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Abstract. Generalizing and synthesizing earlier work on the model theory of valued dif-
ference fields and on the model theory of valued fields with analytic structure, we prove
Ax-Kochen-Eršov style relative completeness and relative quantifier elimination theorems
for a theory of valuation rings with analytic and difference structure. Specializing our
results to the case of W [Falg

p ], the ring of Witt vectors of the algebraic closure of the field
with p elements, given together with the relative Frobenius and the Tate algebras as ana-
lytic structure, we develop a model theoretic account of Buium’s p-differential functions.
In so doing, we derive a uniform p-adic version of the Manin-Mumford conjecture.
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1. Introduction

If (K, v) is a complete valued field and f(x1, . . . , xn) =
∑

aαxα ∈ K[[x1, . . . , xn]]
is a formal power series over K for which v(aα) → ∞ as |α| → ∞, then f defines
a function On

K → K. Considering a formal first-order language rich enough to
express the field structure, the binary relation v(x) ≤ v(y) and the functions
coming from such convergent power series, one has a natural logical setting for
studying nonarchimedian analysis. If one includes in addition a unary function
symbol σ to denote a field automorphism which respects the valuation in the sense
that v(x) = v(σ(x)) universally and respects the analytic structure in the sense that
σ(f(x)) = fσ(σ(x)) where fσ denotes the effect of applying σ to the coefficients
of f , then one has a strong enough language to study analytic difference rings, the
central object of consideration in this paper.

While we have several motivations to study these structures, two stand out
most prominently. First, following the seminal work of Ax and Kochen [1, 2, 3]
and Eršov on the model theory of valued fields, a great many results showing that
valued fields considered in ever more complicated languages have very elegant the-
ories have been proven. With this work we amalgamate two different strands of the
model theory of enriched valued fields. Namely, we show that the theories of valued
fields with analytic structure and of valued difference fields may be unified. Fur-

∗Partially supported by an NSF CAREER award.



2 Thomas Scanlon

ther unification is certainly possible. Routine modifications of the proofs presented
here should suffice to combine analytic and differential structure, or more generally
D-structure, while other extensions will require the development of genuinely new
methods. Secondly, we wish to give a model theoretic account of Buium’s theory
of p-differential geometry and thereby deduce uniformities in Diophantine geom-
etry through applications of the compactness theorem and appropriate quantifier
elimination theorems.

Let us recall a little of the theory of p-differential operators. For p a prime
number a p-derivation δ on a commutative ring R is a function δ : R→ R satisfying

• δ(1) = 0,

• the functional equation δ(x + y) = δ(x) + δ(y) + Φp(x, y) where Φp(X, Y ) ∈
Z[X, Y ] is the integral polynomial 1

p (Xp + Y p − (X + Y )p), and

• the functional equation δ(xy) = ypδ(x) + xpδ(y) + pδ(x)δ(y).

Given a p-derivation δ : R→ R one can define a ring endomorphism σ : R→ R
by the equation σ(x) := xp + pδ(x). Conversely, if p is not a zero divisor in
R and τ : R → R is an endomorphism lifting the Frobenius in the sense that
τ(x) ≡ xp (mod p) for all x ∈ R, then δ̃ : R → R defined by τ(x) = xp + pδ̃(x) is
a p-derivation.

As with differential algebra, there is a p-differential geometry associated to
the category of rings with p-derivations. At the näıve level, one can consider
sets defined by the vanishing of p-differential polynomials, expressions of the form
P (x, . . . , δn(x)) where P is a polynomial, as the basic affine sets. In the case
that the underlying rings are domains, this p-differential geometry is essentially
the same as the corresponding difference algebraic geometry coming from differ-
ence equations involving σ and there is already a well developed model theoretic
approach to this subject [7, 8]. However, a richer geometry more in line with
that of Kolchin’s differential algebraic geometry may be obtained by p-adically
completing the rings of p-differential polynomials. Indeed, Buium notes that to
globalize p-differential geometry one must consider these p-adically complete rings
of operators. The fundamental functions in this theory, the p-differential func-
tions, locally have the form F (x, . . . , δnx) where x = (x1, . . . , xm) and F is given
by p-adically convergent power series in (n + 1)m variables. Buium shows that
many arithmetically interesting functions on the R := W [Falg

p ]-rational points of
schemes over R may be expressed locally as p-differential functions where one takes
δ := 1

p (xp − σ(x)) with σ : R → R the Witt-Frobenius, the unique lifting of the
Frobenius automorphism to an automorphism of the Witt vectors.

One sees from the above local description of p-differential functions, that every
p-differential function over R may be expressed as a term in the language with
function symbols for p-adically convergent power series over R, the Witt-Frobenius,
and the restricted division function Dp : R → R defined by Dp(x) := x

p if x ∈ pR

and Dp(x) := 0 otherwise. Conversely, if one were to regard all p-differential
functions as definable, then all of the above basic functions would be definable
as well. Consequently, the logic of Buium’s p-differential functions is that of the



Analytic difference rings 3

first-order structure of the Witt vectors of the algebraic closure of the field of p
elements with a function symbol for the Witt-Frobenius and for all p-adic analytic
functions.

Even though the goal of understanding p-differential functions guides our work,
we must consider structures of a more abstract nature in order to prove our results
sufficiently uniformly in order to derive any useful information about p-differential
geometry. We achieve these results by axiomatizing the notion of an analytic
difference structure on a valued field and then proving relative completeness and
relative quantifier elimination theorems for analytic difference rings in the style of
the Ax-Kochen-Eršov theorems for pure valued fields.

The essential tool in our analysis is a uniform version of the Weierstraß division
theorem. Fortunately for us, this theorem is already known in the case of most
interest to us [20]. Using the uniform Weierstraß division theorem we are able to
assign an order-degree to an analytic difference equation with respect to which we
may carry out inductive proofs.

The present author previously considered the ring W [Falg
p ] simply as a differ-

ence ring in [17, 5] where a simple axiomatization was presented and a quantifier
simplification theorem was proven. However, since difference polynomials are in-
trinsically finitistic objects, we were able to consider more complicated degree
relations and worked with a version of Hensel’s lemma unavailable in the analytic
difference context. The restrictions imposed by considering simultaneously ana-
lytic and difference structure have forced us to employ an ostensibly weaker form
of Hensel’s lemma which miraculously suffices.

This paper is organized as follows. In Section 2 we introduce our basic axioms
for analytic difference rings and establish some of the fundamental results about
these structures. In Section 3 we state and prove our Ax-Kochen-Eršov theorems
for analytically difference henselian rings. In Section 4 we recall the theory of p-
differential functions in detail and apply our results of Section 3 to prove a uniform
version of the Manin-Mumford conjecture.

2. Foundations of analytic and difference structure

We begin this section by recalling that a difference ring (R, σ) is a commutative
(unital) ring R given together with a distinguished ring endomorphism σ : R→ R.
While we shall usually consider rings for which σ is an automorphism, we do not
insist upon this condition in our definition of the term difference ring. The model
theory of difference fields, namely fields given together with a distinguished endo-
morphism, and, hence, also of difference domains, has been described by Chatzi-
dakis and Hrushovski [7] and in all characteristics by Chatzidakis, Hrushovski, and
Peterzil [8].

For us, a valued difference field is a valued field (K, v) given together with a
distinguished automorphism σ : K → K which respects the valuation in the sense
that the equality v(σ(x)) = v(x) holds universally. The model theory of valued
difference fields has been developed by Bélair, Macintyre and Scanlon [17, 5].
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As mentioned in the introduction, an analytic difference ring is simply the
ring of integers of a valued difference field given together with analytic functions
for which the distinguished automorphism respects the analytic structure. For a
fixed complete valuation ring it is easy enough to say what one means by analytic
structure. However, if one wishes to express the axioms for the theory of such a
ring in a first-order language, it is necessary to formulate “analytic structure” more
abstractly. Moreover, even if one is only interested in complete rings, to compare
the theories of these rings as analytic structures one requires a uniform language.

