH,d is differential algebraic and is closed in X r ΞH,d+1 (where we set ΞH,dim B+1 =

∅). We note that Ξ̃H,dim B = Ď∂.

We can identify the semiconstant points using the differential constructible sets ΞH.
If we permit ourselves to regard the trivial group as a semisimple Q-algebraic group,
then we may see S∂ as Ξ{1}. More generally, if S′ ⊆ SΓ,G,M is a semiconstant weakly
special variety, then there are connected semisimple Q-algebraic groups H1 and H2 with
dim H1 > 0, a map of algebraic groups ι : H1 ×H2 ↪→ G with finite kernel and a point
a ∈ D with S′ = q(ι({1} ×H1)(R)+ · a). If we let H′ := ι({1} ×H2), then we see that
every analytic quotient space of the form q((H′)g(R)+ · b) with g ∈ G(R) and b ∈ D is
semiconstant. As above, we see that there is a finite set SC of connected semisimple Q-
algebraic subgroups of G so that every such H′ is G(R) conjugate to some element of SC.
For H ∈ H, we define Ξft

H := ΞH r
⋃

H′∈SC ΞH′ . Then we see that Ξft
H(M) = ΞH(M)ft
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as the notation suggests. If we define Ξ[`]ft :=
⋃

H∈H[`] Ξft
H, then we see that Ξ[`]ft(M) =

Ξ[`](M)ft

While in Lemma 3.1 we required merely that f : S→ SΓ,G,M be bi-algebraic, to analyze
the differential varieties ΞH we need a form of the Ax-Schanuel conjecture to hold.

Definition 3.3. Let f : S → SΓ,G,M be a bi-algebraic map to the complex quotient space
SΓ,G,M. We say that f : S → SΓ,G,M satisfies the Ax-Schanuel condition if whenever
a ∈ S(M) and ã ∈ D(M) satisfy f (a) = q(ã), we have tr. degC C(a, ã) ≥ dim D + 1 or
f (a) lies on a weakly special subvariety of SΓ,G,M.

It is known that the period mapping associated to a polarized variation of Hodge struc-
tures is bi-algebraic [4, Theorem 1.3] and satisfies the Ax-Schanuel condition [5, Theorem
1.1]. In fact, the period mapping for variations of mixed Hodge structures satisfies the
Ax-Schanuel condition [11, Theorem 1.2] or [13, Theorem 1.1].

We prove now a qualitative theorem towards Zilber-Pink on unlikely intersections for
the differential equations satisfied by the special varieties.

Theorem 3.4. Let f : S → SΓ,G,M be a bi-algebraic map for which each Cartesian power
f×N : S×N → S×N

Γ,G,M satisfies the Ax-Schanuel condition. Let H ≤ G be a nontrivial connected
algebraic subgroup. Let ` := dimC H(R) · a for some (equivalently, any) a ∈ D. Let X ⊆ SM
be an irreducible subvariety of the base change of S toM for which f (X) is not contained in any
proper weakly special variety. We suppose that ` + dim(X) < dim Ď. Then Ξft

H ∩ X is not
Zariski dense in X. In fact, there is a finite set E of properM-weakly special subvarieties of S so
that Ξft

H ∩ X ⊆ X ∩⋃
S̃∈E f−1S̃ ( X.

Proof. Since the Kolchin topology is Noetherian, to find the set E , it suffices to produce
for each component Z of the differential constructible set ΞH ∩X some properM-weakly
special S̃ with Z ⊆ f−1S̃. Let Z be such a component of ΞH ∩ X.

