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Canonical sources: Tame topology
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Canonical sources: Geometric categories
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Origins: the theory of real closed fields
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The theory of real closed fields

The theory RCF of real closed fields is axiomatized in the language
L (+,−, ·,≤, 0, 1) by the following axioms.

The usual axioms for an ordered field. For example,
(∀x)(∀y)(∀z)[(x > 0 & y < z) → xy < xz ]

The squares are the nonnegative elements:
(∀x)[x ≥ 0 ↔ (∃y)y2 = x ].
Polynomials satisfy the sign change property: for each n ∈ Z+ we have

(∀a)(∀b)(∀c0) . . . (∀cn)[(a < b &
n∑

i=0

cia
i < 0 <

n∑
i=0

cib
i )

→ (∃x)(a < x < b &
n∑

i=0

cix
i = 0]
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Tarski on RCF

Theorem (Tarski 1930)
RCF = Th(R,+,−, ·,≤, 0, 1). Thus, RCF is complete.
RCF is decidable
RCF eliminates quantifiers

The key technical step in Tarski’s proof is to show that a refinement of
Sturm’s theorem on computing the number of zeros of a polynomial in
some specified interval follows just from the axioms of RCF.
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More about QE in RCF

We need to decide formulae of the form

(∃x)
m∧
i=1

fi (a1, . . . , an, x) ≥ 0

where fi ∈ Z[y1, . . . , yn, x ] are polynomials over Z using just quantifier-free
conditions on a = (a1, . . . , an).

One shows that (possibly breaking into finitely many cases), there are
rational functions α1, . . . , αm with α1(a) < α2(a) < . . . < αm(a) so that if
we extend to have α0 := −∞ and αm := ∞, for each i and j there is at
most one isolated zero of fi (a, x) in (αj(a), αj+1(a)).

We can now check whether there is a point at which all of the functions
are positive just by evaluating whether

∧m
i=1 fi (a, αj(a)) > 0. We use the

sign change property to reason about equalities.

Thomas Scanlon (UC Berkeley) O-minimality December 2022 7 / 61



Semialgebraic sets

For a real closed field R , a semialgebraic set is a finite Boolean
combination of a sets of the form

{(a1, . . . , an) ∈ Rn : f (a1, . . . , an) ≥ 0}

where f (x1, . . . , xn) ∈ R[x1, . . . , xn] is a polynomial.

The quantifier elimination theorem says that the semialgebraic sets in Rn

are exactly the L (+,−, ·,≥, 0, 1)R -definable sets.

In particular, the definable subsets of R are finite unions of points {a} and
intervals

(a, b) = {x ∈ R : a < x < b}

for a, b ∈ R ∪ {±∞} because sets of the form {x ∈ R : f (x) ≥ 0} for f a
nonzero polynomial consist of the finitely many zeros of f together with
some of the intervals between those zeros.
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Origins: semialgebraic geometry
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What is Tarski’s problem on (R,+, ·, exp)?

Question (Tarski, 1948)
Is there is a decision procedure for the theory of the structure
(R,+, ·, 1, 2x)?

Theorem (Macintyre and Wilkie, 1996)
If the real Schanuel Conjecture is true (for α1, . . . , αn ∈ R Q-linearly
independent, tr. degQQ(α1, . . . , αn, e

α1 , . . . , eαn) ≥ n), then
Th(R,+, ·, 0, 1, ex), and, hence, also Th(R,+, ·, 0, 1, 2x), is decidable.

In his 1982 Logic Colloquium paper, van den Dries observes that
(R,+,≤, ·, 1, ex) cannot have quantifier elimination, speculates about a
strategy for proving a quantifier simplification theorem, and then shows
that if what we now know as o-minimality were to hold for the exponential
function, one could prove a cell decomposition theorem.
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Quantifier elimination via cylindrical decompositions
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Cells
We work in a structure (R, <, . . .) in some language including a a binary
relation symbol < interpreted as a total order on R . We define that class
of cells in Rn be recursion on n.