We adapt van den Dries’ treatment of analytic Ax-Kochen-Eršov theorems [19]
and its refinements by van den Dries, Haskell, Macpherson, Lipshitz and Robin-
son [20, 15] to the valued difference field setting. While we could restrict our atten-
tion to such rings of analytic functions as Z[[t]]〈X1, . . . , Xn〉 or W [Falg

p ]〈X1, . . . , Xn〉
without sacrificing the examples of greatest interest, we work with potentially more
general rings in order to separate the work on the model theory of analytic func-
tions from difference algebra.

Definition 2.1. A pre-notion of analyticity, A, is given by the data of a commu-
tative ring R and a doubly-indexed sequence of subrings Am,n ⊆ R[X][[Y ]] of the
ring of formal power series in the n variables Y = (Y1, . . . , Yn) over the polynomial
ring in the m variables X = (X1, . . . , Xm) over R for which

1. A0,0 = R,

2. if m ≤ m′ and n ≤ n′, then Am,n is a subring of Am′,n′ via the natural
inclusion, and

3. A is closed under compositions as far as this makes sense.

Definition 2.2. Given a pre-notion of analyticity A, an A-analytic structure on a
valuation ring O with maximal ideal m is given by a sequence of homomorphisms
Im,n : Am,n → Functions(Om ×mn,O) which respect the compositional identities
in A, the identities coming from the inclusions Am,n ↪→ Am′,n′ , and send the
variables Xi and Yi to the obvious projection maps.

Remark 2.3. If R itself is a complete valuation ring and Am,n = R[X][[Y ]], then
the usual interpretation of the elements of Am,n gives R an A-analytic structure.

Remark 2.4. In the definition of A-analytic structure, it is not really necessary
that O be a valuation ring and m its maximal ideal. However, this is the only case
we consider in our applications.

Remark 2.5. Given a pre-notion of analyticity A and L a first-order language for
valued fields containing (at least) a sort symbol O for the valuation ring and a sort
symbol m for the maximal ideal of the valuation ring we may naturally expand
L to L(A) by new function symbols where for each f ∈ Am,n we have a function
symbol, also denoted f , of domain sort Om×mn and range sort m. The condition
that a particular interpretation of A on a valuation ring defines an A-analytic
structure may be expressed as a first-order theory in L(A).
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Before we can give our conditions on when a pre-notion of analyticity is actually
a notion of analyticity, we must recall some of the basic formalism of quotient
operators on valuation rings and leading term structures. In what follows, we use
the symbol Q for our quotient operators even though “D” is more common in the
literature.

Definition 2.6. Let (K, v) be a valued field with valuation ring O := OK,v having
the maximal ideal m := mK,v. We define two operators Q0 and Q1 on O2 by
Q0(x, y) := x

y if v(x) ≥ v(y) 6=∞ and Q0(x, y) = 0 otherwise while Q1(x, y) := x
y

if v(x) > v(y) and is zero otherwise.

Remark 2.7. As shown in the work of Denef and van den Dries [9] and Lipshitz
and Robinson [15], for example, quantifier elimination for certain valuation rings
considered with analytic structure may be obtained in languages possessing Q0

and Q1 as primitives, but not without these operators.

Definition 2.8. Given a pre-notion of analyticity A and a first-order language of
valuation rings L as in Remark 2.5, the language LQ(A) is the expansion of L(A)
by the function symbol Q0 and Q1 of domain sort O2 and range sorts O and m,
respectively. Given a valuation ring with A-analytic structure there is a natural
expansion of the structure to an LQ(A)-structure.

We recall now the formalism of leading terms and angular components.

Definition 2.9. Let (K, v) be a valued field and t ∈ O = OK,v be a fixed nonzero
element of the ring integers of K. For each natural number n, we define the
nth leading terms of K relative to K to be the multiplicative monoid `n,t(K) :=
K/(1 + tnm). We write `n,t(K)∗ := `n,t(K) r {0}. We write rn,t(K) := O/tnm.
If t is understood we write simply `n(K) for `n,t(K) and rn(K) for rn,t(K) We
write `n : K → `n(K) for the natural quotient map and πn : O → rn(K) for the
reduction map.

Remark 2.10. While `n(K)∗ is naturally a group, it carries additional structure.
For instance, the valuation map v : K → ΓK ∪ {∞} descends to a map on `n(K)
which we continue to denote by v. More importantly, addition leaves a trace on
`n(K) in the form of a ternary predicate +̃n := {(x, y, z) ∈ `n(K)3 | ∃x̃, ỹ, z̃ ∈
K x̃ + ỹ = z̃, `n(x̃) = x, `n(ỹ) = y, and `n(z̃) = z}. In the sequel we shall
require that `n(K) remember more structure from K. In particular, we insist that
the leading terms remember analytic identities. That is, for each LQ(A)-term
f(x1, . . . , xm) the image of {(x1, . . . , xm, y) ∈ Km+1 | f(x) = y} under `n is to be
described by an m-ary predicate on `n.

Remark 2.11. The image of O× in `n(K) may be identified with rn(K)× and
the valuation exact sequence 1 −−−−→ O× −−−−→ K× v−−−−→ ΓK −−−−→ 0 de-
scends to 1 −−−−→ rn(K)× −−−−→ `n(K)∗ v−−−−→ ΓK −−−−→ 0.

Remark 2.12. If t ∈ O× is a unit, then the leading term structures `n,t(K) are
all identical.
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Remark 2.13. In our intended applications we take t = p, the residue character-
istic, or t = 1 when the residue characteristic is zero. In fact, we shall impose this
requirement with our axioms.

Remark 2.14. One can consider leading term structures relative to other ideals
in OK and we shall use `∞(K) := K/(1 + t∞m) where t∞m := {x ∈ O | (∀n ∈
Z+)v(x) > v(tn)}. One cannot access `∞(K) directly in first-order logic, but when
the field K is ℵ1-compact, `∞(K) = lim←− `n(K) so that it may be approached from
first-order data. Note that the ring O(K)[ 1t ] is a valuation ring whose residue field
is r∞(K)[ 1

π∞(t) ]. We refer to the corresponding coarsened valuation as v∞.

Remark 2.15. In the work of Basarab and Kuhlmann [4, 14], leading term struc-
tures are called “additive-multiplicative congruences” or “amc structures.”

Leading term structures already live definably in valued fields, but the way
in which they nontrivially combine the value group and certain residue rings can
complicate their analysis. By working with angular component functions one can
treat these parts separately.

Definition 2.16. An angular component function of level n is a section acn :
`n(K)∗ → rn(K)× of the valuation sequence. A system of angular component
functions is a sequence {acn}∞n=0 where acn is an angular component function of
level n and these functions commute with the obvious quotient maps between the
leading term and residue sorts.

Remark 2.17. As with the leading terms, we shall require that the angular com-
ponent functions preserve more than just the multiplicative structure.

Remark 2.18. While angular components need not exist in general, they do
if (K, v) is sufficiently saturated. Thus, possibly at the cost of replacing (K, v)
with an elementarily equivalent structure, we may assume that we have angular
component functions.

Let us now fix once and for all a background language L and theory of valued
fields, TVF. We take L to be a many sorted language having sort symbols VF for
the valued field itself, O for the valuation ring, m for the maximal ideal of the
valuation ring, Γ for the value group, rn for the residue rings of Definition 2.9 and
r×n for the units in the residue ring, and `n for the leading terms. The sorts are
connected by the inclusion maps m ↪→ O ↪→ VF, r×n ↪→ rn and r×n ↪→ `n, the
valuation maps v : VF→ Γ and v : `n → Γ, the reduction maps πn : O → rn and
πm,n : rm → rn, and the leading term maps `n : VF → `n and `m,n : `m → `n.
The sorts VF, O, and rn come equipped with a copy of the language of rings
while Γ is presented in the language of ordered abelian groups and the `n sorts
each have a binary multiplication operation and a ternary predicate for addition as
described above. If we wish to include angular component functions, then expand
the language to L({acn}).

