
AUTOMATIC UNIFORMITY

THOMAS SCANLON

Abstract. Let X be an algebraic variety over the algebraically closed field

K and Ξ ⊆ X(K) a set of K-rational points on X. We say that a subvariety

Y ⊆ Xn of some Cartesian power of X is Ξ-special if Ξn ∩ Y (K) is Zariski
dense in Y . We show under certain hypotheses on Ξ, for instance, that the

class of Ξ-special varieties is closed under intersections, that when subvarieties

of X vary in an algebraic family, the Zariski closures of their intersections
with Ξ also vary uniformly. As a special case, we see that if the André-Oort

conjecture holds, then for each g, n, and d there is a constant B = B(g, n, d)

such that if C is a curve of degree d in the moduli space of g-dimensional
principally polarized abelian varieties with full level n structure, either C is a

modular curve or C contains at most B CM-moduli points (see Theorem 4.3).

1. Introduction

Several conjectures and theorems in diophantine geometry assert that for certain
varieties X (over some field K) and sets Ξ ⊆ X(K) if Y ⊆ X is any subvariety,
then the Zariski closure of Y (K)∩Ξ is a finite union of “special” subvarieties of X.
For example, the Manin-Mumford conjecture (or Raynaud’s theorem) covers the
case of K = C, X an abelian variety, and Ξ the torsion subgroup. In this case, the
“special” varieties are the translates of abelian subvarieties by torsion points. The
Mordell-Lang conjecture and its variants have a similar form while in the André-
Oort conjecture, the variety X is a Shimura variety, Ξ is the set of special points
(the CM moduli points in the case that X is a moduli space of abelian varieties),
and the “special” varieties are the connected components of images of Shimura
varieties under Hecke correspondences.

Prima facie, these conjectures are mere finiteness assertions, but we shall show
that they carry implicit uniformity. That is, if we allow the subvariety Y ⊆ X to
vary in an algebraic family {Yb}b∈B , then there is another (constructible) family
{Zc}c∈C of subvarieties of X such that for any parameter b there is some c for
which Yb(K) ∩ Ξ = Zc. In particular, as a function of the degree of Y (with respect
to some fixed quasi-projective embedding of X) we may bound the degree of the
Zariski closure of Y (K) ∩ Ξ.

Of course, such a result cannot hold without restriction on Ξ and the meaning
of “special,” but it does hold under very weak hypotheses and includes all of the
cases mentioned above.

The current author presented a version of this automatic uniformity theorem
for group varieties in the preprint [9]. Essentially the same argument and result
is presented as Corollary 3.5.9 of Hrushovski’s [5]. Each of these theorems use the
modularity of the induced structure on the specified subgroups, but as we show in
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this note, modularity is a red herring. Automatic uniformity is an almost immedi-
ate consequence of definability of types in stable theories. Moreover, this specific
consequence may be proven very swiftly with minimal reference to mathematical
logic. For the sake of making this note as self-contained as is reasonable, we reprove
most of this result from logic taking an algebraic point of view while invoking the
compactness theorem at one point.

As mentioned above, the first version of this note was written some time ago,
and that version was inspired by Rémond’s [8]. The current version is based on
a talk given at Oberwolfach during January of 2003 and the algebraic proof of
uniform definability of types owes much to discussions with Moshe Jarden. I thank
Dan Abramovich for his close reading of an earlier version of this note and for
suggesting numerous improvements.

2. Statement of main theorem

In what follows, we fix an algebraically closed field K, a quasi-projective variety
X over K, and a set Ξ ⊆ X(K) of K-rational points on X.

Definition 2.1. An irreducible subvariety Y ⊆ Xn of the nth Cartesian power of
X (for some natural number n) is called Ξ-special if Y (K)∩Ξn is Zariski dense in
Y .

With the next definition we state precisely the sense in which the interesections
of varieties with Ξ vary uniformly.

Definition 2.2. We say that Ξ satisfies automatic uniformity if for any algebraic
variety B over K and any subvariety Y ⊆ X × B, there are constructible sets C
and Z ⊆ X ×C such that for any b ∈ B(K) there is some parameter c ∈ C(K) for
which Yb(K) ∩ Ξ = Zc.

Note that in the above definition the constructible set Zc is actually a finite
union of Ξ-special varieties.