Let L be a finitely generated over C subfield of M over which X and Z are defined.
Let N := tr. degC L + 1. Let (ai)

N
i=1 be a Morley sequence in Z(M) over L. That is,

(a1, . . . , aN) ∈ Z×N(M) and for every proper differential subvariety W ( Z×n defined
over L, (a1, . . . , aN) /∈ W(M). (That such a sequence may be found in Z×N(M) uses the
fact that every point in Z is fully transcendental.) Let (ãi)

N
i=1 be a sequence of elements of

Ď(M) with q(ãi) = f (ai). We compute an upper bound on tr. degC(ã1, . . . , ãN, a1, . . . , aN).

tr. degC C(ã1, . . . , ãN, a1, . . . , aN) ≤ tr. degC L(ã1, . . . , ãN, a1, . . . , aN)

= tr. degC L + tr. degL L(ã1, . . . , ãN, a1, . . . , aN)

≤ tr. degC L + tr. degL L(ã1, . . . , ãN) + tr. degL L(a1, . . . , aN)

≤ N + N`+ N dim(X)

≤ N dim(Ď)

By the Ax-Schanuel condition, this is only possible if there is a proper special subvariety
S′ ⊆ S×N

Γ,G,M with (a1, . . . , aN) ∈ ( f×N)−1(S′)(M). Let j be minimal so that if πj : S×N
Γ,G,M →

S×j
Γ,G,M is the projection onto the first j coordinates, then πj(S′) 6= S×j

Γ,G,M. The point aj is
a generic point of Z over the differential field generated by L(a1, . . . , aj−1), but it also
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belongs to theM-weakly special variety S̃ := f−1(ρ(({( f (a1), . . . , f (aj−1))} × SΓ,G,M) ∩
S′)), where ρ : S×j

Γ,G,M → SΓ,G,M is the projection to the last coordinate. Thus, Z ⊆ S̃.
�

Remark 3.5. If the map f : S → SΓ,G,M satisfies a suitable Ax-Schanuel with derivatives
theorem, as holds, for example, for Shimura varieties [19, Theorem 12.3], then Theo-
rem 3.4 may be strengthened to a statement in which X may be taken to be a differential
variety. We will return to this point in Section 5.

Remark 3.6. Working by induction on the dimension of X, we may upgrade Theorem 3.4
to the assertion that ΞH ∩ (X(M)r X(C)) is not Zariski dense in X. However, to include
the semiconstant points, we may be obliged to extend E to have a family of M-weakly
special varieties parameterized by a the C-points of some algebraic variety. We spell out
the details of this strengthening with Theorem 4.3.

The next lemma will permit us to capture all special varieties of a fixed dimension by
finitely many differential varieties of the form ΞH.

Lemma 3.7. Let f : S → SΓ,G,M be bi-algebraic with SΓ,G,M an arithmetic quotient. For each
natural number ` ≤ dim D, there is a finite setH[`] of semisimple Q-algebraic subgroups of G so
that for each H ∈ H[`] there is some a ∈ D with q(H(R)+ · a) ⊆ SΓ,G,M being a special variety
of dimension ` and S [`]S (M) ⊆ ⋃

H∈H ΞH(M).

Proof. As is well known (see, for instance, [23, Proposition 12.1]), there is finite set H of
connected semisimple Q-algebraic subgroups of G so that for any connected semisimple
Q-algebraic subgroup H̃ ≤ G of G there is some H ∈ H and g ∈ G(R) with H̃ = Hg. Let

H[`] := {H ∈ H : (∃a ∈ D, g ∈ G(R)) q(Hg(R)+ · a) ⊆ SΓ,G,M

is a special subvariety of dimension `} .

If a ∈ S [`]S (M), then there is some special subvariety S′ ⊆ SΓ,G,M of dimension ` so
that f (a) ∈ S′. Express S′ as q(H′(R)+ · a) for some a ∈ D and semisimple Q-algebraic
subgroup H′ ≤ G. We then find H ∈ H and g ∈ G(R)+ so that H′ = Hg, giving that
H ∈ H[`]. By Lemma 3.1, a ∈ ΞH(M), as claimed. �

An effective Zilber-Pink theorem may be deduced from Theorem 3.4.

Corollary 3.8. Let f : S → SΓ,G,M be bi-algebraic with SΓ,G,M an arithmetic quotient. We
suppose that S is given with a fixed quasi- projective embedding. Then there is a constant C so
that for any natural number ` and any irreducible subvariety X ⊆ SM with dim(X) + ` <

dim(S), there is a proper subvariety Y ( X with (X(M)r X(C)) ∩ S [`]S ⊆ Y and deg(Y) ≤
C deg(X)dim(S).