We axiomatize the theory of valued fields, TVF, in L with the usual axioms
asserting that if M |= T , then VF(M) is a field and that v : VF(M) → Γ(M) is
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a valuation, and that all of the other sorts are interpreted as expected. That is,
the inclusion maps m(M) ↪→ O(M) ↪→ VF(M) are really inclusions and identify
their images with the elements of positive valuation and of nonnegative valuation,
respectively, the valuation maps are surjective, and the residue ring sorts and lead-
ing term sorts really give the residue rings and leading terms, et cetera. The one
nontrivial point here is that we require `n(M) to be VF(M)/(1 + m(M)) (rn(M)
to be O(M)/m(M), respectively) if the residue characteristic is zero and to be
VF(M)/(1+pnm(M)) (O(M)/pnm(M), respectively) when the residue character-
istic is p > 0. This condition may be expressed by a set of first-order sentences. Of
course, if we work in L({acn}), then our theory TVF(ac) expresses that the angular
component function symbols are interpreted as angular components.

When we expand to LQ our theory TQVF includes axioms expressing the defin-
tions ofQ0 andQ1. Given a pre-notion of analyticityA, we require of the expanded
language L(A) not only that there be function symbols for the elements on A but
that there be predicates on the leading term sorts corresponding to these functions.
Given any L-theory T ⊇ TVF of valued fields, the theory T (A) is obtained from T
by adjoining the axioms expressing that the valuation ring has A-analytic structure
and that the new predicates on the leading terms are interpreted correctly.

Remark 2.19. For the main theorems of this paper we require that the valued
fields under consideration have characteristic zero.

We need to say a little about affinoids before finishing the definition of a notion
of analyticity. If M |= TVF(A) is a valuation ring with A-analytic structure and
(K ′, v′) is an algebraic extension of VF(M) with an extension of the valuation v,
then there is a unique way to extend the A-analytic structure to K ′. Indeed, it
is enough to see this in the case that K ′ is a finite extension of VF(M). Fixing
a basis for O(K ′) over O(M), one can identify O(K ′) with O(M)[K:VF(M)]. In so
doing, one can expand the action of the A-analytic functions in terms of this basis
as well. In particular, if K ′ = VF(M)alg is the algebraic closure of VF(M), then
(K ′, v) |= TVF(A).

Definition 2.20. Let M |= TVF(A) be a valuation ring with A-analytic structure
and fix an extension v′ of v to K ′ := VF(M)alg. A S subset of O(K ′) is said to
be an affinoid over M if there are γ1, . . . , γn ∈ Γ(M) and a1, . . . , an ∈ O(M) with
γ1 > γi for i 6= 1 and S = {z ∈ O(K ′) | v(z − a1) ≥ γ1 ∧

∧n
i=2 v(z − ai) ≤ γi}.

An affinoid set in M is the intersection of an affinoid set over M with O(M).

With the background on valued fields in place we are now ready to describe
when a pre-notion of analyticity is actually a notion of analyticity.

Definition 2.21. Fix some theory T ⊇ TVF of valued fields. A notion of analyt-
icity (relative to T ) is a pre-notion of analyticity, A, for which Weierstraß division
holds uniformly in the following sense. If M |= T (A) and t(x) is an LQ(A)M -term
in the single O-variable x, then there are finitely many affinoid subsets F1, . . . , Fn

of O(M) for which O(M) =
⋃

Fi and for each i there is a rational function Ri(X)
over O(M) having no poles in Fi and L(A)M -terms Ei(x) and E−1

i (x) for which



8 Thomas Scanlon

Ei(x)E−1
i (x) ≡ 1 on Fi and t(x) = Ei(x)Ri(x) at all but finitely many points of

Fi.

Remark 2.22. That the rings of convergent power series over complete DVRs
give a notion of analyticity is proven by van den Dries, Haskell and Macpherson
in [20]. (Combine Proposition 4.1 with Corollary 3.4 noting that Proposition 4.1
is still general even though it is in Section 4 where the authors claim to specialize
to the case of the p-adics.)

Remark 2.23. In our applications, we restrict attention to valued fields of char-
acteristic zero. Thus, the theory T in Definition 2.21 will be TVF together with
the set of sentences asserting that the valued field itself has characteristic zero.

Remark 2.24. The condition of uniform Weierstraß division may be expressed
more syntactically in that the parameters for the term t(x) may be given as a tuple
of variables y and then the affinoids, the rational functions, and the units E(x)
vary uniformly with y.

If R is any ring and σ : R → R is an automorphism, then σ extends to
an automorphism σ : R[X][[Y ]] → R[X][[Y ]] of the power series ring over the
polynomial ring over R. For f ∈ R[X][[Y ]] we write the fσ for the result of
applying σ to f .

Definition 2.25. A notion of difference analyticity (relative to T as in Defin-
ition 2.21), (A, σ), is given by a notion of analyticity A and an automorphism
σ : A0,0 → A0,0 which induces an automorphism on each Am,n.

Definition 2.26. Given a notion of difference analyticity (A, σ) (relative to T ),
an A-analytic difference ring is a model M |= T (A) given together with a distin-
guished automorphism σ : M →M which preserves the valuation in the sense that
v(σ(x)) = v(x) universally and respects the A-analytic structure in the sense that
σ(f(x)) = fσ(σ(x)) for any A-function f .

The condition of being an A-analytic difference ring is clearly axiomatizable in
L(A, σ), the expansion of the language of valuation rings with A-analytic structure
by a symbol for an automorphism.

As in the study of difference algebra, terms in LQ(A, σ) may be expressed
using terms from LQ(A) applied to prolongations, sequences of the form σ(x) =
(x, σ(x), . . . , σn(x)). That is, if t = t(x) = t(x1, . . . , xm) is an LQ(A, σ) term, then
we can find an LQ(A) term t̃ = t̃(x0,1, . . . , x0,m; . . . ;xn,1, . . . , xn,m) so that relative
to the theory of A-analytic difference rings we have t(x) = t̃(σ(x)). We define the
order of t to be the least m for which such a t̃ exists. It should be noted that the
order of t when computed in a fixed A-analytic difference ring may be different
from the order when computed relative to the theory of A-analytic difference rings.
In our applications, when we speak of order we mean order relative to a given
structure.

Fix an A-analytic difference ring M and A ⊆ M a substructure for which
O(A) generates A. If a ∈ O(M) and for some LQ(A, σ)A term t(x) over A we
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have t(a) = 0 but t(x) 6≡ 0 in a neighborhood of a, then we can find such a
term of minimal possible order, n, and define the order of a over A, ord(a/A),
to be that minimal order. By the uniform Weierstraß division theorem, we may
write t(x) as E(σn(x))R(σn(x)) where R is a rational function over the LQ(A)-
structure A′ generated by A and a, . . . , σn−1(a) having no poles near σn(a) and
E is an L(A) term over A′ which is a unit near σn(a). Thus, there is actually a
nonzero polynomial over A′ which vanishes at σn(a). We define the degree of a
over A, deg(a/A), to be the minimal degree, d, of such a polynomial. We combine
these data in the pair (ord,deg)(a/A) := (ord(a/A),deg(a/A)) and order them
lexicographically.

As with pure valued valued fields and some theories of valued fields with ad-
ditional structure, the model companions of theories of A-analytic difference rings
are obtained by adjoining variants of Hensel’s lemma (and an axiom about the
existence of constants) to the theory. Unfortunately, the usual proof of Hensel’s
lemma breaks down when applied to LQ(A, σ) terms as the quotient operators
may introduce discontinuities. However, these terms do define generically contin-
uous functions and if one stays within the correct domain of continuity, Newton
approximation techniques do work.