To check whether Ξ satisfies automatic uniformity it is not necessary to find the
sets Yb(K) ∩ Ξ exactly.

Proposition 2.3. Ξ satisfies automatic uniformity if and only if for any variety
B and subvariety Y ⊆ X×B there are a constructible set C and a constructible set
Z ⊆ X × C such that for any parameter b ∈ B(K) there is a parameter c ∈ C(K)
such that Zc is a variety and each component of Yb(K) ∩ Ξ is a component of Zc.

Proof. (⇒) Immediate.
(⇐) Let d := max{deg(Zc) | c ∈ C(K)}. Then as Chow varieties exist (see

Lecture 21 of [3]), the family of subvarieties of X of degree of at most d is an
algebraic family of subvarieties of X and each variety Yb(K) ∩ Ξ appears in this
family. �

We are now in a position to state our main theorem.

Theorem 2.4. Suppose that whenever Y and Z are Ξ-special subvarieties of some
Cartesian power Xn of X, every componet of Y ∩ Z containing a point of Ξn is
itself Ξ-special. Then Ξ satisfies automatic uniformity.

While Theorem 2.4 applies directly to show uniformity in the Manin-Mumford
conjecture and the André-Oort conjecture, one cannot deduce uniformity in the
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Mordell-Lang conjecture as a direct corollary of Theorem 2.4. However, uniformity
in this case also follows from the methods we employ as we demonstrate with
Theorem 4.7.

3. Proofs

In this section we prove Theorem 2.4 and some related results.
To prove this theorem we use uniform definability of types in stable theories,

a basic result in stability theory in the sense of mathematical logic. For the sake
of completeness, we reprove this result in the language of algebraic varieties. We
give a purely algebraic proof of the nonuniform version. We could then invoke the
compactness theorem of first-order logic, which we regard as part of the common
patrinomy of all mathematicians, to deduce the uniform version, but instead we
recast  Loś’ Theorem on ultraproducts in terms of quotients of products of fields. It
should be remarked that there is nothing new in terms of results or techniques in
the next two lemmata.

To logicians, this first lemma is simply definability of types in algebraically closed
fields. Algebraicists could view it as a slight elaboration of Lagrange interpolation,
the principle that if X ⊆ Y ×B is a closed subvariety of the product of two algebraic
varieties Y and B over the algebraically closed field K, then for any b ∈ B(K) one
can find a finite set {a1, . . . , an} ⊆ Xb(K) of points on Xb so that for any other
parameter b′ if {a1, . . . , an} ⊆ Xb′(K), then Xb = Xb′ (as subvarieties of Y ).

Lemma 3.1. Let k be a field and K an algebraically closed field extension of k.
Let X be a variety over k and XK its base change to K. Let A ⊆ X(K) be a set
of K-rational points on X. Suppose that Y ⊆ XK is constructible. Then there is
a natural number n and some constructible set Z ⊆ X ×Xn (defined over k) and
some a ∈ An such that Za(K) ∩A = Y (K) ∩A.

Proof. We start with a few reductions.
First, we may assume that X = Am is affine m-space for some natural num-

ber m as X is covered by finitely many affine charts and we ask only that Z be
constructible.

Secondly, we may assume that Y is Zariski closed: Work by Noetherian induction
on the Zariski closure of Y . As dim Y r Y < dim Y , if we manage to prove the
result for Y , then by induction the result follows for Y .

Thirdly, we may assume that A is Zariski dense in Y for if we set Ỹ := Y (K) ∩A,
then Y (K) ∩A = Ỹ (K) ∩A.

Finally, we may assume that Y 6= ∅ for if Y = ∅, then take n = 0 and Z = ∅.
Now, the ideal of Y , I(Y ) ⊆ K[x1, . . . , xm], is generated by finitely many polyno-

mials over K. We may write the generators as f1(x1, . . . , xm; b), . . . , fs(x1, . . . , xm; b)
where the polynomials f1, . . . , fm are polynomials over Z having the form fi =∑

|α|≤d yαxα1
1 · · ·xαm

m for some natural number d and b is a tuple from K of the
appropriate length, `, say.