If you like, we may start with n = 0 in which case the point R0 is itself
the only cell in R0. Usually, we start with n = 1.
A cell in R is a set of the form {a} or (b, c) for some a ∈ R or
b, c ∈ R ∪ {±∞} with b < c .
If X ⊆ Rn is a cell in Rn and f : X → R is a definable, continuous
function, then the graph of f ,

ΓX (f ) := {(x, y) ∈ Rn+1 : x ∈ X & f (x) = y} ,

is a cell in Rn+1. If g : X → R is another definable, continuous
function and g(x1, . . . , xn) < f (x1, . . . , xn) on X , then the
parameterized interval

(g , f )X := {(x1, . . . , xn, y) ∈ Rn+1 : x ∈ X & g(x) < y < f (x)}
is a cell in Rn+1. So are (−∞, g)X , (f ,∞)X , and (−∞,∞)X , defined
in the obvious ways.
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O-minimality, take one

Definition
An structure (R, <, . . .) considered in some language L = L (<, . . .)
containing the binary relation symbol < is o-minimal if

(R, <) is a totally ordered set and
every LR -definable subset of R is a finite union of points and intervals.

It is strongly o-minimal if every model of its theory is o-minimal.

Thomas Scanlon (UC Berkeley) O-minimality December 2022 13 / 61



Cell decomposition

Theorem
(van den Dries, 1982) If (R, <, . . .) is a strongly o-minimal structure on the
real numbers, and A1, . . . ,Am ⊆ Rn is a finite set of definable subsets of
Rn, then there is partition Π of Rn into cells for which each Ai is also
partitioned by Π in the sense that for C ∈ Π either C ⊆ Ai or C ∩ Ai = ∅.
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Sketch of cell decomposition: continuity theorem

Lemma (Hypotheses as in cell decomposition)
If f : R → R is definable, then it is continuous at all but finitely many
points.

Proof:
If this were false, because the set of points at which f is discontinuous
is definable, by o-minimality there would be an interval J on which f is
everywhere discontinuous.
For each interval I ⊆ J, f (I ) is infinite as otherwise we would find a
subinterval of I on which f is constant, and a fortiori, continuous.
Build sequences (an)

∞
n=1 and (bn)

∞
n=1 for which

[an+1, bn+1] ⊆ [an, bn] ⊂ I , |bn − an| < 1
n and f ([an, bn]) ⊆ In ⊆ f (I ),

an interval of length < 1
n .
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Sketch of cell decomposition: continuity theorem
Lemma (Hypotheses as in cell decomposition)
If f : R → R is definable, then it is continuous at all but finitely many
points.

Proof continued:
We know that f (I ) is infinite, and definable, and hence contains an
interval.
Shrinking, we may take that interval I1 to have length < 1.
The set J ∩ f −1I1 is also definable and infinite. So, it too contains an
interval of length less than one. Shrinking further, we may find an
infinite closed interval [a1, b1] ⊆ J ∩ f −1I1.
We find In+1 and [an+1, bn+1] by repeating this process with (an, bn)
in place of J and choosing In+1 to have length < 1

n+1 .
Set a := lim

n→∞
an. Then a ∈ J and f is continuous at J, which is a

contradiction.
□
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Sketch of cell decomposition: monotonicity theorem
Lemma (Hypotheses as in cell decomposition)
If f : R → R is definable, R may be decomposed into finitely many
intervals and points so that on each interval I from the decomposition the
restriction of f to I is constant, strictly increasing, or strictly decreasing.

Proof:
Because each of the sets of points at which f is constant (respectively,
strictly increasing/decreasing) in a neighborhood is definable, it
suffices to show that on each interval I there is a subinterval on which
f is contant or strictly monotone.
If f (I ) is finite, then f is constant on a subinterval.
For any closed, infinite interval [a, b] ⊆ I , we have that f ([a, b]) is
infinite and definable, and thus contains an interval J.
Define g : J → [a, b] ⊆ I by g(y) := min{x ∈ [a, b] : f (x) = y}.
By the lemma, we may restrict g to an interval K on which g is
continuous. It follows that g is strictly monotone on K and f is
strictly monotone on a subinterval of g(K ). □
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Sketch of proof of cell decomposition

We work by induction on n, showing along the way that if f : X → R
is a definable function on a cell X ⊆ Rn, then X may be further
decomposed into cells on which f is continuous.
The case of n = 1 for cell decomposition is the definition of
o-minimality and for continuity is covered by our lemma.
For cell decomposition in the case of n+ 1, take Ai ⊆ Rn+1 one of our
definable sets, then the boundaries of the fibers
Ai ,b = {x ∈ R : ⟨b, x⟩ ∈ Ai} are finite sets which by the compactness
theorem and strong o-minimality must have size bounded by some B .
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Sketch of proof of cell decomposition, continued

For each m ≤ B , the set A(m)
i := {b ∈ Rn : #∂Ai ,b = m} is definable.