Proof. LetH[`] be given by Lemma 3.7. From that lemma, we see that S [`]S ⊆
⋃

H∈H[`] ΞH :=
Ξ[`]. By Theorem 3.4 and Remark 3.6, for each H ∈ H[`], the Zariski closure of (X(M)r
X(C)) ∩ ΞH is a proper subvariety of X. Hence, the Zariski closure Y of X ∩ (Ξ[`] r X∂)

is a proper subvariety of X and contains (X(M)r X(C)) ∩ S [`]S . By [7, Corollary 11], the
9



degree of this Zariski closure Y is bounded by C deg(X)dim(S) where C depends on S and
f , but not on X. �

Remark 3.9. The constant C appearing in Corollary 3.8 may be computed from bounds on
the degrees of the differential equations defining Ξ[`].

One might ask how far the Y of Corollary 3.8 is from the Zariski closure of (X(M)r
X(C)) ∩ S [`]S . The following conjecture implies that they are in fact equal.

Conjecture 3.10. Suppose that f : S → SΓ,G,M is bi-algebraic, X ⊆ SM is an irreducible
algebraic subvariety of the base change of S toM, dim X > 0, ` ∈ Z+, and X(M) ∩ Ξ[`](M)ft

is Zariski dense in X. We assume moreover that X is not contained in any M-weakly special
subvariety of S. Then X(M) ∩ S [`]S (M)ft is Zariski dense in X.

Conjecture 3.10 may be understood as a “likely intersections” counterpart to the Zilber-
Pink conjecture. Variants have been studied by Klingler and Otwinowska in [17].

4. ANOTHER APPROACH TO FUNCTION FIELD ZILBER-PINK

In this section we explain how a uniform version of the Zilber-Pink conjecture may be
deduced from a weak version in which only varieties defined over C are considered.

We start by specifying what we would mean by a weak Zilber-Pink conjecture.

Definition 4.1. We say that weak Zilber-Pink holds for the bi-algebraic f : S → SΓ,G,M
if whenever X ⊆ S is an irreducible complex algebraic subvariety of S for which f (X)
is not contained in a proper special subvariety of SΓ,G,M, then the union of all strongly
atypical components of intersections of X with pullbacks of strongly special subvarieties
of SΓ,G,M is not Zariski dense in X. Here a component U of X ∩ f−1(S̃) is strongly atypical
if dim(U) > max{dim(SΓ,G,M)− (dim(X) + dim(S̃)), 0}.

Remark 4.2. The weak Zilber-Pink condition is weak in two senses: we consider only
subvarieties X defined over C and we make an assertion only about atypical components
of dimension at least one. It is strong in the sense that it is an assertion about atypical
intersections and not merely unlikely intersections. We discuss the apparent gap between
atypical and unlikely intersections at the end of this section.

Our main result is that if weak Zilber-Pink holds for f : S → SΓ,G,M, then the function
field version of Zilber-Pink for unlikely intersections holds.

Theorem 4.3. If weak Zilber-Pink holds for f : S → SΓ,G,M, X ⊆ SM is an irreducible al-
gebraic subvariety of the base change of S to M for which f (X) is not contained in any proper
special subvariety, then (X(M) r X(C)) ∩ S [≤`]S (M) is not Zariski dense in X where ` =
dim SΓ,G,M − (dim(X) + 1).

Proof. Let Z be the C-Zariski closure of X. That is, Z is the smallest subvariety of S defined
over C with X ⊆ ZM. If ZM = X, then weak Zilber-Pink already says that the conclusion
we desire holds for X. On the other hand, if Z = S, then [10, Theorem 1.2] implies that
X(M)ft ∩ S [≤`]S (M) is not Zariski dense in X. Indeed, [10, Theorem 1.2] is stated with
An as the ambient variety, but the proof applied mutatis mutandis for any given ambient
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variety. In the notation of [10, Theorem 1.2], we have k = C and V = X and have replaced
An by S. The result follows as every special subvariety of S is defined over C, so that
X(M)ft ∩ S [≤`]S (M) ⊆ X(M)ft ∩ ⋃

Y ⊆ X
C− algebraic subvariety

dim(Y) ≤ `

Y(M), which is not Zariski dense

in X by [10, Theorem 1.2].
For the remainder of the proof we consider the case that X ( ZM ( SM.
We define two sets of irreducible varieties.