Consider the vector space V := {c ∈ K` | fi(a; c) = 0 for all a ∈ A∩Y (K) and i ≤
s}. By noetherianity, we find a finite sequence a1, . . . , an of elements of A ∩ Y (K)
for which V = {c ∈ K` | fi(aj ; c) = 0 for i ≤ s and j ≤ n}.

Let W = V (f1, . . . , fs) ⊆ Am × A` be the variety cut out by the polynomials
f1, . . . , fs. Denote by π the projection π : Am × A` → Am. For y ∈ Am we denote
the fibre of π � W over y as Wy.
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As I(Y ) cuts out the set Y (K) we see that

Y (K) = {e ∈ Am(K) | fi(e; c) = 0 for every c ∈ V and i ≤ s}

= {e ∈ Am(K) | (
n⋂

j=1

Waj
(K)) ⊆ We(K)}

= Am(K) r π((
n⋂

j=1

Waj
(K)) r We(K))

By Chevallay’s theorem (see Theorem 3.16 of [3]) or if you prefer, quantifier
elimination for algebraically closed fields (see Corollary 7.1.4 of [4]), this last con-
dition defines a constructible relation (over k) between e and 〈a1, . . . , am〉. That is,
there is a constructible set Z ⊆ X ×Xn so that 〈z; y1, . . . , yn〉 ∈ Z(K) if and only
if (

⋂n
j=1 Wyj (K)) ⊆ Wz(K).

By the above calculations, we see that Z〈a1,...,an〉(K) = Y (K). A fortiori,
Z〈a1,...,an〉(K) ∩A = Y (K) ∩A. �

We pass from Lemma 3.1 to a uniform version. This result is part of the folklore
in model theory and a clean proof seems to require some reference to logic. (I have
written proofs that avoid mentioning first-order languages, but these proofs are not
illuminating. If the reader sees a way to prove this result quickly using standard
methods in algebraic geometry, I would like to see the proof.)

Lemma 3.2. Let K be an algebraically closed field, X and B algebraic varieties
over K, Y ⊆ X × B a constructible subset, and A ⊆ X(K) a set of points on X.
There is a natural number n and a constructible set Z ⊆ X ×Xn such that for any
parameter b ∈ B(K) there is some a ∈ An for which Yb(K) ∩A = Za(K) ∩A.

Proof. As usual, we make couple of reductions.
First, we may assume that A 6= ∅ as in this case we may take n = 0 and Z = ∅.

In fact, we may assume that |A| > 1 as in the case that A = {a} is a singleton, we
may take n = 1 and Z = ∆X , the diagonal subvariety of X ×X.

Secondly, in the conclusion of the lemma it would suffice to find a finite sequence
of natural numbers n1, . . . , n` and constuctible sets Zi ⊆ X×Xni (for i ≤ `) so that
for any parameter b ∈ B(K) there is some i ≤ ` and a ∈ Ani so that (Zi)a(K)∩A =
Yb(K)∩A. Indeed, as |A| > 1 we can fix c 6= d ∈ A. If we let N := max{ni | i ≤ `},
n = N +`, and set Z :=

⋃`
i=1 Zi×XN−ni×{〈c, . . . , c, d, c, . . . , c〉} (where d appears

as the ith term in the sequence), then the conclusion of the lemma holds for this n
and Z.

Finally, as in the proof of Lemma 3.1, we may assume that X = As and B = At

for appropriate integers s and t.
At this point, first-order logic enters the picture. We consider K as a structure

in the language L = L(+,×, {a}a∈K , PA) where + and × are binary function
symbols interpreted by addition and multiplication in K, the constant symbol a
is interpreted by the corresponding element a ∈ K, and PA is an n-ary predicate
symbol for which the relation PA(x) holds just in case x ∈ A. Note that if W ⊆ As

K

is an affine variety over K, then we may express the condition “x ∈ [A ∩W (K)]”
in terms of the language L. In what follows, we write x ∈ W for x ∈ W (K).



AUTOMATIC UNIFORMITY 5

Let T be the set of all L-sentences that are true in K. Let L′ := L∪{b1, . . . , bt}
be the expansion of L by the new constant symbols b1, . . . , bt. We write b for the
tuple 〈b1, . . . , bt〉.

