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Abstract. In answer to a question of L. van den Dries, we show that no

differentially closed field possesses a differential valuation.

1. Introduction

In connection with his work on H-fields [1], L. van den Dries asked whether a
differentially closed field can admit a nontrivial (Rosenlicht) differential valuation.

If K is a field and v is a Krull valuation on K and L/K is an extensions field,
then there is at least one extension of v to a valuation on L. It is known that
the analogous statement for differential specializations on differential fields is false.
Indeed, anomalous properties of specializations of differential rings were observed
already by Ritt [10] and examples of nonextendible specializations are known (see
Exercise 6(c) of Section 6 of Chapter IV of [6] and [3, 4, 8] for a fuller account).

In this short note, we answer van den Dries’ question negatively by exhibiting
a class of equations which cannot be solved in any differentially valued field even
though they have solutions in differentially closed fields.

I thank M. Aschenbrenner and L. van den Dries for bringing this question to my
attention and discussing the matter with me and the Isaac Newton Institute for
providing a mathematically rich setting for those discussions.

2. Logarithmic derivatives and differential valuations

In this section we recall Rosenlicht’s notion of a differential valuation and show
how the elliptic logarithmic derivative construction can be used to answer van den
Dries’ question.

In what follows, if v is a valuation on a field K, then we write O := {x ∈
K | v(x) ≥ 0} for the v-integers and if ∂ is a derivation on K, then we write
C := {x ∈ K | ∂(x) = 0} for the differential constants.

Definition 2.1. A differential valuation (in the sense of Rosenlicht) v on a differ-
ential field (K, ∂) is a valuation for which the differential constants form a field of
representatives in the sense that C× ⊆ O× and for any x ∈ K there is some y ∈ C
with v(x − y) > 0 and an abstract version of L’Hôpital’s Rule holds in the sense
that if v(x) > 0 and v(y) > 0, then v(y′x/x′) > 0.

Remark 2.2. It should be noted that Rosenlicht’s notion of a differential valuation
does not agree with Blum’s [3].
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Rosenlicht proved that to a differential valuation there is an associated asymp-
totic couple: the value group of the valuation, Γ, given together with a function
ψ : Γr{0} → Γ defined by ψ(v(a)) = v(∂(a)/a) for a ∈ K× with v(a) 6= 0 [11]. For
us, the most important property of this asymptotic couple is that if α, β ∈ Γr {0},
then ψ(α) < ψ(β) + |β|. From this property it follows that if a differential field ad-
mits a differential valuation, then the derivation may be scaled so that the resulting
derivation preserves the ring of integers.

Lemma 2.3. If (K, ∂) is a differential field and v is a nontrivial differential valu-
ation on K, then there is some b ∈ K× so that is ∂̃ = b∂, then v is a differential
valuation on (K, ∂̃) for which ∂̃(O) ⊆ O.

Proof. Let a ∈ K× be any element with v(a) 6= 0 and set b := a/∂(a). If x ∈ O,
then we may write x = c + y where ∂(c) = 0 and v(y) > 0. Using Rosenlicht’s
inequality, we have ψ(v(a)) = −v(b) < ψ(v(y)) + v(y) = v(∂(y)) = v(∂(c + y)) =
−v(b) + v(∂̃(x)). In particular, v(∂̃(x)) > 0. �

With the next lemma we note that scaling a derivation does not change the
property of the differential field being differentially closed.

Lemma 2.4. If (K, ∂) is a differentially closed field, b ∈ K× is nonzero, and ∂̃,
then (K, ∂̃) is also differentially closed.

Proof. Employing the Blum axioms for differentially closed fields [2], we must
show that if P (X0, . . . , Xn) ∈ K[X0, . . . , Xn] is an irreducible polynomial over
K in n + 1 variables and G(X0, . . . , Xn−1) ∈ K[X0, . . . , Xn−1] is a polynomial
in fewer variables, then there is some a ∈ K with P (a, ∂̃(a), . . . , ∂̃n(a)) = 0 and
G(a, . . . , ∂̃n−1(a)) 6= 0.

In the ring K〈∂〉 of linear differential operators in ∂ over K, for each positive
integer m we may write (b∂)m = bm∂m +

∑m−1
i=1 d

(m)
i ∂i for some d(m)

i ∈ K. In-
deed, the base case of m = 1 is trivial, and (b∂)m+1 = b∂(bm∂m +

∑m−1
i=1 d

(m)
i ∂i) =

b(bm∂m+1+mbm−1∂(b)∂m+
∑m−1

i=1 (∂(d(m)
i )∂i+d(m)

i ∂i+1)) = bm+1∂m+1+
∑m

i=1 d
(m+1)
i ∂j

where d(m+1)
m = mbm∂(b) + bd

(m)
m−1 and d(m+1)

i = ∂(d(m)
i ) + d

(m)
j−1 for 1 ≤ j < m.

