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Twisted polynomials

Definition 0.1 Let R be a ring and o : R — R an endomorphism
of R. The ring of twisted polynomials in o over R is the ring R{c}
generated by R and the (non-commuting) indeterminate o subject

to the commutation rule ca = o(a)o for a € R.

There is a natural homomorphism R{c} — End(R, +) given by
sending a € R to scalar multiplication by a and o to o.

Every nonzero element f of R{oc} may be written uniquely as
Z?:o a;o’ for some d € N, a; € R (for i < d), and ag # 0. We
define the degree of f to be deg(f) := d.




Additive polynomials

Let R be a commutative ring of characteristic p > 0. We write the
p-power Frobenius morphism z +— 2P as 7: R — R.

There is a function p : R{7} — R[X] defined by
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Giving the image of p a ring structure with addition of polynomials
for 4 and composition of polynomials for x, p becomes an
isomorphism between R{7} and its image.

Scheme-theoretically, this ring of additive polynomials over R may
be identified with the endomorphism ring of the additive group
scheme over R, End(Gq /p).

Drinfeld modules

By way of notation, we write A := F,[t] for the ring of polynomials
in one variable over the field of p elements. We write K := [F,,(¢) for
the field of fractions of A.

Definition 0.2 Let K be a field of characteristic p > 0. A Drinfeld
module over K is a homomorphism ¢ : A — K{71} for which

deg((t)) > 0.

For a € A we write ¢, for p(a) thought of as an element of
End(@a/K) .




A-modules from Drinfeld modules

If p: A — K{7} is a Drinfeld module and L is a K algebra, then ¢
gives L an A-module structure via a *x x = ¢, (z) for a € A and

xz € L.

Via the identification of K{7}, ¢ expresses A as a subring of
End(Gq /). Via the diagonal action, A acts on each Cartesian
power G,? as well.

Definition 0.3 An algebraic subgroup G < G,Y is an algebraic
A-module if for every a € A we have p,G < G.

Torsion of a Drinfeld module

Definition 0.4 Let ¢ : A — K{7} be a Drinfeld module and
a € A an element of A. The a-torsion group is the group scheme
pla] = ker ¢, .

The torsion module is the ind-group scheme pio, 1= li_r)naeA vlal.
As the degree of p(ip,) is pi& ¥+, the group scheme [a] is finite of
size pde&¥a. If ¢, is separable, then the group ¢[a](K3°P) is a
vector space of dimension deg ¢, over F,.




Characteristic of a Drinfeld module

For any commutative ring R of characteristic p, reduction modulo

the two-sided ideal generated by 7 gives a natural map
m: R{r} — R.

Definition 0.5 If ¢ : A — K{7} is a Drinfeld module, then we set
t:=mop: A— K.

We say that ¢ has generic characteristic if ¢ is injective.
Otherwise, we say that ¢ has finite characteristic.

Denis’ Conjecture

Conjecture 0.6 (Denis) Let ¢ : A — K{7} be a Drinfeld module
of generic characteristic. Let I' < K9 be an A-submodule with
dimk (I’ ®a K) < 0o. If X C G,Y is an algebraic subvariety, then
X(K)NT is a finite union of translates of A-submodules of T".

The special case of I' = @y, (K%P)9 is the analogue of the
Manin-Mumford conjecture.




Finite characteristic variant

Definition 0.7 Let ¢ : A — K{7} be a Drinfeld module. The
modular transcendence degree of ¢ is the minimum d such that
there s some field L of absolute transcendence degree d and a
nonzero scalar A € (K*8)* such that \™1pX : A — L{r}.

Theorem 0.8 Let K be a finitely generated field of characteristic
p. Let ¢ : A — K{7} be a Drinfeld module of finite characteristic
and postive modular transcendence degree. If I' < G,9(K8) is a

finitely generated A-module and X C G,Y is any subvariety, then
X(K*8)NT is a finite union of cosets of subgroups of T.

Generalizations?

In Theorem 0.8 we assert only that X (K)NT is a finite union of
cosets of subgroups of I', but we do not assert that the subgroups
in question are A-modules. A complete version of this theorem
should include this extra assertion.

Theorem 0.8 is not a special case of Denis’ conjecture as we require
¢ to have finite characteristic. However, the following special case
of Denis’ conjecture should follow.

Conjecture 0.9 (Function-field Denis-Mordell-Lang) Let K
be a field of characteristic p >0 and ¢ : A — K{71} a Drinfeld
module of generic characteristic over K. Suppose that ¢ has
modular transcendence degree of at least two and that I' < G,9(K)
is a finitely generated A-module. Then for X C G,7 an algebraic
subvariety of G,?, the set X(K)NT is a finite union of cosets of
subgroups of T'.
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Reduction to the case of ¢; € K{7}7

To say that ¢ has finite characteristic means that there is some
nonzero s € A with ps € K{7}7. Let A’ :=F,[s] C A and

¢ = ¢ [a: A" — K{7}. Then, every algebraic A-module is
naturally an algebraic A’-module and every finitely generated
A-module is a finitely generated A’-module.