Consider the following set of L′-sentences

Γ = T∪{(∀c ∈ AN )(∃x ∈ A)x ∈ (Yb M Zc)}Z a K-constuctible subset of X×XN for some N

If the lemma fails, then Γ is consistent. Indeed, by the compactness theorem (see,
for instance, Theorem 5.1.1 of [4]) it suffices to check that each finite subset of Γ is
consistent. Fix a finite sequence 〈Z1, . . . , Z`〉 of K-sustructible sets Zi ⊆ X ×XNi .
If the lemma fails, then we can find some b ∈ B(K) so that Yb(K) ∩ A cannot be
expressed as (Zi)a(K) ∩A for any i ≤ ` or a ∈ ANi . Thus, any finite set of Γ may
be satisfied in K by choosing an appropriate element b ∈ B(K).

So, by the compactness theorem we may find an algebraically closed extension
L ⊇ K of K, a point b ∈ B(L), and a set A∗ ⊆ X(L) so that for every natural
number N , K-contructible set Z ⊆ X ×XN , and point c ∈ (A∗)N we have Yb(L)∩
A∗ 6= Zc(L) ∩A∗. This contradicts Lemma 3.1.

�

In what follows we revert back to the notation of Theorem 2.4. That is, K is a
fixed algebraically closed field, X a fixed variety over K, and Ξ ⊆ X(K) a set of
points on X.

From the fact that in our intended application each of the fibres Yb is closed, we
may conclude that Z could take a simpler form.

Lemma 3.3. In Lemma 3.2, if we take A = Ξ and assume that Y is closed, then we
may take Z to have the form

⋃m
i=1 Vi rWi where each Vi is an irreducible Ξ-special

variety and Wi ⊂ Vi is a proper subvariety.

Proof. As Z is constructible we may write Z =
⋃`

i=1 Vi r Wi for some irreducible
varieties Vi and proper subvarieties Wi of Vi. For each i, let Ṽi := Vi(K) ∩ Ξ1+n.
Write Ṽi =

⋃ki

j=1 Ui,j where this union expresses Ṽi as the irredundant union of

its irreducible components. Set W̃i,j := Ui,j ∩Wi. Let I := {〈i, j〉 | Ui,j 6= Wi,j}.
Let Z̃ :=

⋃
〈i,j〉∈I Ui,j r W̃i,j . By construction, each Ui,j is Ξ-special and W̃i,j is a

proper subvariety of Ui,j . We check that Z̃ may be used in place of Z.
Let b ∈ B(K) be any parameter and ξ ∈ Ξn the parameter given by Lemma 3.2

for which Yb(K) ∩ Ξ = Zξ(K) ∩ Ξ.
For the sake of readability, we identify varieties with their sets of K-rational

points in the following computation.
As Ṽi ⊆ Vi for each index i, it is clear that Z̃ξ ⊆ Zξ. For the other inclusion, we

compute

(Zξ × {ξ}) ∩ (Ξ× {ξ}) = Z ∩ (Ξ× {ξ})
= (Z ∩ Ξ1+n) ∩ (Ξ× {ξ})
⊆ Z ∩ Ξ1+n ∩ (Ξ× {ξ})
= Z̃ ∩ (Ξ× {ξ})
= (Z̃ξ × {ξ}) ∩ (Ξ× {ξ})
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Thus, Z̃ξ(K) ∩ Ξ = Zξ(K) ∩ Ξ = Yb(K) ∩ Ξ. �

We are now in a position to complete the proof of Theorem 2.4.

Proof of Theorem 2.4: Without loss of generality, we may assume that X = Ξ.
With this reduction we see that if ξ ∈ Ξn, then the variety X × {ξ} ⊆ X ×Xn is
Ξ-special.

Let Y ⊆ X×B be a family of subvarieties of X as in the definition of Ξ satisfying
automatic uniformity (see Definition 2.2). Let Z ⊆ X×Xn be the constructible set
given by Lemma 3.3. Write Z =

⋃m
i=1(Vi rWi) where each Vi is Ξ-special and each

Wi ⊆ Vi is a proper subvariety. For each b ∈ B(K) we find some ξ ∈ Ξn ⊆ Xn(K)
such that Yb(K) ∩ Ξ = Zξ(K) ∩ Ξ =

⋃m
i=1((Vi)ξ(K) r (Wi)ξ(K)) ∩ Ξ. As X × {ξ}

and Vi are Ξ-special, we conclude from the hypothesis of the theorem that each
component of (Vi)ξ which meets Ξ is Ξ-special, but each component of Yb(K) ∩ Ξ
is a component of one of the (Vi)ξ. Hence, by Proposition 2.3 Ξ satisfies automatic
uniformity.

z

4. Examples

In this section we discuss several examples where automatic uniformity holds as
well as one where it fails.

