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Abstract. We show that dependent �elds have no Artin-Schreier extension,
and that simple �elds have only a �nite number of them.

1. Introduction

In [20], Macintyre showed that an in�nite ω-stable commutative �eld is algebraically
closed; this was subsequently generalized by Cherlin and Shelah to the superstable
case; they also showed that commutativity need not be assumed but follows [7]. It
is known [28] that separably closed in�nite �elds are stable; the converse has been
conjectured early on [3], but little progress has been made. In 1999 the second
author published on his web page a note proving that an in�nite stable �eld of
characteristic p at least has no Artin-Schreier extensions, and hence no �nite Galois
extension of degree divisible by p. This was later generalized to �elds without the
independence property (dependent �elds) by (mainly) the �rst author.

In the simple case, the situation is even less satisfactory. It is known that an
in�nite perfect, bounded (i.e. with only �nitely many extensions of each degree)
PAC (pseudo-algebraically closed: every absolutely irreducible variety has a ratio-
nal point) �eld is supersimple of SU-rank one [13]. Conversely, Pillay and Poizat
have shown that supersimple �elds are perfect and bounded; it is conjectured that
they are PAC, but the existence of rational points has only been shown for curves of
genus zero (and more generally Brauer-Severi varieties) [23], certain elliptic or hy-
perelliptic curves [21], and abelian varieties over pro-cyclic �elds [22, 16]. Bounded
PAC �elds are simple [4] and again the converse is conjectured, with even less of
an idea on how to prove this [27, Conjecture 5.6.15]; note though that simple and
PAC together imply boundedness [5]. In 2006 the third author adapted Scanlon's
argument to the simple case and showed that simple �elds have only �nitely many
Artin-Schreier extensions.

In this paper we present the proofs for the simple and the dependent case, and
moreover give a criterion for a valued �eld to be dependent due to the �rst author.

We would like to thank Martin Hils and Françoise Delon for some very helpful
comments and discussion on valued �elds.

2. Preliminaries

Notation 2.1. (1) If k is a �eld we denote by kalg and ksep its algebraic and
separable closures, respectively.

1
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(2) When we write ā ∈ k for a tuple ā = (a0, . . . , an) we mean that ai ∈ k for
i ≤ n.

De�nition 2.2. Let K be a �eld of characteristic p > 0. A �eld extension L/K
is called an Artin-Schreier extension if L = K(α) for some α ∈ L \ K such that
αp − α ∈ K.

Note that if α is a root of the polynomial xp − x− a then {α, α+ 1, . . . , α+ p− 1}
are all the roots of the polynomial. Hence, if α /∈ K then L/K is Galois and cyclic
of degree p. The converse is also true: if L/K is Galois and cyclic of degree p then
it is an Artin-Schreier extension [19, Theorem VI.6.4].

LetK be a �eld of characteristic p > 0, and ℘ : K → K the additive homomorphism
given by ℘(x) = xp − x. Then the Artin-Schreier extensions of K are bounded by
the number of cosets in K/℘(K). Indeed, if K(α) and K(β) are two Artin-Schreier
extensions, then a = ℘(α) and b = ℘(β) are both in K \ ℘(K), and

a− b = ℘(α− β) ∈ ℘(K)

implies α− β ∈ K (since K contains ker℘ = Fp) and hence K(α) = K(β).

Remark 2.3. In fact, the Artin-Schreier extensions of a �eld k are in bijection

with the orbits under the action of F×p on k/℘(k).

Proof. Let G = Gal(ksep/k). From [24, X.3] we know that k/℘(k) is isomor-
phic to Hom(G,Z/pZ), and that the isomorphism is induced by taking c ∈ k
to ϕc : G → Z/pZ, where ϕc(g) = g(x) − x for any x satisfying ℘(x) = c. Now,
every Artin-Schreier extension corresponds to the kernel of a non-trivial element in
Hom(G,Z/pZ). From this it is easy to conclude: Take an Artin-Schreier extension
L/k to some ϕc such that ker(ϕc) = Gal(ksep, L), and from there to the orbit of
c+ ℘(k). One can check that this is well de�ned and a bijection. �

We now turn to vector groups.

De�nition 2.4. A vector group is a group isomorphic to a �nite Cartesian power
of the additive group of a �eld.

Fact 2.5. [15, 20.4, Corollary] A closed connected subgroup of a vector group is a

vector group.