A := {U ⊆ Z : U is a component of an intersection Z ∩ f−1S̃

where S̃ is strongly special with dim S̃ ≤ ` and dim(U) > dim(Z)− (dim X + 1)}
and

T := {U ⊆ Z : U is a component of an intersection Z ∩ f−1S̃

where S̃ is strongly special with dim S̃ ≤ ` and dim(U) ≤ dim Z− (dim X + 1)}
Observe that each U ∈ A is actually strongly atypical. Note that because f (X) is not

contained in a proper special variety, neither is Z. Thus, by weak Zilber-Pink,
⋃A is not

Zariski dense in Z. Thus,
⋃A, being a proper subvariety of Z defined over C, does not

contain X. Hence,
⋃

A ∩ X ⊆ ⋃
A ∩ X is not Zariski dense in X.

On the other hand, each U ∈ T is a C-variety of dimension strictly less than the codi-
mension of X in Z. By [10, Theorem 1.2], X ∩⋃ T is not Zariski dense in X.

For any special variety S̃ with dim(S) ≤ `, we have X ∩ f−1S̃ = X ∩ (Z ∩ f−1S̃) ⊆
X ∩ (

⋃A ∪ ⋃ T ). Thus, X ∩ S [≤`]S ⊆ X ∩⋃A ∪ X ∩⋃
T which is not Zariski dense in

X. �

Remark 4.4. Note that our ostensibly stronger conclusion at the end of the proof of Theo-
rem 4.3 that X ∩ S [≤`]S is not Zariski dense in X, rather than just that (X(M)r X(C)) ∩
S [≤`]S is not Zariski dense in X, is not really a strengthening as in the subcase under con-
sideration X(C) is not Zariski dense in X because X did not descend to C.

Remark 4.5. The quality of our conclusion in Theorem 4.3 that the nonconstant unlikely in-
tersections are not Zariski dense in X appears to be weaker than what appears in the weak
Zilber-Pink statement which is about atypical intersections. In fact, in general, Zilber-Pink
expressed in terms of atypical intersections is equivalent to Zilber-Pink in Pink’s formu-
lation which is expressed in terms of unlikely intersections [6, Section 12]. The deduction
of Zilber-Pink for atypical intersections from Zilber-Pink for unlikely intersections in [6]
uses the Ax-Schanuel property, which always holds in the required settings (see the ref-
erences above below 3.3). It is part of the reduction effected there of ZP to finiteness of
“optimal points”. Alternatively, the deduction can be made by systematically intersecting
with very general linear spaces. All zero-dimensional atypical intersection components
must be unlikely. Consider atypical components A ⊂ X of some higher dimension d.
There are at most countably many as special subvarieties form a countable collection. A
very general linear subvariety of codimension d will intersect X and all A in the expected
dimensions, the intersections will be distinct and unlikely.
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5. TRIVIAL MINIMAL TYPES IN DIFFERENTIALLY CLOSED FIELDS

In [12], the Ax-Lindemann-Weierstraß with derivatives theorem of [21] is interpreted
to say that certain definable sets relative to the theory of differentially closed fields of
characteristic zero are strongly minimal, have trivial forking geometry, and have non-
ℵ0-categorical induced structure. Up to this point in this paper we have used only the
algebraic form of the Ax-Schanuel condition. The main theorem of [19] gives functional
transcendence statements for algebraic differential equations for uniformizing maps of
Shimura varieties generalizing the results for the j-function. As such, we identify asso-
ciated strongly minimal sets with forking geometry analogous to that of the differential
equations for the j-function. As with the results of [12], we leverage this interpretation to
prove further functional transcendence theorems.