It is not hard to find examples where automatic uniformity fails. Take, for
instance, the case of X = A2 affine 2-space over K = C and Ξ = N2 the set
of pairs of natural numbers considered as subset of A2(C). Consider the family
Y = {〈x, y, z〉 ∈ A3 | x + y = z} Then for any b ∈ A1(C) the set Yb(C) ∩ Ξ
is finite, but the size of such a set may be arbitrarily large (as if b ∈ N, then
Yb(C) ∩ N2 = {〈x, y〉 ∈ N2 | x + y = b} = {〈x, b − x〉 | x ∈ {0, 1, . . . , b}} has
cardinality b + 1). Hence, automatic uniformity fails for N2.

Special points on Shimura varieties provide examples (at least conjecturally) of
automatic uniformity. Recall (see, for example, Chapter X, Section 4 of [1]) that
a Shimura variety X is an algebraic variety defined over a number field whose
associated analytic space X(C) admits an analytic uniformization as Γ\G(R)/K
where G is a connected, reductive, R-anisotropic, linear algebraic group over Q,
K ≤ G(R) is a maximal compact subgroup, and Γ < G(Q) is a neat arithmetic
group. We say that a point in X(C) is special if it is of the form ΓgK where
the stabilizer of gK in G(R) under the left action of G(R) is defined over Q. For
suitable elements g ∈ G(R) the graph of multiplication by g on G(R)/K descends
to a correspondence Tg ⊆ X × X. We refer to such a correspondence as a Hecke
correspondence. Subvarieties of the form Γ\H(R)g/K where H ≤ G is an algebraic
subgroup of G (over Q) and ΓgK is a special point are called Shimura subvarieties.
The special subvarieties are precisely the components of images of Shimura varieties
under Hecke correspondences. With these definitions in place we can recall the
André-Oort conjecture.

Conjecture 4.1 (André, Oort). If S is a Shimura variety and X ⊆ S is an
irreducible subvariety of S containing a Zariski dense set of special points, then X
is a special subvariety.

It follows from Theorem 2.4 that if the André-Oort conjecture holds, then it
holds uniformly.
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Theorem 4.2. Let S be a Shimura variety and Ξ ⊆ S(C) the set of special points
on S. Suppose that the André-Oort conjecture holds for all Cartesian powers of
S in that sense that if X ⊆ Sn is an irreducible subvariety of Sn containing a
Zariski dense set of special points, then X is a special subvariety. Then Ξ satisfies
automatic uniformity.

Proof. It is easy to check from the definitions that the class of special varieties
is closed under intersections. Thus, by Theorem 2.4 if the André-Oort conjecture
holds, it holds uniformly. �

The result announced in the abstract is a special case of Theorem 4.2.

Theorem 4.3. Denote by Ag,1,n the moduli space of principally polarized abelian
varieties of dimension g with full level n structure. Fix some quasiprojective em-
bedding. Assuming that the André-Oort conjecture is true, there is a function
B : N → N so that if C ⊆ Ag,1,n is a curve of degree d, then either C is a modular
curve or the number of moduli points of CM-abelian varieties on X is at most B(d).

Proof. The variety Ag,1,n is a Shimura variety and its special points are precisely the
CM-moduli points. If the André-Oort conjecture holds in this case, then each non-
modular curve on Ag,1,n contains only finitely many CM-moduli points. Assuming
that the André-Oort conjecture holds generally (or even, just for moduli spaces of
abelian varieties), Theorem 4.2 shows that the set of CM-moduli points on Ag,1,n

satisfies automatic uniformity. Thus, given an algebraic family of curves on Ag,1,n

there is a uniform upper bound on the number of special points lying on the non-
modular curves in the family. �

We may obtain an unconditional uniformity theorem about special points on
Shimura varieties by restricting to a smaller set of “special” points. Let p be a
prime number and let R ⊇ Z(p) be the maximal unramified extension of Z(p).
Provided that n is sufficiently large and coprime to p, the moduli varieties Ag,1,n

have models over R. Recall that an abelian scheme A over R is a canonical lift if
the restriction map defines an isomorphism between the endomorphism ring of A
and the endomorphism ring of its special fibre.