Proposition 2.27. Let M be an A-analytic difference ring and p0, . . . , pd a finite
sequence of LQ(A)M terms with parameters from M and variables x0, . . . , xn−1.
Write P (x) =

∑d
i=0 pi(σ(x))(σn(x))i. Abusing notation, we write P ′(x) =

∑
ipi(σ(x))(σn(x))i−1.

Suppose that a ∈ O(M) with v(P (a)) > 2v(P ′(a)) and that for any ε ∈ O(M) with
v(ε) ≥ v(P (a))− v(P ′(a)) one has `0(pi(a + ε)) = `0(pi(a)) for i ≤ d. Then there
is some b ∈ O(M) with v(b− a) ≥ v(P (a))− v(P ′(a)) and v(P (b)) > v(P (a)).

Proof. A variant of the usual proof applies. Indeed, let η := σ−n(Q0(−P (a), P ′(a)))
and set b := a + η. From our hypotheses, v(a− b) = v(P (a))− v(P ′(a)) and com-
puting P (b) we have

P (b) =
∑

pi(a + η)(σn(a + η))i

=
d∑

i=0

pi(a)[1 + ξi]
i∑

j=0

(
i

j

)
σn(a)i−jσn(η)j

where v(ξi) > 0
≡ P (a) + P ′(a)σn(η) (mod P (a)m(M))
≡ 0 (mod P (a)m(M))

Corollary 2.28. With the hypotheses as in Proposition 2.27, there is a maximal
pseudoconvergent sequence {bα} from O(M) with b0 = a and v(P (bα)) increasing
with α. If in addition O(M) is maximally complete, then b := lim bα exists and
P (b) = 0.
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We convert the last part of this corollary into our version of henselianity for
A-analytic difference rings.

Definition 2.29. We say that the A-analytic difference ring M is A-analytically
difference henselian if the conclusion of Corollary 2.28 holds for M . That is, given a
sequence of LQ(A)M terms p0, . . . , pd with variables x0, . . . , xn−1 writing P (x) =∑

pi(σ(x),a)σn(x)i if a ∈ O(M) has the property that v(P (a)) > 2v(P ′(a))
while for any ε ∈ O(M) with v(ε) ≥ v(P (a)) − v(P ′(a)) we have `0(pi(σ(a))) =
`0(pi(σ(a + ε))) for i ≤ d, then there is some b ∈ O(M) with P (b) = 0 and
v(b− a) ≥ v(P (a))− v(P ′(a)).

Remark 2.30. It should be noted that even when there are no quotient opera-
tors, and even in the case of difference polynomials, the continuity hypothesis is
nontrivial.

Visibly, the condition of being A-analytically difference henselian is first-order
expressible. In axiomatizing the theory of A-analytically difference henselian rings,
TA-DH, we impose two additional requirements beyond those of Definition 2.29.
First, we insist that every model of TA-DH be of characteristic zero. Secondly, we
demand that the valued field have enough constants in the sense that for every
element of the value group there is some element of the field fixed by σ and having
that valuation. This last condition can be ostensibly weakened by requiring the
existence of σ-fixed elements of each valuation only at the level of the leading terms.
For the remainder of this paper, when we speak of an A-analytically difference
henselian ring we mean a model of TA-DH where (A, σ) is some notion of difference
analyticity.

3. AKE theorems for analytically difference henselian
rings

In this section we state and prove our main relative completeness and quantifier
elimination theorems for A-analytically difference henselian rings. As with much
of the earlier work on pure valued fields and on algebraic valued difference and
differential fields (but, remarkably, unlike most previous work on the model theory
of analytic functions on valued fields) we prove our results by employing a model
theoretic test for completeness and quantifier elimination involving extensions of
partial isomorphisms.

Simply put, our theorem is that for a fixed notion of difference analyticity,
(A, σ), the theory TA-DH of A-analytically difference henselian rings is complete
and eliminates quantifiers relative to the leading term sorts, and even, resplendently
so. As we expect the meaning here of relativity and resplendence may require some
explanation, we describe these terms now before announcing our theorem in its
official formulation.

Given a many sorted language L and a nonempty set Σ of L-sort symbols, the
restriction of L to Σ, (L � Σ), is the language having sort symbols Σ and as basic
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function, relation, and constant symbols exactly those from L which refer only to
sorts in Σ. That is, a function symbol f of L is a function symbol of (L � Σ) just
in case its domain sort is a sequence of sorts from Σ and its range sort belongs to
Σ while a relation symbol of L belongs to the restricted language if its field sort is
a sequence of elements of Σ and an L-constant symbol is an (L � Σ)-constant if its
sort belongs to Σ. If M is an L-structure, then the restriction of M to Σ is simply
the (L � Σ)-structure (M � Σ) consisting of the M -interpretation of the sorts in Σ
and the nonlogical (L � Σ)-symbols.

Definition 3.1. Given a many sorted language L and a nonempty set Σ of L-sort
symbols we say that the L-theory T is complete relative to Σ if for any model
M |= T the theory T ∪ Th(L�Σ)(M � Σ) is complete.

To discuss relative quantifier elimination we need to recall Moreleyization.
Given a language L, the Morleyization LMor of L is optained by adjoining to L a
new relation symbol Rφ(x1, . . . , xn) for each L-formula φ with the free variables
x1, . . . , xn. The LMor-theory TMor

L is defined by

TMor
L := {∀x1 · · · ∀xn(Rφ(x)↔ φ(x)) | φ an L-formula}

On general grounds, any extension of TMor
L in LMor eliminates quantifiers.

Definition 3.2. Given a many sorted language L and a nonempty set Σ of L-
sort symbols we say that the L-theory T eliminates quantifiers relative to Σ if the
theory T ∪ TMor

(L�Σ) eliminates quantifiers in L ∪ (L � Σ)Mor.

We mentioned that our theorems hold resplendently. We employ this enhance-
ment of the theorem when discussing angular components. Essentially, by resplen-
dent relative completeness (respectively, resplendent relative quantifier elimina-
tion) we mean that relative completeness (respectively, relative quantifier elimi-
nation) continues to hold even after arbitrarily enriching the sorts to which we
relativize.

Definition 3.3. Let L be a many sorted language and Σ a nonempty set of L-
sort symbols. We say that the L-theory T is resplendently complete relative to Σ
(respectively, resplendently eliminates quantifiers relative to Σ) if for any expansion
L′ ⊇ (L � Σ) having only Σ as sort symbols and any L′-theory T ′ the theory T ∪T ′

is complete relative to Σ (respectively, eliminates quantifiers relative to Σ).

With this general nonsense on many sorted languages in place we may now
state our main theorem.

Theorem 3.4. The theory TA-DH of A-analytically difference henselian rings is
respledently complete relative to the leading terms sorts and resplendently elimi-
nates quantifiers relative to the leading terms.

Using general results on the existence of angular components, we deduce a
stronger relative completeness theorem from Theorem 3.4.
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Theorem 3.5. The theory TA-DH of A-analytically difference henselian rings is
complete relative to the value group and residue ring sorts.

As a particular application of Theorem 3.5 we see that if k ↪→ k′ is an extension
of algebraically closed fields of characteristic p, then the corresponding extension
of Witt rings, W [k] ↪→W [k′], is elementary in the language L(A, σ) where Am,n =
W [k][X][[Y ]] and σ is interpreted as the Witt-Frobenius. We shall expand on this
observation and exploit it in Section 4.

As is our wont, we shall prove Theorem 3.4 by converting it into a statement
about extending isomorphisms and then actually proving the statement on ex-
tensions by considering the cases of residue field, totally ramified, and immediate
extensions separately. Some of these steps require merely routine modifications to
the proofs in the algebraic setting, but others are considerably trickier.

The reader should consult Section 7 of [17] or Theorem 8.4.1 of [11] for a
discussion of why the following technical theorem is equivalent to Theorem 3.4.