Using in�nite Galois cohomology (namely, that H1 (Gal(ksep/k), (ksep)×) = 1 for a
�eld k, for more on that see [24, X]), one can deduce the following fact:

Corollary 2.6. Let k be a perfect �eld, and G a closed connected 1-dimensional

algebraic subgroup of
(
kalg,+

)n
de�ned over k, for some n < ω. Then G is iso-

morphic over k to
(
kalg,+

)
.

This fact can also proved by combining Théorème 6.6 and Corollaire 6.9 in [9,
IV.3.6].

We shall be working with the following group:

De�nition 2.7. Let K be a �eld and (a1, . . . , an) = ā ∈ K. Put

Gā = {(t, x1, . . . , xn) ∈ Kn+1 | t = ai (xpi − xi) for 1 ≤ i ≤ n}.
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This is an algebraic subgroup of (K,+)n+1.

Recall that for an algebraic group G we denote by G0 the connected component
(subgroup) of the unit element of G.

Lemma 2.8. Let K be an algebraically closed �eld. If ā ∈ K is algebraically

independent, then Gā is connected.

Proof. By induction on n := length(ā). If n = 1, then Gā = {(t, x) | t = a ·(xp−x)}
is the graph of a morphism, hence isomorphic to A1 and thus connected. Assume
the claim for n, and for some algebraically independent ā ∈ K of length n + 1
let ā′ = ā � n. Consider the projection π : Gā → Gā′ . Since K is algebraically
closed, π is surjective. Let H = G0

ā be the identity connected component of Gā.
As [Gā′ : π(H)] ≤ [Gā : H] < ∞, it follows that π(H) = Gā′ by the induction
hypothesis. Assume that H 6= Gā.

Claim. For every (t, x̄) ∈ Gā′ there is exactly one xn+1 such that (t, x̄, xn+1) ∈ H.

Proof. Suppose for some (t, x̄) there were x1
n+1 6= x2

n+1 such that (t, x̄, xin+1) ∈ H
for i = 1, 2. Hence their di�erence (0, 0̄, α) ∈ H. But 0 6= α ∈ Fp by de�nition
of Gā. Hence, (0, 0̄, 1) ∈ H, and (0, 0̄, β) ∈ H for all β ∈ Fp. We know that
for every (t, x̄, xn+1) ∈ Gā there is some x′n+1 such that (t, x̄, x′n+1) ∈ H; as
xn+1 − x′n+1 ∈ Fp we get (t, x̄, xn+1) ∈ H and Gā = H, a contradiction. �

So H is a graph of a function f : Gā′ → K de�ned over ā. Now put t = 1 and
choose xi ∈ K for i ≤ n such that ai · (xpi − xi) = 1. Let L = Fp(x1, . . . , xn) and
note that ai ∈ L for i ≤ n. Then

xn+1 := f(1, x̄) ∈ dcl(an+1, x1, . . . , xn) = L(an+1)ins ,

where L(an+1)ins is the inseparable closure
⋃
n<ω L(an+1)p

−n

of L(an+1). Since
xn+1 is separable over L(an+1), it follows that xn+1 ∈ L(an+1). By assumption,
an+1 is transcendental over ā′, whence over L, and so xn+1 /∈ L. Hence xn+1 =
h(an+1)/g(an+1) for some mutually prime polynomials g, h ∈ L[X]. But then

an+1 ·
[
h(an+1)p/g(an+1)p − h(an+1)/g(an+1)

]
= 1

implies

an+1 ·
[
h(an+1)p − h(an+1)g(an+1)p−1

]
= g(an+1)p.

This implies that h divides gp, whence h ∈ L is constant. Similarly, g(X) divides
X, which easily yields a contradiction. �

Corollary 2.9. If K is perfect and ā ∈ K is algebraically independent, then Gā is

isomorphic over K to (kalg,+). In particular, Gā(K) is isomorphic to (K,+).

Proof. Over kalg the projection to the �rst coordinate of Gā is onto and has �nite
�bers, so dimGā = 1 (as a variety). But then G0

ā(kalg) is isomorphic over K to
(kalg,+) by Corollary 2.6; this isomorphism sends G0

ā(K) onto (K,+). Finally,
Gā = G0

ā by Lemma 2.8. �
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3. Simple fields

For background on simplicity theory, the interested reader may consult [27]. The
only property we shall need is a type-de�nable variant of Schlichting's Theorem.