On each A(m) the functions gj : A
(m) → R for 1 ≤ j ≤ m which pick

out the j th element of ∂Ai ,b are definable.
By induction, we may find a partition Π of Rn into cells compatible
with all of the A

(m)
i and so that each gj (for j ≤ m) is continuous on

each cell (or not defined on that cell at all).
It is easy to check that the collection of ΓX (gi ), (−∞, g1)X ,
(gj , gj1)X , and (gm,∞)X gives the desried cell decompositon.
The continuity assertion is handled by induction and an argument as
in the one-dimensional case to show that a definable function cannot
be everywhere discontinous on an open set. □
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O-minimality
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Strong O-minimality with density
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Strong O-minimality with density, in general
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General o-minimal structures

Theorem (Knight, Pillay, and Steinhorn, 1984-6)
Cell decomposition and the monotonicity theorem hold in all o-minimal
structures. Hence, o-minimality implies strong o-minimality.

The continuity and monotonicity lemmas are harder to prove when the
underlying order is not (R,≤), though the proof is still elementary.
In the proof of cell decomposition we do not know a bound on the size
of ∂Ai ,b. We work instead with the functions giving the least and the
greatest boundary points, making these functions continuous so that
all of the other boundary point functions are bounded between these.
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More comments on the general proof

They define a point b ∈ Rn to be good for the definable set A ⊆ Rn+1

which projects to Rn with finite fibers if for each a ∈ R there is are
neighborhoods U ∋ b and I ∋ a so that either (U × I ) ∩ A = ∅ or
(U × I ) ∩ A is the graph of a continuous function g : U → I .
Using induction and the fact that goodness is definable, they show
that Rn may be further cell decomposed so that each point on each
cell is good for the restriction of A.
They then show that when every point is good and the lower and
upper bound functions are continuous, the fibre size is constant. Once
we get to this point, the argument in the case of strong o-minimality
works.
Proving continuity for higher dimensional functions is also harder and
uses both induction and the one-variable monotonicity theorem.
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Sharp o-minimality
Binyamini, Novikov, and Zack have introduced notions of sharp
o-minimality or ♯o-minimality (see arXiv:2202.0530 and
arXiv:2209.10972) for which they can prove effective versions of cell
decomposition and stronger versions of the Pila-Willkie counting theorem.

In a ♯o-minimal structure, each definable set X has two numerical
invariants, its format F (X ) and its degree deg(X ). These invariants satisfy
various natural inequalities, for example, the degree bounds the number of
connected components, deg(X ∩ Y ) ≤ deg(X ) + deg(Y ),
F (R × X ) ≤ F (X ) + 1, etc.

Theorem (Binyamini, Novikov, and Zack 2022)

In a ♯o-minimal structure, there is a choice of degree and format functions
so that the number of cells required for a cell decomposition compatible
with k definable sets X1, . . . ,Xn ⊆ Rn is bounded by a polynomial in k and
the maximum of the degrees of the Xi ’s.
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Some other results from “Definable sets in ordered
structures I, II, and III”

There are discrete o-minimal structures, for example (N, <), but it
shown that these are degenerate in a precise sense. From now on, we
assume that “o-minimal” includes “densely ordered without endpoints”.
O-minimal theories have NIP (“not the independence property”). This
observation has been applied to prove strong results on the
combinatorics of sets definable in o-minimal structure and for
applications to machine learning. It is also fundamental to the solution
of Pillay’s conjecture relating definably compact groups in o-minimal
structures to Lie groups.
An o-minimal group (G , ·,≤, . . .) must be a divisible, ordered abelian
group. An o-minimal ring (R,+,−, ·,≤, 0, 1, . . .) must be a real
closed field. Note that we do not assume compatibility of the algebraic
structure and the order.
ℵ0-categorical o-minimal structures may be completely classified; as
with the discrete o-minimal structures there are no interesting
examples.
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o-minimal trichotomy
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Basic o-minimality: limits

Proposition
If (R, <, . . .) is o-minimal and f : (a, b) → R is a definable function from
some interval in R to R , then the one-sided limit lim

x→a+
f (x) exists as an

element of R ∪ {±∞}.