Much more general Ax-Schanuel theorems are announced by Blázquez Sanz, Casale,
Freitag, and Nagloo in [8]. Analogous results on the model theoretic properties of the
associated differential equations follow in each of the cases they consider. In [8], strong
minimality and forking triviality for the differential equations associated to the covering
maps of simple Shimura varieties are established and (non-)orthogonality is described ge-
ometrically in much the same way as is done here (which is not surprising as our methods
and theirs follow the analysis of [12]). A subtlety here is that we consider as well the case
where the underlying Shimura variety is not simple, observing that there can be a real
distinction between minimality and strong minimality related to the notion of δ-Hodge
genericity.

In this section, we use freely the ideas of geometric stability theory. See [22] for details
on such topics as U (also called “Lascar”) rank, multiplicity, orthogonality, and Morley
sequences.

Definition 5.1. Let f : S → SΓ,G,M be bi-algebraic and let K be a differential field with
field of constants C. For any point ā ∈ (G∂\Ď)(K) in the associated Schwarzian variety,
XS,ā is the differential subvariety of S defined by χS(x) = ā.

Remark 5.2. At this level of generality, we cannot say much about XS,ā. If f is not surjec-
tive, then it may happen that XS,ā = ∅. As such, we usually insist that ā belongs to the
differentially constructible set obtained as the image of S under χS.

Proposition 5.3. If S = SΓ,G,M is a Shimura variety and ā belongs to the image of χS, then XS,ā
does not have ℵ0- categorical induced structure.

Proof. For any γ ∈ G in the commensurator of Γ, Γcomm, which is all of G(Q)+, the ana-
lytic variety Tγ := {(π(τ), π(γτ)) : τ ∈ D} is an algebraic subvariety of S× S which
restricts to a finite-to-finite correspondence on XS,ā and the set of distinct such correspond
to the infinite coset space Γcomm/Γ. Thus, there are infinitely many distinct 0-definable
subsets of X2

S,ā so that its induced structure is not ℵ0-categorical. �

Some interesting subtleties emerge in the study of the differential varieties XS,ā for gen-
eral Shimura varieties not seen for case of the j-line. It may happen that a point a ∈ S(M)
is Hodge generic, in the sense that it does not lie on any proper special subvariety, but the
differential variety XS,ā is equal to XS,b̄ for some b which is not Hodge generic. Often
when this happens, the Lascar and Morley ranks of XS,ā will disagree. Such equations
appear implicitly in [15] with the differential variety F2 of [15, Corollary 2.7].
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With the next proposition we show that the type of a generic point in such a XS,ā for S
irreducible is minimal. We address the question of strong minimality afterwards.

Proposition 5.4. Let S be a connected, irreducible Shimura variety. Express S as S = SΓ,G,M. Let
K ⊆ L be an extension of differential fields each with field of constants C and a ∈ S(L)r S(Kalg)
an L-valued point of S which is not algebraic over K having ā := χS(a) ∈ (G∂\Ď)(K). Then
tp(a/K) is minimal.

Before we commence with the proof, let us dispense with some niceties. First, for us
a Shimura variety is positive dimensional. Secondly, by “irreducible” we mean that the
Hermitian domain D is irreducible. From the point of view of the Shimura variety itself,
this means that we cannot find Shimura varieties S1 and S2 and a finite, dominant map
S1 × S2 → S of Shimura varieties, that is, as quotient spaces.

Proof. Using the Seidenberg embedding theorem and shrinking L to be a finitely gen-
erated differential field if need be, we may regard L as differential subfield of M. Let
ã ∈ Ď(M) so that that a = π(ã).

Since a is not algebraic over K, U(a/K) ≥ 1. We check now that U(a/K) ≤ 1. That is,
for any differential field M containing K either a ∈ S(Malg) or a is independent from M
over K. As above, we may take M to be a finitely generated over K differential subfield of
M.

We suppose that a /∈ S(Malg). By [24, Proposition 4.2], the transcendence degree over
K of the differential field generated over K by a is at most dim G. With the following
calculation we will show that, in fact, the transcendence degree over L of the differential
field generated over M by a is exactly dim(G).

Let (ai)
∞
i=0 be a Morley sequence in tp(a/M) with a0 = a. Let gi ∈ G so that ai = π(gi ã).