The map ρ : K[X0, . . . , Xn] → K[X0, . . . , Xn] given by X0 7→ X0 and Xi 7→
biXi +

∑i−1
j=1 d

(i)
j Xi is an automorphism for which for any F ∈ K[X0, . . . , Xn] and

c ∈ K we have ρ(F )(c, ∂(c), . . . , ∂n(c)) = F (c, ∂̃(c), . . . , ∂̃n(c)). As P is irreducible
and ρ is an automorphism, ρ(P ) is irreducible. Visibly, ρ(K[X0, . . . , Xn−1]) ⊆
K[X0, . . . , Xn−1]. So, ρ(G) ∈ K[X0, . . . , Xn−1]. As (K, ∂) is differentially closed
there is some d ∈ K with 0 = ρ(P )(d, ∂(d), . . . , ∂n(d)) = P (d, ∂̃(d), . . . , ∂̃n(d))
and 0 6= ρ(G)(d, . . . , ∂n−1(d)) = G(d, . . . , ∂̃n−1(d)). That is, (K, ∂̃) is differentially
closed. �

Theorem 2.5. Suppose that (K, ∂) is a differentially closed field and v is a valua-
tion on K for which the derivation preserves the ring of integers in the sense that
∂(O) ⊆ O. Then v is trivial.

Proof. Let E be any elliptic curve over C ∩ O. If v is trivial on Q, we can take E
to be any elliptic curve over Q. Otherwise, v restricts to a p-adic valuation on Q
and we can take E to be a model of an elliptic curve over Z having good reduction
at p.
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Consider the elliptic logarithmic derivative ∂ logE : E(K) → Ga(K). The reader
should consult section 22 of chapter 5 of [6] for a thorough development of the
theory of logarithmic differentiaion. For the sake of completeness we recall the
construction of ∂ logE .

There is a group homomorphism∇ : E(K) → TE(K) from theK-rational points
of E to the K-rational points of the tangent bundle of E defined in coordinates
by (x1, . . . , xn) 7→ (x1, . . . , xn; ∂(x1), . . . , ∂(xn)). As we will need to keep track
of integrality conditions, it will help to see ∇ more conceptually. Using the Weil
restriction of scalars construction, one can identify TE(K) with E(K[ε]/(ε2)), or
more generally, TE(R) with E(R[ε]/(ε2)) for any commutative C ∩O-algebra R. If
we have a derivation δ : R→ R on the algebraR, then there is a ring homomorphism
exp(δ) : R → R[ε]/(ε2) given by x 7→ x + δ(x)ε. The map ∇ : E(R) → TE(R)
corresponds to the map on points E(R) → E(R[ε]/(ε2)) induced by exp(δ). In
particular, ∇ takes R-rational points to R-rational points.

The tangent bundle TE splits as s : TE → E × T0E where T0E is the tangent
space to E at the origin via the map (P,w) 7→ (P, dτ−Pw) where τ−P : E → E is
the translation map x 7→ x− P on E. If π : E × T0E → Ga is the projection onto
the second coördinate followed by an isomorphism between T0E and the additive
group Ga, then the elliptic logarithmic derivative is ∂ logE = π ◦ s ◦ ∇.

As K is differentially closed, the map ∂ logE : E(K) → Ga(K) = K is surjective.
Indeed, one can see this in several ways. For instance, we can work with the Lascar
rank (see [7]). The kernel of ∂ logE is E(C) and as such has Lascar rank 1 whilst
the Lascar rank of E(K) is ω. Hence, the Lascar rank of the image of ∂ logE is
also ω which is the same as that of the connected group Ga(K). Hence, ∂ logE is
surjective. Alternatively, one could simply apply the geometric axioms of [9]. Let
P ∈ Ga(K) be any point. Relative to the above trivialization of TE, we define a
section sP : E → TE by Q 7→ (Q,P ). By the geometric axiom, there is a point
Q ∈ E(K) with sP (Q) = s ◦ ∇(Q). That is, P = ∂ logE(Q).

Since each of the maps forming ∂ logE takes O-rational points to O-rational
points, the image of ∂ logE on E(O) is contained in Ga(O) = O. As E is proper,
E(O) = E(K) (or, really, the image of E(O) in E(K) under the map induced by
O ↪→ K is all of E(K)). Hence, O = K. That is, v is a trivial valuation. �

Combining Lemmata 2.3 and 2.4 with Theorem 2.5 we conclude with a negative
answer to van den Dries question.

Corollary 2.6. No differentially closed field admits a nontrivial differential valu-
ation.

Remark 2.7. As with Buium’s construction of examples of Ritt’s anomaly of the
differential dimension of an intersection [5], our construction is based on the obser-
vation that projective algebraic varieties may admit nonconstant differential regular
functions. Indeed, as the reader can readily verify, our argument shows that if (K, ∂)
is a differential field admitting a nontrivial valuation whose ring of integers is pre-
served by ∂, and X is a projective scheme over O whose Albanese map is injective,
then by composing the Albanese map with a component of a Manin homomorphism
one produces a nonconstant differential regular function f : X(K) → A1(K) whose
image is contained in O.
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