Fact 3.1. [27, Theorem 4.5.13] Let G and Γ be type-de�nable groups with a de�nable

action of Γ on G, and let F be a type-de�nable Γ-invariant family of subgroups of

G. Then there is a Γ-invariant type-de�nable subgroup N ≤ G containing some

bounded intersection of groups in F such that [N : N ∩F ] is bounded for all F ∈ F.

Theorem 3.2. Let K be a type-de�nable �eld in a simple theory. Then K has only

boundedly many Artin-Schreier extensions.

This means that in any elementary extension M, the number of Artin-Schreier ex-
tensions of KM remains bounded. In particular, by compactness, if K is de�nable,
it has only �nitely many Artin-Schreier extensions.

Proof. If K is �nite, then it has precisely one Artin-Schreier extensions. So we may
assume it is in�nite, and that the model is su�ciently saturated. Let k = Kp∞ =⋂
Kpn

, a perfect in�nite type-de�nable sub-�eld. Let ℘ : K → K be the additive
homomorphism given by ℘(x) = xp − x. We shall show that ℘(K) has bounded
index in K.

Let F = {a℘(K) | a ∈ k}; this is a type-de�nable k×-invariant family of additive
subgroups of K. By Fact 3.1 there exists a type-de�nable additive k×-invariant
subgroup N ≤ K containing a bounded intersection of groups in F, such that
[N : N ∩ F ] is bounded for all F ∈ F.

If N contains
⋂
a∈A a℘(K) for some bounded A ⊂ k, then for any �nite ā ∈ A

the group G0
ā(k) is isomorphic to (k,+) by Corollary 2.9. Since k is in�nite, the

projection to the �rst coordinate is in�nite, as is
⋂
a∈ā a℘(k), and even

⋂
a∈A a℘(k)

by compactness, so N ∩ k is in�nite as well. But N ∩ k is k×-invariant, hence an
ideal in k, and must equal k. Since [N : ℘(K)] is bounded, so is [k : k ∩ ℘(K)].
Now a = ap + ℘(−a) for any a ∈ K, whence K = Kp + ℘(K). Assume K =
Kpn

+ ℘(K). Then Kp = Kpn+1
+ ℘(Kp), whence

K = Kp + ℘(K) = Kpn+1
+ ℘(Kp) + ℘(K) = Kpn+1

+ ℘(K);

by compactness K = k + ℘(K). Thus [K : ℘(K)] = [k : k ∩ ℘(K)] is bounded. �

Remark 3.3. The important category of objects in simple theories are the hyper-

de�nable ones: Quotients of a type-de�nable set by a type-de�nable equivalence

relation. However, a hyper-de�nable �eld is easily seen to be type-de�nable: If K
is given by a partial type π modulo a type-de�nable equivalence relation E, then for

a, b ∈ K the inequivalence ¬aEb is given by the partial type ∃x [π(x)∧ (a− b)xE1].
By compactness, E is de�nable on π.

4. Dependent fields

De�nition 4.1. A theory T has the independence property if there is a formula
ϕ(x̄, ȳ) and some model M containing tuples (āi : i ∈ ω) and (b̄I : I ⊂ ω) such that
M |= ϕ(āi, b̄I) if and only if i ∈ I.



ARTIN-SCHREIER EXTENSIONS IN DEPENDENT AND SIMPLE FIELDS 5

De�nition 4.2. A theory T is dependent if it does not have the independence
property.

Remark 4.3. Let k be a �eld, and let f : k → k be an additive polynomial, i.e.

f(x + y) = f(x) + f(y). Then f is of the form
∑
aix

pi

. Furthermore, if k is

algebraically closed and ker(f) = Fp, then f = a · (xp − x)p
n

for some n < ω and

a ∈ k.

Proof. The �rst part appears in [11, Proposition 1.1.5]. Assume now that k is
algebraically closed and | ker(f)| = p. If a0 6= 0, then (f, f ′) = 1, hence f has no
multiple factors and deg(f) = p. If a0 = 0, then f = (g(x))p for some additive
polynomial g with | ker(g)| = p. So by induction f = (a0x + a1x

p)p
n

for some
n < ω. If moreover ker(f) = Fp, then a0 + a1 = 0 hence f = a · (xp−x)p

n

for some
a ∈ k. �

Theorem 4.4. Let K be an in�nite dependent �eld. Then K is Artin-Schreier

closed.

Proof. We may assume that K is ℵ0-saturated, and we put k = Kp∞ , a type-
de�nable in�nite perfect sub-�eld. For a ∈ k let

Ha = {t ∈ K | ∃x ∈ K a · (xp − x) = t}.