Let r ≥ dim G and set bi := ∇r(ai). Let M′ ⊆ M be a finitely generated (over M) subfield
over which ā and the algebraic locus of c0 over M are defined. Let N ∈ N be a natural
number.

We assume towards a contradiction that~a := (a0, . . . , aN−1) ∈ SN(M) is Hodge generic
and that tr. degM M〈a〉 < dim G. For the first step of the following computation we
use [19, Theorem 12.3].

1 + N dim G ≤ tr. degC C(g0 ã, . . . , gN−1 ã, c0, . . . , cN−1)

= tr. degC C(ã, (ci)
N−1
i=0 )

≤ tr. degC M′(ã, (ci)
N−1
i=0 )

≤ tr. degC M′(ã) + N tr. degM′ M′(c0)

≤ tr. degC M′(a) + N(dim G− 1)

If we take N ≥ tr. degC M′(a), then this inequality fails. Thus, our hypothesis that
tr. degM M〈a〉 < dim G and that (ai)

N−1
i=0 is Hodge generic must be wrong. We know that

a depends on M over K. Thus,~a is not Hodge generic. Let S′ ⊆ S×N be a proper strongly
special subvariety with (a0, . . . , aN−1) ∈ S′(M). Since a0 is Hodge generic in S and (ai)

∞
i=0

is M-indiscernible, each ai is Hodge generic in S. Thus, S′ projects dominantly on each
factor and the variety V := π(({(a0, . . . , aN−2)} × S) ∩ S′) (where π : S×N → S is the
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projection to the last coordinate) is a properM-weakly special subvariety of S containing
aN−1.

Using irreducibility of S as a Shimura variety we see that V must be finite. Indeed, if
V were infinite, then it could be expressed as ρ({b} × S2) where ρ : S1 × S2 → S is a
finite map of Shimura varieties with S1 and S2 infinite and b anM-valued point. Since
S is irreducible, the image if ρ is not all of S. Thus, aN−1 belongs to the proper special
variety ρ(S1 × S2), which implies by indiscernibility that a does, too, contradicting its
Hodge genericity. Thus, V is finite.

Because (ai)
∞
i=0 is indiscernible, (a0, . . . , aN−2, aj) ∈ S′(M) for all j ≥ N − 1. It follows

by the the pigeonhole principle that there are i > j ≥ N with ai = aj. By indiscernibility
again, ai = aj for all i and j. Since (ai)

∞
i=0 is a Morley sequence, and, in particular, is

independent, this can only happen if ai ∈ S(Lalg). �

The failure of strong minimality comes from differential equations associated with
proper special subvarieties. We isolate the relevant condition with the next definition.

Definition 5.5. Let f : S → SΓ,G,M be bi-algebraic and a ∈ S(M). We define δ-MT(a)
to be the semi-simple Q-algebraic group H ≤ G if a ∈ ΞS,H(M) but for all proper semi-
simple Q-algebraic subgroup H′ < H, a /∈ ΞS,H′(M). We say that a is differentially Hodge
generic if δ-MT(x) = G. Note that δ-MT(x) is only well-defined up to G conjugacy.

Remark 5.6. Our use of the word “differentially Hodge generic” is inspired by Buium’s
work in [9] though we are not following precisely the same formalism here.

Proposition 5.7. Let S be a connected, irreducible Shimura variety. Express S as S = SΓ,G,M.
Let K ⊆ L be an extension of differential fields each with with field of constants C and a ∈ S(L)r
S(Kalg) an L-valued point of S which is not algebraic over K having ā := χS(a) ∈ (G∂\Ď)(K).
If a Hodge generic but is not δ-Hodge generic, then RM(a/K) > 1.

Proof. Without loss of generality, we may assume that K ⊆ L are finitely generated as
C-differential algebras, and that L ⊆ M. We will check that for each proper Kolchin
closed subset Z ( XS,ā, there is some b ∈ (XS,ā r Z)(M) with b not algebraic over K and
tp(b/K) 6= tp(a/K). Thus, the Cantor-Bendixson rank of tp(a/K) will be at least two,
and, a fortiori, RM(a/K) ≥ 2.