Theorem 3.6. Let L′ be an expansion of the restriction of LQ(A, σ) to the leading
term sorts, (LQ(A, σ) � LT), having no new sort symbols. Suppose that M1 and
M2 are two saturated A-analytically difference henselian rings each of the same
cardinality > (|L′|ℵ0)+ considered in the language LQ(A, σ) ∪ L′Mor. Suppose
moreover that (M1 � LT) ≡L′ (M2 � LT) |= TMor

L′ . Suppose that A1 ⊆ M1 and
A2 ⊆ M2 are two small (of cardinality at most |L′|) substructures of M1 and
M2 for which O(Ai) generates Ai and that f : A1 → A2 is an isomorphism of
LQ(A, σ) ∪ (L′)Mor-structures. If a ∈ O(M1) is any element, then there is an
extension of f to an isomorphism between the substructure of M1 generated by A1

and a, A1〈a〉, and a substructure of M2.

Throughout the remainder of this section we concentrate on proving Theo-
rem 3.6, and, hence, also Theorem 3.4. In the course of this proof we shall reduce
the problem to other statements with stronger hypotheses. As these restrictions
are established, we shall display our new hypotheses as boxed statements.

As M1 and M2 are saturated of the same cardinality and (M1 � LT) and
(M2 � LT) are elementarily equivalent, they are actually isomorphic. Since the
map f : A1 → A2 is an isomorphism of LQ(A, σ) ∪ (L′)Mor-structures, and, each
(Mi � LT) eliminates quantifiers, the restrictions of these structures to the leading
terms are actually isomorphic over f . Let us fix such an isomorphism f̃ : (M1 �
LT)→ (M2 � LT) and thereby arrive at our first reduction.

f̃ ∪ f : A1 ∪ (M1 � LT)→ A2 ∪ (M2 � LT) is an isomorphism of LQ(A, σ)∪ (L′)Mor-
structures.

We fix now N1 � M1 and N2 � M2 two |L′|+-compact elementary substruc-
tures each of cardinality less than that of M1 for which A1〈a〉 ⊆ N1 and A2 ⊆ N2.
Our hypotheses on the saturation of M1 and M2 and on their cardinalities ensure
that such structures exists. In the course of our construction of an extension of f
we shall initially extend inside N1 taking values in N2 until Ni is an immediate
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extension of Ai and then we extend f to a maximal immediate extension of N1

inside M1.
With the next lemma we show that the map f may be extended so as to add

new elements to the residue ring r∞(A1).

Lemma 3.7. Let a ∈ r∞(N1). Suppose that (ord,deg)(a/r∞(A1)) = (m, d). Let
p̃0, . . . , p̃d be LQ(A)A1 terms in the variables x0, . . . , xn−1 for which the reductions
under π∞, pi = π∞(p̃i), give well defined functions at (a, σ(a), . . . , σm−1(a)) and
P (a) =

∑
pi(σ(a))(σm(a))i = 0. Let P̃ =

∑
p̃i(σ(x))(σm(x))i. Then there are

elements ã ∈ O(N1) and b̃ ∈ O(N2) for which P̃ (ã) = 0, P̃ f (̃b) = 0, π∞(ã) = a,
f̃(a) = π∞(̃b), and f extends to an isomorphism defined on the structure A1〈ã〉
which has no new elements in its value group taking ã to b̃.

Proof. Let a′ ∈ O(N1) be any lifting of a. By our minimality assumption, P ′(a) 6=
0. As P (a) = 0 in r∞(N1), we see that, 2v(P̃ ′(a′)) < v(P̃ (a′)). Moreover, because
the terms pi(σ(x)) are well-defined at a, their leading terms do not depend on the
choice of a′. Hence, as N1 is A-analytically difference henselian, there is some ã
lifting a and satisfying P̃ (ã) = 0. Likewise, using ℵ1-compactness of N2 we can
find b̃ ∈ O(N2) with P̃ f (̃b) = 0 and π∞(̃b) = f̃(a).

We argue by induction on n ≤ m that if Q is a term of order n, then f̃(`∞(Q(ã))) =
`∞(Qf (̃b)). By the uniform Weierstraß property, we may express Q near ã as
E(σn(ã))R(σn(ã)) where E is given by an L(A) term over the LQ(A)-structure
generated by A1 and ã, . . . , σn−1(ã) and is a unit near σn(ã) and R is a rational
function over the same structure having no poles near σn(a). In the case that
n = m, we may assume that the degrees of the numerator and denominator of R
are less than d. By induction, the ∞-leading terms of the parameters for E and
R are under control. As the quotient operators are not applied to σn(a) in E and
E is a unit near σn(a), its ∞-leading term is determined by that of σn(ã). Write
R(σn(ã)) = S(σn(ã))/T (σn(ã)) where S and T are polynomials. Write S = cS̃

where v(c) is equal to the Gauß valuation of S. Then π∞S̃ gives a nonvanishing
polynomial at σn(a) as either n < ord(a/r∞(A1)) or deg π∞(S̃) < deg(a/r∞(A1)).
Thus, `∞(S̃(ã)) = π∞(S̃)(a). Applying the same reasoning to T , we conclude the
induction and, hence, also the proof of this lemma.

Repeatedly applying Lemma 3.7 we can extend f so that r∞(Ai) = r∞(Ni).
However, we delay doing this until we have achieved Γ(Ai) = Γ(Ni).

With the following steps we enlarge the value group of A1. Before actually
adding new elements to the value group, we extend f so that its domain has
enough constants.

Lemma 3.8. If c ∈ O(A1), then f extends to some A1〈ε〉 ⊆ N1 where v(ε) = v(c),
σ(ε) = ε, and Γ(A1) = Γ(A1〈ε〉).

Proof. Take ζ ∈ O(N1) with σ(ζ) = ζ and v(ζ) = v(c). Such an element exists by
our axiom thatA-analytically difference henselian rings have enough constants. Set
η := Q0(ε, c). Then η is a nonzero solution to the linear difference equation σ(X)−
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Q(c, σ(c))X = 0, even upon reduction to r∞(N1). Thus, there are infinitely many
solutions to σ(X) − π∞(Q(c, σ(c))X = 0 in r∞(N1) and by |L′|+-compactness,
at least |L′|+ many solutions. In particular, there some solution a which is not
algebraic over r∞(A1). Let ã and b̃ be given by Lemma 3.7 applied to P̃ (X) =
σ(X)− π∞(Q(c, σ(c)). Set ε := ã · c.

Iterating this construction so as to consider all the elements of the value group
of A1, we may suppose that A1 and A2 have enough constants.

A1 and A2 have enough constants

For purely ramified extensions we consider the cases of algebraic and transcen-
dental extensions separately.

Lemma 3.9. If ε ∈ O(N1), σ(ε) = ε, εn =: ζ ∈ O(A1), and mv(ε) /∈ Γ(A1) for
m < n, then f extends to A1〈ε〉.

Proof. That there is some η ∈ N2 fixed by σ with ηn = f(ζ) and that the map
extending f sending ε to η preseves the valued difference structure is already known
from the algebraic case. As noted in Section 2, the A-analytic structure extends
uniquely to algebraic extensions.

We extend now to transcendental expansions of the value group.

Lemma 3.10. If ε ∈ O(N1) is fixed by σ and nv(ε) /∈ Γ(A1) for all n ∈ Z+, then
there is some η ∈ O(N2) also fixed by σ with f̃(`∞(ε)) = `∞(η) for which f extends
to A1〈ε〉 via ε 7→ η.

Proof. Let ζ ∈ O(N2) be any element with `∞(ζ) = f̃(`∞(ε)) and let P (X) =
σ(X) − X. Then v(P (ζ)) > v(ζ) > 0 = v(P ′(ζ)) as the leading term of ζ is a
constant. Indeed, we even have v∞(P (ζ)) > v∞(ζ) where v∞ is the coarsened
valuation. It follows that if ξ ∈ O(N2) with v(ξ) ≥ v(P (ζ)), then `∞(−(ζ + ξ)) =
`∞(−ζ). Hence, our version of Hensel’s lemma applies and we can find some
η ∈ O(N2) with `∞(η) = `∞(ζ) = f̃(`∞(ε)) and σ(η) = η.