Thus, replacing ¢t with s and A with A’ we may assume that
o1 € K{7}7 is inseparable.
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Modular groups

Definition 0.10 Let G be a group definable in some structure and
U < G an abstract subgroup. We say that ¥ is (quantifier-free)
modular if for any quantifier free definable subset X C G™ of some
Cartesian power of G there is another set' Y which is a finite

Boolean combination of cosets of definable subgroups of G™ for
which X N¥" =Y NU™.

We drop the phrase quantifier-free throughout the rest of these

lectures.
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Modular subgroups of algebraic groups

Theorem 0.8 may be interpreted as saying that every finitely
generated A-submodule of some power of the additive group of K
is modular.

Proposition 0.11 Let K be a field, G an algebraic group over K,
and I' < G(K) a subgroup of the K -rational points of G. Then T' is
modular if and only if for every n € Z, and every subvariety

X C G™ the set X(K)NT™ is a finite union of cosets of subgroups
of T™.

Proof: (=) Take X C G™ a subvariety of G™. By hypothesis, there
is a set Y C G™(K) which is a finite Boolean combination of

quantifier-free cosets of definable subgroups of G™(K') such that

13
X(K)NnT™ =Y NI™. Write
d m;
Y = U(aiH,L-(K) \ (U bijLij(K)))

where H; = HY is a connected algebraic subgroup of G™, L; ; < H;
is a proper algebraic subgroup of H;, [H;(K) : L; ;(K)] > ¥y, and
bijL; ; C a;H;. Considering each irreducible subvariety of X
separately, one sees that we may assume that d =1 and a; = 1.
Find h € H(K) such that hb; L;(K) Nb,Le(K) = @ for all i, j.

Then

(hX)UX = hYE)NIMUY(K)NnI"
= ((Y(K)NnT")U(Y(K)nI")
(

(
= H(EK)NnI»

= H
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As H = H° we have X = H or hX = H (which implies that
X = H).

(<) Almost immediate.
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Modularity is Hereditary

Proposition 0.12 Let G be a definable group and ' < = < G
subgroups of G. If = is modular, then so is .

Proof: Immediate
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Reduction to I' = =9

Let 7; : G4 — G, be the i*" coordinate projection. Let

2:=>7 m(l). Then E < G,(K) is a finitely A-module and
I <=s.
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Compactness and modularity

Proposition 0.13 Let G be a definable group in some Ny -saturated
structure. Let T' < G be a subgroup. Suppose that (Hy)new 1S Some
descending chain of definable subgroups of G for which T'/(T'N Hy,)
is finite for each n and H* := (\ H,, is modular. Then, I is
modular.

Proof: Let {X}}rep be a quantifier-free definable family of subsets
of G™. We show that there is a natural number n and
quantifier-free definable family {Y.}.cc of finite Boolean
combinations of cosets of definable subgroups of G™ such that for
each coset a(H,)™ of (H,)™ we have for each b € B some ¢ € C
with Xy Na(H,)™ =Y. Na(Hy)™.

If this were to fail, then by N;-saturation we could find some b € B
and a € G such that X, Na(H*)™ cannot be expressed as
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Y Na(H")™ for any set Y C G™ which is a finite Boolean
combination of cosets of definable subgroups of G™. Translating by
a~', this contradicts modularity of H*.

Covering I' by finitely many cosets of (H,)™, we finish the proof.
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gpﬂ
Let L = K®°P be an Ni-saturated elementary extension of K*%P. We
set f := pf(L) := ﬂnzo o (L).

Theorem 0.8 then follows from the assertions
e I'/(T' Ny (L)) is finite for each n € Z

e ©f is modular
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[" lies in finitely many cosets of ¢ (L)

Proof: As L > K*P > K > T', we have @ (L) > @ (I'). Thus,
IT/(T' N (L)) < |T'/epen(T)]. As T is a finitely generate
A-module, the module I/ (I') is a finitely generated

A /t" A-module and therefore a finite set.
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Zilber dichotomy for separably closed fields

Definition 0.14 An oco-definable group G in some sufficiently
saturated structure s c-minimal if whenever H < G is a definable

subgroup of infinite index, then H is finite.