Fix ã with a = π(ã). Since a ∈ ΞH(M), there is some g ∈ G(C) with gã ∈ H · Ď∂.
Multiplying by another element of G if need be, we have that b := π(gã) ∈ S′(M) :=
SΓ∩H,H,M∩H(M) is an element of a proper special subvariety and b /∈ S′(Kalg). Indeed,
for any γ in the commensurator of Γ (which under our hypotheses is just G(Q)+), bγ :=
π(γgã) belongs to the special variety SΓ∩Hγ,Hγ,M∩Hγ and is not algebraic over K. Since bγ

is not Hodge generic in S, tp(bγ/K) 6= tp(a/K).
It remains to check that there is no proper differential subvariety Z ( XS,ā with bγ ∈

Z(M) for all such γ. Consider any differential regular function h on S. Then h(π(y · ã)) =
0 defines an analytic subvariety of G where we regard y as a variable ranging over G. The
commensurator group of Γ is dense in the Euclidean topology in G. Hence, this equation
vanishes for all g ∈ G, implying that h vanishes on all of XS,ā. �

On the other hand, for δ-Hodge generic points of irreducible Shimura varieties, the
types are strongly minimal.
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Proposition 5.8. Let S be a connected, irreducible Shimura variety. Express S as S = SΓ,G,M.
Let K ⊆ L be an extension of differential fields each with with field of constants C and a ∈
S(L)r S(Kalg) an L-valued point of S which is δ-Hodge generic and not algebraic over K having
ā := χS(a) ∈ (G∂\Ď)(K). Then tp(a/K) is strongly minimal.

Proof. We have already seen with Proposition 5.4 that tp(a/K) is minimal. It suffices to
check that this type is isolated from all other nonalgebraic types. Let H be a finite set
of proper, semisimple Q-algebraic subgroups of G for which every such semisimple, Q-
algebraic subgroup of G is G-conjugate to some element of H. Let Z :=

⋃
H∈H ΞH ∩ XS,ā.

Then a ∈ XS,ā r Z and we claim that if a′ ∈ (XS,ā r Z)(M) is not algebraic over K, then
tp(a/K) = tp(a′/K). Indeed, such an a′ is nonconstant (because every element of XS,ā is
nonconstant) and is δ-Hodge generic. Thus, by Proposition 5.4, tr. degK K〈a′〉 = dim G. It
remains to check that XS,ā has only one generic component.

Take ã so that a = π(ã) and g so that a′ = π(gã). Consider some algebraic differential
equation H(x) = 0 satisfied by a′. Consider the analytic equation h(y · ã) = 0 with the
variable y ranging over G. Because the locus of a′ has full dimension, this equation would
cut out an analytic subset of G of full dimension. Since G is irreducible, this equation
would have to vanish everywhere. That is, this equation cannot distinguish a′ from a. �

With the next lemma we observe that all dependences between the types we have been
considering may be explained by special varieties. The proof reprises that of Proposi-
tion 5.4.

Lemma 5.9. Let S1 and S2 be connected, irreducible, pure Shimura varieties. We express these
as Si = SΓi,Gi,Mi for i = 1 or 2. Let K ⊆ L be an extension of differential fields each with with
field of constants C and ai ∈ Si(L) for i = 1 or 2 be Hodge generic points each of which is not
algebraic over K. Then a1 and a2 are dependent over K if and only if there is a special subvariety
T ⊆ S1 × S2 with (a1, a2) ∈ T(L) and each projection T → Si is finite and dominant.

Proof. The right to left implication is immediate as the relation T expresses a1 and a2 as
being interalgebraic. We focus on proving the left to right implication.

Replacing K by a finitely generated differential C-algebra over which tp(a1, a2/K) is
defined and using the Seidenberg embedding theorem, we may assume that L =M and
that K is finitely generated. Swapping the roles of a1 and a2 if need be, we may assume
that dim G1 ≥ dim G2.