Since σ(ε) = ε, every element of O(A1〈ε〉) can be expressed as an LQ(A)A1

term applied to ε. Likewise, the same is true of η with A1 replaced by A2. So, it
suffices to show that if t(x) is an LQ(A)A1 term, then f̃(`∞(t(ε))) = `∞(tf (η)).

Using uniform Weierstraß division to express t(x) as E(x)R(x) where E is an
L(A)A1 term which is a unit near ε and R(x) is a rational function over O(A1), we
see that `∞(E(ε)) depends just on `∞(ε) and if R(x) = (

∑
aix

i)/(
∑

bjx
j), then

`∞(R(ε)) = `∞(ai0)`∞(ε)i0−j0`∞(bj0) where v(ai0) + i0v(ε) = mini v(ai) + iv(ε)
and v(bj0) + j0v(ε) = minj v(bj) + jv(ε).

Applying Lemmata 3.9 and 3.10 repeatedly, alternating the rôles of N1 and N2,
we may extend f so that Γ(Ai) = Γ(Ni) for i ∈ {0, 1}. Once this has been achieved,
we may apply Lemma 3.7 repeatedly to extend f so that Ni is an immediate
extension of Ai.

Let us state this result as our second reduction.
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Ni is an immediate extension of Ai for i ∈ {0, 1}

Fix now N̂1 a maximal immediate extension of N1 in M1 and a maximal im-
mediate extension N̂2 of N2 in M2. We shall actually extend f to N̂1.

Working by induction in N̂1 we may assume that a has the least possible
(ord,deg) over A1 of new elements of N1. That is:

If b ∈ O(N1) and (ord,deg)(b/A1) < (n, d) :=
(ord,deg)(a/A1), then b ∈ O(A1).

Working by induction further we may assume that whenever we have a pseudo-
convergent solution to a low (ord,deg) A-analytic difference equation over A1 in
N1, then we have an actual solution.

If Q(x) =
∑e

i=0 qi(x, σ(x), . . . , σm−1(x))(σm(x))i where
(m, e) < (n, d) and each qi is an LQ(A)A1 term and {xα}
is a pseudosolution to Q in the sense that v(Q(xα)) is in-
creasing with α and Hensel’s lemma applies at each α,
then there is some b ∈ O(N̂1) with xα pseudoconverging
to b and Q(b) = 0.

We fix now a maximal pseudoconvergent approximation {xα} to a from O(A1)
and P (X) =

∑d
i=0 pi(σ(X))(σn(X))i a minimal equation for a over A1. We shall

show the following.

1. For Q of lower complexity than that of P (that is, Q is a polynomial in σn(X)
of degree less than d having coefficients which are LQ(A, σ)A1 terms of order
less than n) we have `∞(Q(a)) = `∞(Q(xα)) for α� 0.

2. Indeed, we shall show that v∞(Q(a) − Q(xα)) > v(Q(a)) + v(a − xα) for
α� 0.

3. Possibly replacing P with a refinement, Hensel’s lemma applies along {xα}.

4. There is some b ∈M2 for which {f(xα)} is a pseudoconvergent approximation
and P (b) = 0.

It follows that we may extend f by sending a to b and that our inductive
stipulations on f and N̂1 continue to hold.

We work by induction on m = ord(Q) to prove the first of these points.
We observe first that if U is an LQ(A, σ)A1 term of order less than m, then

for α � 0 we have v(a− xα) > v(σm(a)− U(a)). Indeed, take α large enough so
that the valuation inequality stated in Part 2 above holds for U . Assuming that
v(σm(a)−U(a)) ≥ v(a−xα) = v(σm(xα−a)), then we have v(σm(xα)−U(xα)) =
v((σm(a)−U(a)) + (σm(xα − a)) + (U(xα)−U(a))) ≥ v(a− xα). Hensel’s lemma
then applies to produce some yα with σm(yα) = U(yα) and v(yα−xα) ≥ v(a−xα).
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But then by the boxed reduction above, the sequence {yα}, and hence also {xα}
has a pseudolimit in N̂1 contradicting its maximality.

The point of this observation is that any affinoid defined over the LQ(A)-
structure generated by A1 and a, . . . , σm−1(a) containing σm(a) also contains
points of the form σm(xα).

Near σm(a) we can write Q(x) = E(a, . . . , σm−1(a);σm(x))R(a, . . . , σm−1(a);σm(x))
where the quotient operators are not applied to σm(x) in E and E is a unit near
a and R is a rational function in σm(x) with no poles near σm(a). By induction,
the parameters in E and R have the same ∞-leading terms if (a, . . . , σm−1(a)) is
replaced by (xα, . . . , σm−1(xα)) for α� 0.

Since `∞(xα) = `∞(a), E is a unit, and the ∞-leading terms of the coefficients
of E(xα, . . . , σm−1(xα);X) and E(a, . . . , σm−1(a);X) are the same, it follows that
`∞(E(σ(a))) = `∞(E(σ(xα))). Moreover, since the quotient operator is not ap-
plied to the last variable and v(E(σ(xα))) = 0, the usual Taylor series expansion
can be used to see that v(E(σ(xα))− E(σ(a))) = γ + Nv(xα − a) for some fixed
γ ∈ v(O(A1)).

We can write R as U(x0, . . . , xm)/V (x0, . . . , xm) where each of U and V is
a polynomial in xn. Let us write U =

∑
ui(x0, . . . , xm−1)xi

m. By induction we
know, among other things, that `∞(ui(σ(a))) = `∞(ui(σ(xα))) for all i and α� 0.
Replacing U with Q(U, c) where c ∈ O(A1) and v(c) = mini v(ui(σ(a))) we may
assume that v(ui(σ(a))) = 0 for some i.

Write xα = a + yα.
Let us expand U(xα).

U(xα) =
∑

ui(σ(a + yα)(σm(a + yα))i

=
∑
i,j

ui(σ(a))[1 + ξi]
(

i

j

)
σm(a)i−jσm(yα)j

where v∞(ξi) > 0

=
∑

j

[1 + ζj ]
1
j!

U (j)(a)σm(yα)j

where v∞(ζj) > 0

For α � 0, the summands on the righthand side of the equation all have
different v∞ valuations. Thus, `∞(U(xα)) = `∞( 1

j!U
(j)(a)σm(yα)j) for the j which

minimizes the valuation of the expression on the right. If this j is zero, then we are
done. As we have reduced to the case that v(ui(σ(a))) = 0 for some i, it follows
that the j for which the valuation is minimized must have v∞(U (j)(a)) = 0. Writing
j = k + 1, we see that Hensel’s lemma applies to U (k)(X) along xα so that by our
inductive hypothesis the sequence xα pseudoconverges to a solution to U (k)(x) = 0
contradicting its maximality. Hence, `∞(U(a)) = `∞(U(xα)).

Repeating this calculation with V in place of U , we finish the proof of points
1. and 2.
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The above calculations apply as well to the case that U = P . This time since
P (a) = 0, necessarily the minimal valuation of a summand on the right is obtained
for some j > 0. If this j is not one and even if v∞(P ′(a)) 6= 0, then as above
xα pseudoconverges to a solution of some derivative of P . Thus, Hensel’s lemma
applies to P along xα and we can find the requisite solution to P f (X) = 0 in
O(M2).

Conversely, the above calculations show that if we assumed merely that a ∈
O(M1), then there is an immediate extension of N̂1 in which xα pseudoconverges
to a solution to P (X) = 0. Indeed, arguing by induction on (ord,deg)(a/N̂1) we
may assume that P is also a minimal equation for a over N̂1. With the above
calculations we never invoked the fact that a lives in an immediate extension of
A1. Thus, `∞(Q(a)) = `∞(Q(xα)) ∈ `∞(A1) for each lower complexity Q.

With these observations we conclude the proof of Theorem 3.6.