Proof: By the monotonicity and continuity theorems, there is some
c ∈ (a, b) for which the restriction of f to (a, c) is continuous and constant
or strictly monotone.

If constant, the limit is that constant value.

If strictly monotone, the image of (a, c) under f is also an interval and the
limit is one of the endpoints. □

Thomas Scanlon (UC Berkeley) O-minimality December 2022 28 / 61



Basic o-minimality: definability of ∃∞

Proposition
Let ϑ(x , y1, . . . , yn) be any formula in a language L (<, . . .) extending the
language of order having free variables amongst {x , y1, . . . , yn}. There is
another formula θ(y1, . . . , yn) so that whenever (R, <, . . .) is o-minimal
(and densely ordered), and a ∈ Rn, then {b ∈ R : R |= ϑ(b, a)} is infinite if
and only if R |= θ(a).

Proof: Let

θ := (∃u)(∃v)[u < v & (∀w)(u < w < v → ϑ(w , y1, . . . , yn)]

□
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Basic o-minimality: choice functions

Proposition
If If (R,+,−, 0, 1, <, . . .) is an o-minimal expansion of an ordered abelian
group with 1 > 0, X ⊆ Rn+m is definable, π : Rn+m → Rn is the projection
to the first n coordinates, and B = π(X ), then there is a definable function
σ : B → X for which π ◦ σ = idB .

Proof: Working by induction m + n, we see that it suffices to prove this in
the case of n = 1.
The fibers Xb are definable subsets of R . Define σ(b) by cases:

⟨b, 0⟩ if 0 ∈ Xb, else
⟨b, a⟩ where a is the least isolated point in Xb if there is one, else
⟨b, c+d

2 ⟩ if (c , d) is the first interval appearing as a component of Xb,
else
⟨b, c − 1⟩ if (−∞, c) is a component of Xb, else
⟨b, c + 1⟩ where Xb = (c ,∞). □
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Basic o-minimality: topological finiteness

Proposition
If X ⊆ Rn+m is definable in some o-minimal structure on (R,≤),
π : Rn+m → Rn is the projection to the first n-coordinates, and B = π(X ),
then there are only finitely many homeomorphism types amongst the fibers
Xb.

Proposition
If X ⊆ Rn is definable in some o-minimal structure on (R,≤), then X has
only finitely many connected components. Indeed, dimRHm(X ,R) < ∞ for
all m.

Working with the notion of “definable connectedness”, definable sets in
arbitrary o-minimal structures have only finitely many connected
components. An extensive theory of algebraic topology for general
o-minimal structures is known.

Thomas Scanlon (UC Berkeley) O-minimality December 2022 31 / 61



Basic o-minimality: smoothness

Proposition
If (R,+,−, ·, 0, 1,≤, · · · ) is an o-minimal expansion of an ordered field,
k ∈ N is a natural number, and f : Rn → R is a definable function, then
there is a cell decomposition Π of Rn so that for each C ∈ Π the restriction
of f to C is C k .

Proof sketch:
Using cell decomposition, the continuity theorem, and induction k , the
key case to consider is n = 1 and k = 1 and to show that one variable
functions are almost everywhere differentiable.
By o-minimality if the proposition were to fail, we could find a
definable f which is continuous and monotone but nowhere
differentiable on an interval.
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Basic o-minimality: smoothness, continued

Using the observation that one-sided limits always exist together with
the continuity theorem, we reduce to the case that the one-sided
derivatives

f ′+(x) := lim
ϵ→0+

f (x + ϵ)− f (x)

ϵ

and
f ′−(x) := lim

ϵ→0−

f (x + ϵ)− f (x)

ϵ

are continuous on a subinterval (though possibly taking values ±∞).
We check that the sign of these one-sided derivatives correctly
determines the sense of the function and then use this observation to
see that there cannot an interval on which f ′+ or f ′− is infinite nor can
these two limits disagree on an interval. □
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Pila-Wilkie counting theorem
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Pila-Zannier method in diophantine geometry
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Pila-Wilkie counting theorem, statement

The multiplicative height is defined on Q by H(0) := 0 and
H(pq ) := max{|p|, |q|} when p, q ∈ Z with gcd(p, q) = 1. Extend to tuples
by H(x1, . . . , xn) := max{H(xi ) : 1 ≤ i ≤ n}.