By dependency the Baldwin-Saxl condition [1] holds, which means that there is
n < ω such that for every (n+ 1)-tuple ā, there is a sub-n-tuple ā′ with

⋂
a∈āHa =⋂

a∈ā′ Hā′ . This implies that the projection π : Gā(K)→ Gā′(K) is onto, where

Gā = {(t, x1, . . . , xn) ∈ Kn+1 | t = ai (xpi − xi) for 1 ≤ i ≤ n}

is the group de�ned in De�nition 2.7. We �x some algebraically independent (n+1)-
tuple ā ∈ k.
By Corollary 2.9 we have algebraic isomorphisms Gā → (kalg,+) and Gā′ →
(kalg,+) over k. Hence we can �nd an algebraic map ρ over k which makes the
following diagram commute:

Gā(kalg) π //

��

Gā′(kalg)

��
(kalg,+)

ρ // (kalg,+)

As all groups and maps are de�ned over k ⊆ K, we can restrict toK. But π � Gā(K)
is onto Gā′(K), so ρ � K must be onto as well. Moreover,

| ker(ρ)| = | ker(π)| = |(0, 0̄)× Fp| = p ;

since ker(π) is contained in Gā(K), this remains true in the restrictions to K.
Finally, ρ is a group homomorphism, i.e. additive, and a polynomial, as it is an
algebraic morphism of (kalg,+).
Suppose that 0 6= c ∈ ker(ρ) ⊆ K, and put ρ′(x) = c−1 ·ρ(x). Then ρ′ is an additive
polynomial whose kernel is Fp. By Remark 4.3 there are a ∈ k and n < ω such that

ρ′(x) = a · (xp−x)p
n

. As ρ′ � K is onto K, for any y ∈ K there is some x ∈ K with

a · (xp − x)p
n

= a · yp
n

,
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so ℘(x) = xp − x = y and we are done.

In fact, n must be 0, as the degree of π (as algebraic morphism) is p, and so is the
degree of ρ′, since the vertical arrows are algebraic isomorphisms. �

Corollary 4.5. If K is an in�nite dependent �eld of characteristic p > 0 and L/K
is a �nite separable extension, then p does not divide [L : K].

Proof. Assume not, and let L′ be the normal closure of L/K. Then p | [L′ : K], so
we may assume that L/K is Galois. Let G ≤ Gal(L/K) be a subgroup of order p,
and let KG ⊆ L be its �xed �eld. As KG is interpretable in K, it is also dependent.
But L/KG is an Artin-Schreier extension, contradicting Theorem 4.4. �

Corollary 4.6. Let K be an in�nite dependent �eld of characteristic p > 0. Then
K contains Falg

p .

Proof. Let k = K ∩ Falg
p , the relative algebraic closure of Fp in K. As K is Artin-

Schreier closed, so is k. Hence k is in�nite, perfect, and pseudo-algebraically closed.
But [10, Theorem 6.4] of Duret states that a �eld with a relatively algebraically
closed PAC sub�eld which is not separably closed has the independence property.
Hence k is algebraically closed, i.e. k = Falg

p . �

One might wonder what happens for a type-de�nable �eld in a dependent theory.
We were unable to generalize our theorem to this case. However, one easily sees:

Proposition 4.7. Let K be a type-de�nable �eld in a dependent theory. Then K
has either no, or unboundedly many Artin-Schreier extensions.

Proof. By [25] (another presentation appears in [14, Proposition 6.1]) there is a
minimal type-de�nable subgroup K00 of (K,+) of bounded index. As for any
λ ∈ K×, the multiplicative translate λG00 is also a type-de�nable additive subgroup
of bounded index, K00 is an ideal of bounded index and must therefore be equal
to K. On the other hand, the image of ℘ is a type-de�nable subgroup of (K,+).
Remark 2.3 tells us that it has bounded index if and only if there are boundedly
many Artin-Schreier extensions. But if it has bounded index, then it contains
K00 = K, and K is Artin-Schreier closed. �

In an attempt to prove the theorem for type-de�nable �elds, we found the following
lemma concerning type-de�nable groups in dependent theories:

De�nition 4.8. Let G be a group, H a family of subgroups of G and κ a cardinal.
The κ-almost intersection is the subgroup⋂

κ H = {g ∈ G | card({H ∈ H | g /∈ H}) < κ.}.