Theorem 0.15 (Bouscaren-Delon) Let G be a c-minimal
oo-definable group in an Wi-saturated separably closed field L of
finite imperfection degree ([L : LP] < N ). Let k :=(),~, L . If G
18 not modular, then there is an algebraic group H over k and a
surjective definable homomorphism 1 : G — H (k).
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Definable sets in separably closed fields

Let L = L®°P be a separably closed field of characteristic p with
[L : LP] = p° finite. Fix a basis B C L of L over LP. Then with
these with this basis named, we have definable functions

Ap ¢ L — L defined by the equation

x = Z Ao (z)Pb

beB

Theorem 0.16 The theory of L eliminates quantifiers in the
language L(+,%,0,1,{b:be B},{\, : b € B}).

For any finite sequence b= (b1,...,by) € <“B we write

Ap = Ap, 0+ 0\, and b* = I '

=1 "1
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©* is c-minimal

An analogous calculation occurs in Hrushovski’s proof of the
function field Mordell-Lang conjecture.

Using the quantifier elimination theorem, it suffices to show that for

any z € p*(L) (as L ranges over elementary extensions of K*°P) the

field K ({\;(7)}jc<. ) has transcendence degree at most one over
K. For this it suffices to consider b of length N (for each N € w).

Write x = v (y). As @y is inseparable, we may write @, = 7

for some ¢ € K{r}. Write ¢ = > p_pn g*wg for some 1y € KV {r}.

Note that ngN (y) € .
Thus, \y(z) =y N V5(y) € K(y).
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©* non-modular = A"\ € LP{r} for some
AeL”

This is Lemme 3.4.28 of Thomas Blossier’s thesis and is proved via

a calculation involving A-functions.

25

¢ is modular

Proof: Iterating Blossier’s Lemma and using the saturation of L,
we find A € L* such that A™'p\ € LP™ {7}.

From a theorem of A. Robinson it follows that
(K#e Fals) < (LA, LP™). Thus, there is some \ € (K?8)* such
that A\™'p A € Fals{r}.

So, AP ~la, € (F;lg)x implying that actually A € K*°P showing
that ¢ has modular transcendence degree zero.
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Conclusion for Drinfeld Mordell-Lang

Thus, ¢* is modular so that I' is also modular.

Can we conclude that if G < G,Y is a connected algebraic subgroup
of G,Y for which G(K) NT is Zariski dense, then G is an algebraic
A-module? This should be true and it should be related to a recent
result of Dragos Ghioca that every point in (f(K*P) is torsion.
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Drinfeld Manin-Mumford

Theorem 0.17 Let K = K be a field of characteristic p > 0 and
¢ : A — K{7} a Drinfeld module of generic characteristic. If

X C G,Y be a closed subvariety of a power of the additive group.
Then X (K) N@ior(K)Y is a finite union of cosets of A-modules.
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Difference equations to capture the torsion

As in the case of abelian varieties over number fields, it is a routine
matter to find a polynomial P(X) € A[X] and an automorphism o
such that P(o) vanishes on “most” of the torsion (precisely the
p-prime torsion for some prime ideal p C A where x € (K )ior is
p-prime torsion if anna () +p = A).

The polynomial P is obtained as the minimal polynomial of a

Frobenius on a reduction of ¢ and o is a relative Frobenius.

Patching two such equations coming from two different
(appropriately chosen primes) we may find a single difference
polynomial vanishing on all the torsion.
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Zilber dichotomy for ACFA

Theorem 0.18 (Chatzidakis-Hrushovski-Peterzil) Let

(K,0) = ACFA be an existentially closed difference field of
characteristic p. Let G be a commutative algebraic group over K
and I' < G(K) a c-minimal definable subgroup. Then, either T" is
modular or there there integers n,m € Z with either m = 0 and
n=1orm#0 and (n,m) =1, and an algbraic group H over
k:=Fix(e™1™) and a definable infinite subgroup T < H(k) x I for
which the projections in each direction have finite kernel and image
of finite index.
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Modularity of ker P (o)

After analyzing the splitting of P(X) over K*#& one shows that if
ker P(o) were not modular, then it must contain a c-minimal

non-modular group.

In this case, it would mean that there is a fixed field

k = Fix(c™1™) and additive maps «, 8 € {7} such that
a(G,(k)) N B(ker P(0)) is infinite.

From this we find that in the division ring of quotients of U{7r} P

have specific roots whose sizes contradict the Weil conjectures for
Drinfeld modules.
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From groups to A-modules

We show that every definable subgroup of ker P(o)™ is
commensurable with an A-module.

e Case n =1 follows from Galois theory
e Case n = 2 uses nonarchimedian analysis

e Case n > 2 is proved by induction using the dimension theory
of supersimple theories
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Questions

e Can one show that every definable subgroup of some power of

¢! is an A-module?

e Are there proofs along the lines of Pillay’s proof of
Manin-Mumford for these theorems?
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