For a set X ⊆ Rn and a positive number T > 0 we set

X (Q,T ) := {x ∈ Qn ∩ X : H(x) ≤ T}

and X alg to be the union of all infinite, connected, semialgebraic subsets of
X . The transcendental part of X is X tr := X ∖ X alg.

Theorem (Pila and Wilkie, 2006)
If X ⊆ Rn is definable in some o-minimal structure on (R,≤), then for
every ϵ > 0 there is a constant C = Cϵ,X so that for all T > 0,
#X tr(Q,T ) ≤ CT ϵ.
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Determinant method

Fix natural numbers n and d and let D(n, d) be the set of multi-indexes
µ = (µ1, . . . , µn) ∈ Nn with |µ| =

∑
µi ≤ d .

For such a multi-index µ and some n-tuple of real numbers
a = (a1, . . . , an) we write

aµ =
n∏

i=1

aµi
i .

A collection of points P1, . . . ,Pm ∈ Rn lies on a common (not necessarily
irreducible) hypersurface of degree d if and only if for each subset
S ⊆ {1, . . . ,m} of size #D(n, d), the determinant det(Pµ

i )i∈S,µ∈D(n,d)

vanishes.

Note that if each Pi ∈ Qn ∩ (0, 1) and each denominator is bounded by T ,
then either the above determinant vanishes or its absolute value is bounded
below by 1

T#D(n,d) .
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Rational points under parameterization

f : (0, 1)ℓ ↠ X ⊆ Rn is a k-parameterization of X if f is C k and for every
multi-index α = (α1, . . . , αℓ) ∈ Nℓ with |α| =

∑
αi < k , ||f (α)||∞ ≤ 1.

Proposition
There are functions C = C (ℓ, n, d) and ϵ = ϵ(ℓ, n, d) with ϵ(ℓ, n, d) → 0 as
d → ∞ so that if X is the image of a k-parametrization, then for all
T ≥ 1, X (Q,T ) is contained in the union of at most C (ℓ, n, d)T ϵ(ℓ,n,d)

hypersurfaces of degree ≤ d .
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Yomdin-like parameterization theorem

Theorem
If X ⊆ (0, 1)n ⊆ Rn is definable in some o-minimal expansion of the real
field, dimX = ℓ, and k ∈ N then X is the union of the images of finitely
many definable k-parameterizations.

The counting theorem itself is proven inductively using uniform versions of
the parameterization theorem and proposition on the distribution of
rational points: we constrain the rational points to a small number of
hypersurfaces of a given degree, and then work inductively with that
uniformly definable family of definable sets given as the intersecton of X
with the hypersurfaces.
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Refinements of Pila-Wilkie counting theorem

The multiplicative height function extends to a Galois invariant,
multiplicative function H : Qalg → R≥0. For X ⊆ Rn, d ∈ N, and
T > 0 we define X (d ,T ) := {a ∈ X : [Q(a) : Q] ≤ d & H(a) ≤ T}.
For X ⊆ Rn definable in an o-minimal expansion of the real field, for
any ϵ > 0 there is a constant C = C (d , ϵ,X ) so that
#X tr(d ,T ) ≤ CT ϵ for all T ≥ 1.
Much better bounds are known for ♯o-minimal theories in which the
number of parameterizations required to cover a given definable set
may be effectively bounded. These bounds yield higher quality bounds
on the number of rational points, including Wilkie’s conjecture for sets
definable in Rexp: for X ⊆ Rn definable in Rexp, there is a polynomial
P(x , y) of two variables so that #X (d ,T ) ≤ P(d , logT ).
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O-minimality of Rexp = (R,+,−·, exp, 0, 1)
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O-minimality of Ran
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Restricted analytic functions

A restricted analytic function is a function f : Rn → R for which the
restriction of f to the box [0, 1]n extends to a real analytic function in some
neighborhood of the box and f is defined to be 0 off of the box [0, 1]n.