4. Model theory of p-differential geometry

In this section we apply the results from Section 3 to the theory of p-differential
functions obtaining amongst other theorems a uniform version of the Manin-
Mumford conjecture over W [Falg

p ].
Before discussing applications to p-differential functions we verify that the Witt

vectors may indeed be regarded as A-analytic difference henselian rings.
The reader may wish to consult Section 17 of [10] for more details on the Witt

vectors. Recall that there is a functor W taking a perfect field k of characteris-
tic p > 0 and returning a complete valuation ring W [k] whose maximal ideal is
generated by p and whose residue field is naturally k. From the functoriality of
the Witt vector construction it follows that Frobenius automorphism τ : k → k
induces an automorphism W (τ) : W [k]→W [k] which reduces to τ modulo p. We
refer to W (τ) as the Witt-Frobenius. It follows from the construction of W (τ) that
it preserves the p-adic valuation on W [k].

There is more than one reasonable choice for the analytic structure on W [k].
If we fix k, then we may wish to take Am,n := W [k][X][[Y ]]. In this way we
recover the rings of convergent power series by specializing the variables ranging
over the maximal ideal. If we wish to work uniformly in p, then we may prefer to
use Z[X][[Y ]]. In any case, the uniform Weierstraß division property follows from
the main results of [20].

The most natural angular component structure on the Witt vectors is defined
by taking the powers of p as the constant representatives of the value group. Hence-
forth, when we consider the Witt vectors with angular components we insist upon
this choice. Fixing a choice of A as in the previous paragraph, we find now that
the theory of W [k] in LQ(A, σ, ac) is determined by the theory of k and admits
quantifier elimination relative to k and the value group. From Theorem 3.4 we
require the theories of all of the residue rings to determine the full theory of the
A-analytic difference henselian ring. In the case of the Witt vectors, the inter-
mediate quotients rn(W [k]) = W [k]/pn+1W [k] are uniformly interpretable as the
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k-rational points of ring schemes over k. Thus, their theories and questions about
quantifier elimination for these rings are determined by k.

Let us note two consequences of this characterization of the theory of the Witt
vectors as an A-analytic difference ring. First, if k ↪→ k′ is an elementary extension
of perfect fields, then W [k] ↪→W [k′] is also elementary. Secondly, the residue field
is orthogonal to the value group in the sense that if X ⊆ r0(W [k])n×Γ(W [k])m is
any definable set, then X is a finite Boolean combination of sets of the form Y ×Z
where Y ⊆ kn is definable in k and Z ⊆ Zm is definable in (Z,+, 0, <).

Let us turn now to a model theoretic study of p-differential geometry. As we
noted in the introduction, if σ : W [k]→W [k] is the Witt-Frobenius, then the op-
erator δ : W [k]→ W [k] defined by δ(x) := 1

p (σ(x)− xp) is a p-derivation and the
functions of the form f(x) = F (x, δx, . . . , δmx) where x = (x1, . . . , xn) and F is
given by a convergent power series in n(m+1) variables are the p-differential func-
tions on W [k]n. We concentrate on one class of p-differential functions constructed
by Buium, namely the p-differential characters on abelian varieties.

As an illustration of the method, we prove a uniform version of the Manin-
Mumford conjecture for abelian varieties over W [k]. Recall that the Manin-
Mumford conjecture (or Raynaud’s theorem [16]) asserts that if A is an abelian
variety over an algebraically closed field K of characteristic zero and X ⊆ A is a
closed subvariety, then the intersection X(K) with the torsion subgroup of A(K)
is a finite union of translates of the torsion subgroups of group subvarieties of A.
For the purposes of giving this theorem a more quantitative form it can help to
present it in terms of the Ueno locus of X.

Recall that the Ueno locus of X, Ueno(X), is the subvariety of X defined
by x ∈ Ueno(X)(K) if and only if there is an abelian subvariety B ≤ A for
which x + B ⊆ X. We shall have occasion to use the fact, noted in [13], that if
the variety X varies in an algebraic family, then so does Ueno(X). The Manin-
Mumford conjecture implies that there are only finitely many torsion points in
X(K) which do not lie in Ueno(X)(K). In fact, if one establishes this finiteness
result for the number of torsion points lying on varieties outside their Ueno loci,
then the Manin-Mumford statement follows formally.

With our terms defined we can state our uniform version of the Manin-Mumford
conjecture.

Theorem 4.1. Let k be an algebraically closed field of characteristic p > 2, S a
variety (reduced, integral scheme of finite type) over W [k] and A → S an abelian
scheme over S. Let X ⊆ A be a closed subscheme. Then there is a natural number
N such that for any point s ∈ S(W [k]) the number of torsion points in As(W [k])
lying in Xs(W [k]) but outside of Ueno(Xs)(W [k]) is bounded by N .

Remark 4.2. The restriction to odd p is an artifact of our proof in that this is an
hypothesis for the published theorem of Buium on the existence of p-differential
characters.

Remark 4.3. Theorem 4.1 is similar to the main theorem of [18] but is incom-
parable in terms of its strength. The result in [18] is weaker in that one requires
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A → S to be a universal abelian variety over a moduli space and one obtains in-
formation only about fibres which are canonical lifts, but it is stronger in the sense
that Zariski closure of the intersection of X(W [k]) with the set of torsion points
on canonical lift fibres is described with greater precision than is possible under
the hypotheses of Theorem 4.1.

As with some of the other model theoretic theorems describing the intersection
of subvarieties of abelian varieties with certain special subgroups, we study inter-
sections of varieties with certain uniformly definable groups containing the torsion
groups in lieu of direcly analyzing the torsion groups themselves. Unlike some of
the other work, rather than offering an alternative proof of the Manin-Mumford
conjecture itself, we use Raynaud’s theorem to derive this uniform version.

Before recalling Buium’s construction of p-differential characters on abelian
varieties we highlight the crucial features of the groups obtained as the kernels of
his characters that we shall exploit.

Definition 4.4. Let k be an algebraically closed field of characteristic p > 0. If X
is a scheme over W [k] and n is a natural number, then we write ρn : X(W [k]) →
X(W [k]/pn+1W [k]) for the reduction modulo pn+1 map. If n < m, then we write
ρm,n : X(W [k]/pm+1W [k]) → X(W [k]/pn+1W [k]) for the intermediate reduction
map. Using the Greenberg transform, ρm,n may be regarded as a map of schemes
over k. If Z ⊆ X(W [k]) is a closed subset of X(W [k]), then we say that Z is
finite dimensional if for every natural number n the set ρn(Z) is the set of k-
rational points on a subvariety of ρn(X(W [k]) with respect to the identification
X(W [k]/pn+1W [k]) with the k-rational points of an algebraic variety over k and
lim sup deg ρn+1,n � (ρn+1Z) is finite.

At least when the characteristic of k is not two, Buium establishes that in
analogy to the group homomorphisms constructed by Manin using derivations on
function fields that if A is an abelian scheme over W [k] of relative dimension g, then
there is a group homomorphism given by a p-differential function µ : A(W [k]) →
W [k]g for which the kernel, A](W [k]), is finite dimensional. While the actual A]

groups need not vary uniformly, Buium does observe with Remark (1) on page
327 of [6] that the data required to produce group homomorphisms with finite
dimensional kernels is bounded uniformly. Let us reformulate his observation as a
theorem.

Theorem 4.5 (Buium). Let k be an algebraically closed field of characteristic p >
2. Suppose that S is a variety (reduced, integral scheme of finite type) over W [k]
and that A → S is an abelian scheme over S of relative dimension g. Then there
is a p-differential function µ : A(W [k]) → W [k]g such that for each s ∈ S(W [k])
the map µs : As(W [k])→ W [k]g is a group homomorphism for which ker(µs) is a
finite dimensional proalgebraic group.

