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Abstract. We show that analogues of popular public key cryptosystems based

on Drinfeld modules are insecure by providing polynomial time algorithms to
solve the Drinfeld module versions of the inversion and discrete logarithm

problems.

1. Introduction

Koblitz [3] and Miller [5] substituted computations on elliptic curves for mul-
tiplication in some public key cryptosystems obtaining (presumably) more secure
systems. Since they made the leap from ordinary multiplication to elliptic curve
addition, other authors have suggested other analogous cryptosystems based on
other finite mathematical structures.

Drinfeld christened the structures that bear his name as “elliptic modules” to
emphasize the tight connection between the theories of elliptic curves and of Drin-
feld modules. In the ensuing years, work on the arithmetic of Drinfeld modules has
borne out Drinfeld’s insight into the the correspondence between elliptic curves and
Drinfeld modules [2]. With these analogies in mind one might reasonably hope (as
did the author of the current note) that cryptosystems based on Drinfeld modules
should, at least, share the properties of their elliptic curve based cousins. Unfor-
tunately, we dash this hope by showing that Drinfeld module based cryptosystems
are insecure.

We define precisely what we mean by “Drinfeld module” and the various “Drin-
feld module versions” of cryptosystems and problems in the next section. Roughly, a
Drinfeld module is a nonlinear, commutative subring of the ring of regular endomor-
phisms of the additive group of a field. For example, if k is a field of characteristic
p > 0, then the ring generated under addition and composition by the function
f : k → k given by f(x) = xp − x is a Drinfeld module. Usually, the Drinfeld
module version of a group based cryptosystem is given by replacing the underlying
group by the additive group of a finite field and multiplication by integers (or ex-
ponentiation) by the action of the Drinfeld module. Since every Drinfeld module
contains nonlinear elements, such cryptosystems may very well be secure. Because
the underlying group is an additive group, these cryptosystems should be relatively
easy to implement. However, the latter property points to the fundamental flaw in
the heuristics behind the former property: while a Drinfeld module is generically
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nonlinear, when considered on a fixed finite field it may be regarded as a linear ob-
ject. In this note we translate this observation into a proof that any cryptosystem
based on the supposed infeasibility of solving the Drinfeld module versions of the
discrete logarithm or inversion problems is insecure.

The proofs of the main results of this note are not difficult at all. It would surprise
me to learn that similar ideas have not flashed through the heads of other people
acquainted with Drinfeld modules and elliptic curve public key cryptosystems. In
fact, I have been told that the idea of cryptosystems based on Drinfeld modules
has been proposed before, but I was unable to locate a published reference. I hope
that if anyone else is smitten with the notion that Drinfeld modules have anything
to do with encryption, this note will serve to help them avoid wasted effort in this
direction.

I thank Bernd Sturmfels for directing me to the algorithms in [1] and the anony-
mous referees for suggesting improvements to this paper.

2. Definitions and notation

In this section we fix our notation and define our terms precisely.
Denote by p a fixed prime number and q a fixed power of p. We denote by Fp the

field of p elements and Fq the field of q elements. Let k be a field of characteristic p.
The Frobenius endomorphism of k is the function F : k → k defined by F (x) := xp.
The ring of twisted polynomials in F over k is k{F} := {

∑n
i=0 aiF

i : n ∈ N, ai ∈ k}
where addition is defined coordinatewise and multiplication is defined by the usual
convolution formula with the commutation rule Fa = apF . We may regard an
element Λ =

∑n
i=0 λiF

i of k{F} as an additive homomorphism of k by the formula
x 7→

∑n
i=0 λix

pi

. We denote this homomorphism assigning to a polynomial in F
its corresponding additive map by ι : k{F} → Hom(k,+). If Λ =

∑n
i=0 λiF

i is a
non-zero element of k{F}, then we define the degree of Λ to be deg(Λ) := max{i :
λi 6= 0}.

Definition A Drinfeld module (for the ring Fp[t]) is a ring homomorphism ϕ :
Fp[t] → k{F} for which deg(ϕ(t)) > 0.

In the literature, Drinfeld modules for slightly more complicated rings are con-
sidered on occasion. Since we aim to dismiss all Drinfeld modules as candidates
as bases for cryptosystems, we include the definition of the more general Drinfeld
modules, but the reader would lose very little by ignoring this generalization. Let C
be an absolutely irreducible, smooth, projective curve over Fq and ∞ ∈ C a closed
point. Let A be the ring of regular functions on C \ {∞}. The field Fq is called the
field of constants of A.

Definition A Drinfeld module for A is a ring homomorphism ϕ : A → k{F} for
which there is some a ∈ A with deg(ϕ(a)) > 0.

Take q = p, C = P1, and ∞ = [0 : 1] to recover the definition of a Drinfeld
module for Fp[t]. As mentioned in the introduction, a Drinfeld module is just the
choice of a nonlinear commutative (normal) subring of k{F} given together with a
presentation.