Theorem 4.4. The set Ξ ⊆ Ag,1,n(R) of moduli points of canonical lifts satisfies
automatic uniformity.

Proof. Moonen has shown that every Ξ-special variety is special [7]. Moreover,
if an irreducible special variety contains a canonical lift moduli point, then it is
Ξ-special. While it does not follow that the class of Ξ-special varieties is closed
under intersections, it does follow that if Y and Z are Ξ special and D ⊆ Y ∩ Z is
a component of the intersection, then either D contains no points from Ξ or D is
Ξ-special. Thus, Ξ satisfies automatic uniformity. �

As mentioned in the introduction, the Mordell-Lang conjecture and its variants
provide another case of automatic uniformity. The proof of Theorem 4.5 as stated
is due to McQuillan [6], but, of course, the key step in the proof of this theorem is
due to Faltings [2] and various other people contributed to the proof.

Theorem 4.5 (Mordell-Lang Conjecture). Let G be a semiabelian variety defined
over C and Ξ ≤ G(C) a finite dimensional (in the sense that dimQ(Ξ ⊗ Q) < ∞)
subgroup containing the torsion group of G. Then the Ξ-special subvarieties of Gn

are exactly the translates by elements of Ξn of semiabelian subvarieties of Gn.
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Corollary 4.6 (Uniform Mordell-Lang). Let G and Ξ be as in the statement of
Theorem 4.5, then Ξ satisfies automatic uniformity.

Proof. If ξ + H ≤ Gn and ζ + H ′ ≤ Gn are two translates by elements of Ξn of
algebraic subgroups of Gn, then their intersection is itself a translate of H ∩H ′ by
an element of Ξn. As Ξn contains all the torsion of Gn and the torsion of H ∩H ′

is dense in H ∩ H ′, we see that the intersection itself is a finite union of special
subvarieties. Thus, Theorem 2.4 applies. �

Maintaining the notation of Theorem 4.5, if Γ ≤ Ξ is any subgroup, then it is
still true that any Γ-special variety is a translate of a semiabelian subvariety, but
the Γ-special varieties need not satisfy the hypothesis of Theorem 2.4. However, Γ
still satisfies automatic uniformity.

Theorem 4.7. If G is a semiabelian variety over C and Γ < G(C) is a finite
dimensional subgroup, then Γ satisfies automatic uniformity.

Proof. As before, to maintain readability we identify varieties with their sets of
C-rational points.

Let Y ⊆ G×B be a family of subvarieties of G. Let n ∈ N and Z ⊆ G×Gn be
given by Lemma 3.3. That is, Z is a construcible set of the form Z =

⋃m
i=1 Vi r Wi

where each Vi is a Γ-special variety and Wi is a proper subvariety so that for any
b ∈ B there is some a ∈ Γn with Yb ∩ Γ = Za ∩ Γ. By Theorem 4.5 we know that
each Vi may be written as γi + Hi where γi ∈ Γn and Hi ≤ G×Gn is an algebraic
subgroup.

Denote by π the projection onto the first coordinate π : G×Gn → G. Then for
any b ∈ Γn we see that Γ∩ (γi +Hi)b = π((Γ×{〈0, . . . , 0〉}+ 〈0, b〉)∩γi +Hi). This
set is either empty or is the image under π of a coset of (Γ × {〈0, . . . , 0〉}) ∩ Hi.
Thus, the Zariski closure of Γ∩(γi +Hi)b is a translate of (some of) the components
of the Zariski closure of the projection of (Γ× {〈0, . . . , 0〉}) ∩Hi. Thus, Γ satisfies
automatic uniformity. �

While we wrote Theorem 4.7 for semiabelian varieties over C, the above argu-
ment applies to any algebraic group G and group Γ of points on G for which for
every natural number n the Γn-special subvarieties of Gn are translates of algebraic
groups. As noted in the introduction, Theorem 4.7 appears already in [5, 9].
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