The structure Ran is the expansion of the real field by all restricted analytic
functions. As presented, this structure does not have quantifier elimination,
but it does with a new function of two variable function D defined by

D(x , y) :=

{
x
y if | xy | ≤ 1

0 otherwise
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Ideas in proof of o-minimality of Ran

O-minimality of Ran follows from a 1968 theorem of Gabrielov that
the complement of a subanalytic set (the image of a real semi-analyic
set under a proper analytic map) is itself subanalytic.
The proof of Denef and van den Dries follows a similar technique to
what they developed to prove a quantifier elimination theorem for the
p-adics with analytic functions.
The key is to answer existential questions of the form
(∃xn+1)

∧
fi (x1, . . . , xn; xn+1) ≥ 0 where fi is a term.

Adding more existentially quantified variables, they reduce to studying
the case that the D operator is not applied to xn+1 and then use
Weierstrass preparation and division to reduce to the case that fi is a
polynomial in xn+1.
With this reduction, quantifier elimination for RCF may be invoked
and Weierstrass division may be used to see that the definable sets in
one variable are unions of points and intervals.
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Growth rates at ∞ and Hardy fields

If R = (R,+,−, ·,≤, 0, 1, . . .) is an o-minimal expansion of the real field,
the ring of germs at ∞ of definable RR-definable functions is Hardy field,
H(R).

Here f : R → R and g : R → R have the same germ at ∞ if for some B ,
(∀x > B)f (x) = g(x).

To say that H(R) is Hardy field is to say that it is an ordered, differential
field of germs of real valued functions on R containing R.
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Hardy fields as valued fields

A Hardy field H carries a natural valuation, taking the valuation ring to be
the set of finite elements, OH := {x ∈ H : (∃n ∈ Z+)− n < x < n}, with
maximal ideal the set of infinitesimals
mH = {x ∈ OH : (∀n ∈ Z+)

−1
n < x < 1

n}. The residue field OH/mH is R
and the residue map may be seen as the standard part mapping of
nonstandard analysis.

We say that an o-minimal structure R = (R,+,−, ·,≤, 0, 1, . . .) expanding
the real field is polynomially bounded if the valuation group of H(R) is
rank one. That is, for any definable function f : R → R there is some
natural number so that −xn < f (x) < xn for all x ≫ 0.

For example, the ordered field of real numbers is polynomially bounded, but
Rexp is not.
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Defining the exponential function
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O-minimality of Ran,exp
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O-minimality of Ran,exp via series models
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Axioms for Ran,exp

Axioms of ordered fields
Axioms expressing the compositional and algebraic identities amongst
the restricted analytic functions.
On [0, 1] the total exp agrees with the corresponding restricted
analytic function.
exp and log are inverses (and log(x) := 0 for x ≤ 0)
|x | ≤ |y | → yD(x , y) = x and (|x | > |y | ∨ x = 0 = y) → D(x , y) = 0
exp(x + y) = exp(x) exp(y)

x < y → exp(x) < exp(y)

x > n2 → exp(x) > xn for each n ∈ N
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Quantifier elimination and o-minimality for Ran,exp

Theorem (van den Dries, Macintyre, and Marker, 1994)
The theory given by the above universal axioms for Ran,exp is complete and
has quantifier elimination.

It follows that every definable function is given piecewise by a term.
This is used to deduce o-minimality (more details to come).
It follows that in the cell decomposition theorem the defining functions
may be taken to be real analytic.
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Highlight of the proof

The Hahn series fields, R((tΓ)) with Γ a divisible ordered abelian
group, are shown to have natural structure of a model of Th(Ran)
and, in fact, if R |= Th(Ran) and the value group of R is Γ, then
there is an elementary, valuation preserving embedding R ↪→ R((tΓ)).
In running the usual back-and-forth test for completeness and
quantifier elimination, we may now use the standard Ax-Kochen
method for valued fields breaking into the cases of immediate,
residual, purely ramified extensions.
We never have to consider residual extensions (the residue field is
always R), the immediate case is easy using o-minimality of Ran, and
using some elementary algebra, the purely ramified case is also easy.
In follow up work, these authors build canonical a series model, called
the field of LE -series, for Th(Ran,exp) by iterating the Hahn series
construction with the processes of formally closing under exp and log.
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Hardy fields and o-minimality

As a general rule, a structure R expanding the real field is o-minimal if and
only if the ring of germs at ∞ of R-definable functions is a Hardy field.