It is always possible to find two elements s, t ∈ A so that A is generated as a
ring by s, t, and the field of constants of A, Fq. Moreover, if q = pr, A has field of
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constants Fq, and ϕ : A → k{F} is a Drinfeld module, then the image of ϕ lies in
the subring k{F r}.

Definition By the discrete logarithm problem for a Drinfeld module we mean:
given a finite field k of characteristic p, Drinfeld module ϕ : A → k{F}, and
elements x, y ∈ k, find a ∈ A (if it exists) so that ϕ(a)(x) = y.

Definition By the inversion problem for a Drinfeld module we mean: given a finite
field k of characteristic p, Drinfeld module ϕ : A → k{F}, and a ∈ A for which
ϕ(a) : k → k is a bijection, find b ∈ A so that ϕ(b) : k → k is the inverse of ϕ(a).

Public key cryptosystems based on the supposed intractibility of the discrete
logarithm problem for certain groups (eg Diffie-Hellman, Massey-Omura, ElGa-
mal) have natural Drinfeld module analogues. Likewise, cryptosystmes based on
the difficulty of inverting certain group automorphisms (eg RSA) have Drinfeld
module versions. Since none of these systems is secure, we do not describe them in
detail, but to fix ideas we sketch the Drinfeld module version of the Diffie-Hellman
cryptosystem.

Cryptosystem[Drinfeld module version of Diffie-Hellman] Fix p a prime and q a
power of p. Set k := Fq. Fix also a Drinfeld module ϕ : A→ k{F} and an element
ζ ∈ k. All these data are assumed to be public knowledge. I and II choose aI

(respectively, aII) in A. I transmits ϕ(aI)(ζ) to II while II transmits ϕ(aII)(ζ)
to I. The common private key is ϕ(aII)(ϕ(aI)(ζ)) = ϕ(aIIaI)(ζ) = ϕ(aIaII)(ζ) =
ϕ(aI)(ϕ(aII)(ζ)).

3. Attacks

We attack the cryptosystems introduced in the last section by observing that
the ring of functions induced by a Drinfeld module on a finite field is equal to a
ring of linear functions, properly interpreted. Linear algebra provides our picks.

The proofs of the propositions below involve regarding the finite field k as a vector
space over a smaller finite field and then performing certain matrix computations.
In order to perform these matrix computations we need to fix a basis for k and a
method for expressing elements of k with respect to this basis. In most practical
implementations of the encryption schemes described in the previous section, k is
already so expressed. If one perversely chose to work with a coordinate-free k, we
could put k in the required form very quickly (see Proposition 1), anyhow. So, in
all the statements following Proposition 1 we regard the choice of a basis for k as
being cost-free.

Proposition 1. There is a probabilistic polynomial time algorithm which given a
finite field k of characteristic p produces a basis of k over Fp and a polynomial time
procedure to express any element of k in terms of that basis.
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Proof: Let d := [k : Fp] = logp |k|. Randomly choose (e1, . . . , ed) ∈ kd. Set
B := {e1, . . . , ed}. With probability

∏d−1
i=0 (1 − p−i) it is a basis. Repeating this

step roughly − logp ε times we can guarantee that we have found at least one basis
with probability 1− ε.

We now define by recursion some elements bi ∈ k and additive operators ψi : k →
k for 1 ≤ i ≤ d. Set b1 := e1 and ψ1 := idk. For i+ 1, set ψi+1 := bpi (F − 1)b−1

i ψi

and bi+1 := ψi+1(ei+1).
B is a basis if and only if all of the bi’s are nonzero. If this choice of B fails to

be a basis, then repeat the above steps.
Given a ∈ k written as a =

∑d
i=1 ai · ei with ai ∈ Fp we have the following

recursive (starting with i = d and working backwards) formula for ai:

ai = b−1
i ψi(a−

∑
j>i

ajej)

If one counts the taking of multiplicative inverses and the application of F as no
more costly than multiplication, then the above formula requires O(d2) operations
to implement. If one insists upon counting only addition and multiplication as basic
operations, then the cost estimate rises to O(d3) as one may compute b−1 = bp

d−1

for b ∈ k. If one wishes to make the estimate uniform in p, then the right bound is
O(log(p)d3). a

In what follows, the real number ω is a constant for which the problem of mul-
tiplying two m × m matrices over the field K may be solved with O(mω) ring
operations in K. The standard approach to matrix multiplication gives ω ≤ 3, but
there are algorithms to achieve ω < 2.376 [1].
Proposition 2. There are real numbers C1 and r1 and an algorithm to find for
any prime p, finite field k of characteristic p, Drinfeld module ϕ : A → k{F},
and a ∈ A with ϕ(a) inducing a bijection of k an inverse to ϕ(a) using at most
C1(logp |k|)r1 field operations in Fp.