Since the additive group is torsion free, the group ker(µs) contains the torsion
group As(W [k])tor. Moreover, since µ is a p-differential function, the group ker(µs)
is definable in L(A, σ). In the notation of Theorem 4.1, one might like to argue that
there are boundedly many points in (Xs(W [k]) r Ueno(Xs)(W [k])) ∩ ker(µs) and
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then conclude a fortiori that the same is true with ker(µs) replaced by the torsion
subgroup of As(W [k]). Unfortunately, this stronger assertion is false in general.
However, we shall establish a weak form of this boundedness statement for finite
dimensional subgroups of abelian varieties from which Theorem 4.1 follows.

Theorem 4.6. Let k be an algebraically closed field of characteristic p. Suppose
that A is an abelian scheme over W [k]. Suppose G ≤ A(W [k]) is a finite dimen-
sional L(A, σ)-definable subgroup of A(W [k]). If X ⊆ A is a closed subscheme,
then ρ0((X(W [k]) r Ueno(X)(W [k])) ∩G) is finite.

Proof. If there were a counter-example to this theorem, then one could be found
with k = Falg

p . Indeed, by the quantifier elimination part of Theorem 3.4 the set
ρ0((X(W [k]) r Ueno(X)(W [k])) ∩ G) is constructible. Hence, if it is infinite it
contains a component of the form Y (k) r F (k) where Y is an irreducible variety
over k of dimension at least one and F is a proper subvariety. Since the extension
W [Falg

p ] ↪→ W [k] is elementary, the assertion that there exist the appropriate
parameters to define such an A, X, G, Y , and F is true in W [Falg

p ]. Likewise, if k′

is an algebraically closed field of characteristic p, then because W [Falg
p ] ↪→ W [k′]

is elementary, we may transfer the counterexample from W [Falg
p ] to W [k′]. Thus,

we may take k to be any algebraically closed field of characteristic p.
Let Y be as in the previous paragraph. Let Z ⊆ Y be a curve with Z(k)∩F (k)

finite. Translating, we may assume that Z contains the origin. Let H be the
algebraic group generated by Z and let H̃ := (ρ−1

0 H(k))∩G. Then H̃ is a definable,
finite dimensional group for which ρ0((X(W [k])rUeno(X)(W [k]))∩H̃) is infinite.
Thus, we may and do assume that G = H̃.

We now transpose the proof of Proposition 4.4 of [12] to our unstable situation.
For the moment we make use of our flexibility in the choice of k by taking k to
be an algebraically closed field of characteristic p and cardinality strictly greater
than that of the continuum. For each definable set T ⊆ ker(ρ0 � G), let RT :=
{x ∈ Z(k) | (∃g ∈ G) g + T = ((X(W [k]) r Ueno(X)(W [k])) ∩ G)x}. The set
RT is a definable subset of the k-rational points of the curve Z and is thus either
finite or cofinite. As Z(k) =

⋃
T RT and there are at most continuum many such

T and |Z(k)| > 2ℵ0 , there must be some T for which RT is cofinite. Translating
T within ker(ρ0 � G), we may assume that T contains the origin. Let S := {x ∈
ker(ρ0 � G) | x + T = T}. If g + T is a fibre of ((X(W [k]) r Ueno(X)(W [k]))∩G),
then g + S ⊆ X showing that g belongs to the Ueno locus of X unless S is
finite, but g does not belong to the Ueno locus of X. Thus, S must be finite.
Thus, the correspondence which associates to x ∈ Z(k) the g for which g + T =
((X(W [k]) r Ueno(X)(W [k])) ∩ G)x is one to finite. Let Z̃ be the image of this
correspondence in G. Note that Z̃ is a subset of ((X(W [k])rUeno(X)(W [k]))∩G).

As the restriction of the map ρ0 to Z̃ is finite to one, for n � 0 the map
ρn+1,n : ρn+1(Z̃) → ρn(Z̃) is a bijective morphism. Thus, we can find finitely
many definable subsets Z̃1, . . . , Z̃m of Z̃ for which ρn(Z̃i) is always irreducible.
For each such “component” if we translate Z̃i so that it contains the origin and
then form the group Li that it generates, we see that Li is definable. Indeed, by
the finite dimensionality of G the constructible sets ρn(Z̃i) generate an algebraic
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subgroup of ρn(G) in a bounded number of steps. As the map ρ0 is finite to one
on Z̃i, the same is true on Li.

Now we use our flexibility in the choice of k to make k small: if k = Falg
p , then

every element of ρ0(Li) is torsion. As the kernel of ρ0 on Li is finite, it follows
that every element of Li is torsion. By Raynaud’s theorem, Li ∩ ((X(W [k]) r
Ueno(X)(W [k])) is finite. As this is true for each i, we conclude that the curve Z
in question does not actually exist and that ρ0(((X(W [k])rUeno(X)(W [k]))∩G))
is finite after all.

We are now in a position to complete the proof of Theorem 4.1.

Proof. Let µ : A(W [k]) → W [k]g be the p-differential function given by Theo-
rem 4.5. By Theorem 4.6 each of the sets ρ0((Xs(W [k]) r Ueno(Xs)(W [k])) ∩
ker(µs)) is finite. By the quantifier elimination part of Theorem 3.4, this family
of finite sets which prima facie is uniformly definable only in W [k] is, in fact,
uniformly definable in k. The quantifier “there exists infinitely many” may be
eliminated in algebraically closed fields. Thus, there is a number B for which each
of the above finite sets has cardinality at most B. Thus, the torsion points on
Xs but outside the Ueno locus are contained in at most B cosets of the kernel of
reduction. There is a bound M = M(g, p) on the number of unramified torsion
points in the kernel of reduction on an abelian scheme of relative dimension g de-
pending just on g and p. Thus, there are at most N := M · B torsion points of
As(W [k]) on Xs but outside the Ueno locus.
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[4] Basarab, Ş., Kuhlmann, F.-V., An isomorphism theorem for Henselian algebraic
extensions of valued fields. Manuscripta Math. 77 (1992), no. 2-3, 113–126.

[5] Bélair, L., Macintyre, A., Scanlon, T., Model theory of Frobenius on Witt vectors.
preprint, 2002.

[6] Buium, A., Differential characters of abelian varieties over p-adic fields. Invent. Math.
122 (1995), no. 2, 309–340.

[7] Chatzidakis, Z., Hrushovski, E., Model theory of difference fields. Trans. Amer.
Math. Soc. 351 (1999), no. 8, 2997–3071.

[8] Chatzidakis, Z., Hrushovski, E., Peterzil, Y., Model theory of difference fields. II.
Periodic ideals and the trichotomy in all characteristics. Proc. London Math. Soc.
(3) 85 (2002), no. 2, 257–311.



22 Thomas Scanlon

[9] Denef, J., van den Dries, L., p-adic and real subanalytic sets. Ann. of Math. (2) 128
(1988), no. 1, 79–138.

[10] Hazewinkel, M., Formal groups and applications. Pure and Applied Mathematics, 78.
Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London,
1978. xxii+573pp.

[11] Hodges, W., Model Theory. Encyclopedia of Mathematics and its Applications, 42.
Cambridge University Press, Cambridge, 1993. xiv+772 pp.

[12] Hrushovski, E., The Mordell-Lang conjecture for function fields. J. Amer. Math. Soc.
9 (1996), no. 3, 667–690.

[13] Hrushovski, E., Proof of Manin’s theorem by reduction to positive characteristic.
In Model theory and algebraic geometry, 197–205, Lecture Notes in Math., 1696,
Springer, Berlin, 1998.

[14] Kuhlmann, F.-V., Quantifier elimination for Henselian fields relative to additive and
multiplicative congruences. Israel J. Math. 85 (1994), no. 1-3, 277–306.

[15] Lipshitz, L., Robinson, Z., Uniform properties of rigid subanalytic sets. Trans. Amer.
Math. Soc. 357 (2005), no. 11, 4349–4377.

[16] Raynaud, M., Sous-variétés d’une variété abélienne et points de torsion. In Arith-
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