If moreover, the Th(R) has a universal axiomatization and quantifier
elimination, then it suffices to check that the ring of germs at ∞ of term
definable functions in one variable form a Hardy field.

For Ran,exp this is done by showing that if K is a Hardy field closed under
application of restricted analytic functions, then we may adjoin logarithms
and exponentials to obtain Hardy fields which are still closed under the
application of restricted analytic functions.
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Pfaffian closures
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Quasianalytic classes
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O-minimal complex analysis
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Definable complex analytic functions and sets

In what follows, “definable” means “definable in some fixed o-minimal
expansion of the real field”.

Theorem (Peterzil and Starchenko, 2001)
If U ⊆ C is open, L ⊆ U is definable with dim L ≤ 1, f : U → C is
definable, continuous, and complex differentiable on U ∖ L, then f is
analytic on all of U.

Theorem (Peterzil and Starchenko, 2004)
If M is a complex manifold, E ⊆ M is a definable complex analytic subset
of M, and A ⊆ (M ∖ E ) is a definable, complex analytic subset, then the
closure of A in M is also a definable, complex analytic subset of M.
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Definable Chow

Theorem
If X is a quasiprojective complex algebraic variety and A ⊆ X (C) is a
definable, complex analytic subset, then A is algebraic.

Fix a quasiprojective embedding, M ↪→ Pn and let E ⊆ Pn be a divisor
for which M ∩ (Pn ∖ E ) is closed (and dense in M). By the extension
theorem, the closure of A∖ E is complex analytic in Pn, and, hence,
algebraic.
Brosnan gave a different (short) proof of definable Chow theorem
based on proving a volume estimate for definable sets and then
applying a theorem of Stoll that a complex analytic set X ⊆ Cn which
satisfies these volume estimates must be algebraic.
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Applications of definable Chow: algebraicity for period
mappings

If f : X → S is a definable, complex analytic map from a quasiprojective
algebraic variety X to a complex analytic space S (for example, if f is a
period mapping associated to a variation of Hodge structures), then

there is an algebraically constructible set X , a constructible quotient
map π : X → X , and an embedding f : X ↪→ S so that f = f ◦ π and
if S ′ ⊆ S is a definable complex analytic subset of S , then f −1S ′ ⊆ X
is an algebraic subvariety.
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Applications of definable Chow: Algebraicity of invariant sets

In proofs of Ax-Schanuel theorems, it is often important to describe certain
sets that are invariant under the action of some discrete group.

Here is an example of the use of definable Chow to prove such an
algebraicity result from the work of Mok, Pila, and Tsimerman on
Ax-Schanuel for Shimura varieites.

Theorem
Let q : Ω → X be the covering map from the homogeneous space Ω to the
Shimura variety X with covering group Γ. Let A ⊆ Ω× X be a closed,
complex analytic set which is Γ× {idX}-invariant, and such that
A ∩ (F × X ) is Ran,exp-definable where F is a semialgebraic fundamental
domain for which q : F → X is definable. Then (q × idX )(A) a closed
algebraic subset of X × X .

Proof: This set is closed, complex analytic, and definable. □
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Important missing topics

O-minimal theories are NIP. This already explains combinatorial
regularity results for semialgebraic sets. It also lies behind the solution
to Pillay’s conjecture that even in nonstandard o-minimal structures,
all definably compact groups are controlled by Lie groups.
There is a rich theory of o-minimal algebraic topology.
O-minimal methods are used to study Dulac’s problem on limit cycles
of polynomial vector fields. More generally, there is a rich theory of
the interplay between differential equations and o-minimality.
There is an emerging theory of o-minimal homogeneous dynamics. See
for example the results of Peterzil and Starchenko on closures of
images of definable sets in nilmanifolds.
. . .
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