Proof: Let A := ι◦ϕ(A) ⊆ Hom(k,+). The elements of A are additive homormor-
phisms, but they are most likely not k-linear maps. However, they are Fp-linear
maps. After fixing a basis Γ for k over Fp (as given by Proposition 1) we may
identify Hom(k,+) with the matrix ring Mm(Fp) where m = dimFp

(k) = logp(|k|).
Under this identification, A is a ring of m ×m matrices over Fp. Given a ∈ A for
which ι ◦ ϕ(a) is a unit, we can find the inverse to ι ◦ ϕ(a) simply by inverting the
corresponding matrix to obtain β ∈ A. Even without taking into account extra
information about a, this inversion requires at the worst O(mω) field operations.
a

Thus, cryptosystems based on the supposed intractibility of inverting the ac-
tion of a Drinfeld module (for example, the Drinfeld module version of RSA) are
insecure.

One might imagine that in some system knowing the inverse to ι ◦ ϕ(a) is not
enough. However, without much additional effort we can recover some b ∈ A for
which ι ◦ ϕ(b) = (ι ◦ ϕ(a))−1.
Proposition 3. There is a polynomial time algorithm for solving the inversion
problem for Drinfeld modules.
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More precisely, there are real numbers C2 and r2 and an algorithm which given
a prime p, finite field k of characteristic p, Drinfeld module ϕ : A → k{F}, and
a ∈ A for which ϕ(a) induces a bijection of k finds b ∈ A for which ϕ(b) is the
inverse to ϕ(a) on k requiring fewer than C2(logp |k|)r2 field operations in Fp.

Proof: Let s, t ∈ A generate A over its field of constants, Fpr . As above, let
A := ι◦ϕ(A). For now, let Γ be a basis for k over Fpr as given by Proposition 1. Let
m := dimFpr (k). As A is a commutative subalgebra of Mm(Fpr ), dimFpr (A) ≤ m.
Compute the vectors S := {ι ◦ ϕ(sitj) : 0 ≤ i, j < m}. Assuming that we have
already computed ι ◦ ϕ(s) and ι ◦ ϕ(t) as matrices relative to Γ, this requires m2

matrix multiplications and can be accomplished with O(m2+ω) field operations in
Fpr . We can extract a basis B for A from S with O(mω+1) field operations in Fpr

using the algorithm of [1] Problem 2.2.10a. So, we have a set I ⊆ {(i, j) : 0 ≤ i, j <
m} so that {ϕ(sitj) : (i, j) ∈ I} is a basis of A over Fpr .

Let β = (ι ◦ ϕ(a))−1 be the inverse to ι ◦ ϕ(a) computed in the previous propo-
sition. From the basis Γ of k, we obtain a standard basis Γ′ for Hom(k,+). We
know that β ∈ A. We are given the vectors β and b for b ∈ B in terms of the
basis Γ′ of Hom(k,+). Say, CΓ′ = (β, ϕ(1), ϕ(a), . . . , ϕ(at−1)) for appropriate
C ∈ M(|B|+1)×m2(Fp). To find the expression for β as a linear combination of the
elements of B, we find the kernel of C (which we can accomplish in time O(m1+ω) [1]
Problem 2.2.3b) and then scale. So, we have an expression β =

∑
(i,j)∈I µ(i,j)ϕ(sitj)

for appropriate µ(i,j) ∈ Fpr . We take b =
∑

(i,j)∈I µ(i,j)s
itj .

Converting the field operations in Fpr into operations in Fp costs a factor of
O(r log r), but we should replace m by dimFp(k) = rm. Thus, the estimate of
O(logp(|k|)1+ω) for the number of field operations used in Fp remains valid. a

The techniques of the the last proposition extend to the discrete logarithm prob-
lem for Drinfeld modules.

Proposition 4. There is a polynomial time algorithm to solve the discrete loga-
rithm problem for Drinfeld modules.

That is, there are real numbers C3 and r3 and an algorithm which given a prime
p, finite field k of characteristic p, Drinfeld module ϕ : A→ k{F}, and elements ζ
and y of k computes an a ∈ A with ϕ(a)(ζ) = y (if such an a exists) using fewer
than C3(logp |k|)r3 field operations in Fp.

Proof: Let M := ϕ(A) · ζ be the A-module generated by ζ. Let A := ι ◦ ϕ(A) ⊆
Hom(k,+). Let Fpr be the field of constants of A. Let m := dimFpr (k). As above,
thin the set of {ϕ(sitj)(ζ) : 0 ≤ i, j < m} to a basis B for M where A is generated
by s and t over Fpr . The method described in the proof of the previous proposition
requires at most O(m1+ω) field operations in Fpr .

If y ∈M , that is y = ϕ(a)(ζ) for some a ∈ A, then as in the previous paragraph
we need only express y in terms B. Following the algorithm already outlined in the
previous proposition, we carry out this computation in time O(m1+ω). a

Thus, no public key cryptosystem based on the apparent infeasibility of solving
the discrete logarithm problem for Drinfeld modules (such as the Drinfeld module
versions of Diffie-Hellman, Massey-Osmura, and ElGamal) is secure.



6 THOMAS SCANLON

References

[1] D. Bini and V. Pan, Polynomial and Matrix Computations: Fundamental Algo-
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