Write πi : Di → Si for the covering map expressing Si as SΓi,Gi,Mi and fix some ãi with
πi(ãi) = ai for i = 1 or 2. Let r > dim G1 and set b := (a1, a2) and c := ∇r(a1, a2).
Let K0 ⊆ K be a finitely generated C-algebra over which the algebraic locus of (b, c) is
defined. Since tp(a1/K) and tp(a2/K) are minimal, we see that K0(b, c) is algebraic over
K0(a1,∇r(a1)). Thus,

(1) tr. degK0
K0(b, c) = tr. degK0

K0(∇r(a1)) = dim G1

by Proposition 5.4.
Let (bi, ci)

∞
i=0 be a Morley sequence in tp(b, c/K). For each i ∈ N, take (g1,i, g2,i) ∈

G1 × G2 so that (π1(g1,i ã1), π2(g2,i ã2)) = bi.
Exactly as in the proof of Proposition 5.4 using Equation 1 we compute that

(2) tr. degC C(ã1, ã2, b0, . . . bN−1, c0, . . . , cN−1) ≤ tr. degC K0(ã1, ã2) + N dim G1 .
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However, if (a1, a2) ∈ S1× S2 were Hodge generic, then (b0, . . . , bN−1) would be Hodge
generic in (S1 × S2)

N which would imply by the main theorem of [19] that

(3) 1 + N dim G1 + N dim G2 ≤ tr. degC C(ã1, ã2, b0, . . . bN−1, c0, . . . , cN−1)

Inequalities 2 and 3 are inconsistent once N >
tr.degC K0(ã1,ã2)−1

dim G2
. Thus, the hypothesis

that (a1, a2) is Hodge generic in S1 × S2 must be wrong and we find a proper weakly
special variety T ⊆ S1 × S2 with (a1, a2) ∈ T(L). Since each of ai is individually Hodge
generic in Si (for i = 1 or 2), T is strongly special. That the projections T → Si are finite
follows from irreducibility of S1 and S2. �

We derive several consequences from Lemma 5.9.

Corollary 5.10. Let S be a connected. Let K ⊆ L be an extension of differential fields each with
with field of constants C and a ∈ S(L) an L-valued point of S which is Hodge generic and not
algebraic over K. Then forking defines a trivial pregeometry on tp(a/K).

Proof. We will show by induction on N that if there is a dependence over K on a se-
quence a1, . . . , aN of realizations of tp(a/K), then there is a dependence between ai and
aj for some i < j ≤ N. For N ≤ 2, this is trivial. Consider the inductive case of
N + 1. If {a1, . . . , aN} or {a1, . . . , aN−1, aN+1} are dependent, then by induction we al-
ready find a pairwise dependence. If both of these sequences are independent, then let
M := K〈a1, . . . , aN−1〉 be the differential field generated by a1, . . . , aN−1 over K. In this
case, each of tp(aN/M) and tp(aN+1/M) is the nonforking extension of tp(a/K) to M
and aN and aN+1 are dependent over M. By Lemma 5.9, (aN, aN+1) lies on a proper spe-
cial subvariety of S× S, so that this pair is dependent over K. �

As a more direct consequence of Lemma 5.9, we see that nonorthogonality comes only
from Hecke correspondences.

Corollary 5.11. Let S1 and S2 be connected, irreducible, pure Shimura varieties. Let K ⊆ L be
an extension of differential fields each with with field of constants C and ai ∈ Si(L) for i = 1 or
2 be Hodge generic points each of which is not algebraic over K. Then tp(a1/K) 6⊥ tp(a2/K) if
and only if there is a Shimura variety T, finite maps of Shimura varieties νi : T → Si, and a point
b ∈ T(Lalg) for which tp(νi(b)/K) = tp(ai/K) for i = 1 and 2.

Proof. If tp(a1/K) 6⊥ tp(a2/K), then we can find some extension M of K and points c1 and
c2 with tp(ci/M) being the nonforking extension of tp(ai/K) to M (for i = 1 and 2) and
c1 and c2 are dependent over M. By Lemma 5.9, there is some proper special T ⊆ S1 × S2
with (c1, c2) ∈ T and T → Si finite for i = 1 and 2. Set b := (c1, c2). �
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