Proposition 4.9. Let G be a type-de�nable group in a dependent theory. Then for

any type-de�nable family H0 of subgroups of G there is a cardinal κ0 such that for

any regular cardinal κ ≥ κ0, and subfamily H ⊆ H0 in any elementary extension,

the intersection
⋂

H is a subintersection of size less than κ intersected with the

κ-almost intersection
⋂
κ H. In fact, if κ1 is a bound for the number of parameters

de�ning a group in H0 and every g ∈ G is a tuple of length κ2, then we can take

κ0 = |T |+ + κ1 + κ2.
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Proof. Let κ ≥ κ0 be regular. Sets of cardinality less than κ will be called small.
Assume that there is some family H = {Hi | i < λ} of uniformly type-de�nable
subgroups of G which is not equal to a small subintersection intersected with the
κ-almost intersection. For g ∈ G de�ne Jg = {i < λ | g ∈ Hi}. So g ∈

⋂
κ H if and

only if λ \ Jg is small.

We shall de�ne inductively on i < κ elements gi ∈
⋂
κ H, subsets Ii ⊆ λ and ordinals

αi < λ, such that

(1) Ii ∩ [0, αi] = ∅,
(2) Ii is decreasing,
(3) αi is increasing,
(4) Ii ⊆ Jgi

,
(5)

⋂
j∈λ\Ii

Hj ⊇
⋂
κ H ∩

⋂
j∈J Hj for some small J ⊆ λ, and

(6) for i 6= j we have gi ∈ Hαj
\Hαi

.

Assume that gj , Ij , αj have been chosen for j < i. Put I ′i =
⋂
j<i Ij (where I

′
0 = λ).

Let αi ∈ I ′i be minimal such that there is some element

gi ∈
(⋂

κ H ∩
⋂
j<i

Hαj

)
\Hαi .

Such an αi must exist, as otherwise
⋂
κ H ∩

⋂
j<iHαj

⊆
⋂
j∈I′i

Hj , so⋂
H =

⋂
κ H ∩

⋂
j<i

Hαj
∩
⋂

j∈λ\I′i

Hj .

But now [0, i) is small, and by (5) and regularity of κ there is a small J with⋂
j∈λ\I′i

Hj ⊇
⋂

κ H ∩
⋂
j∈J

Hj .

This contradicts our assumption on H.

Let Ii = {j ∈ I ′i | j > αi} ∩ Jgi . This takes care of (1) and (4). Now (2) is obvious,
and (3) follows from (1) in the induction. By the minimality of αi,⋂

κ H ∩
⋂
j<i

Hαj
⊆

⋂
j∈I′i∩[0,αi)

Hj .

So ⋂
j∈[0,αi]

Hj ∩
⋂

j∈λ\I′i

Hj =
⋂

j∈(λ\I′i)∪([0,αi]∩I′i)
Hj ⊇

⋂
κ H ∩

⋂
j≤i

Hαj ∩
⋂
j∈J

Hj .

As ⋂
j∈λ\Ii

Hj =
⋂

j∈λ\Jgi

Hj ∩
⋂

j∈[0,αi]

Hj ∩
⋂

j∈λ\I′i

Hj

we get (5). Finally for j < i we have gi ∈ Hαj \Hαi by choice of gi, and for j > i
we have gi ∈ Hαj since αj ∈ Ii ⊂ Jgi , so (6) holds as well.

Now the usual argument works: Since d1 ·gi ·d2 /∈ Hαi for any d1, d2 ∈ Hαi , by com-
pactness there is some formula ϕi(x, bi) containing Hαi

such that ¬ϕi(d1gid2, bi)
for all d1, d2 ∈ Hαi

. As κ > |T |, we can extract an in�nite subset I of κ such that
the same formula ϕ (x, y) will work for all i ∈ I. Now for any �nite subset s of
I let gs be the product

∏
i∈s gi. Then ϕ(gs, bi) if and only if i /∈ s, contradicting

dependency. �
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We can, however, prove that a type-de�nable �eld is Artin-Schreier closed under a
stronger hypothesis.

De�nition 4.10. Call a type-de�nable group G strongly connected when G00 = G.

Note that if π : G → H is a de�nable surjective group homomorphism and G is
strongly connected, then so is H, since |G : π−1(H00)| is bounded by |H : H00| and
π is onto.

Theorem 4.11. Let K be a type-de�nable �eld in a dependent theory such that

there is no in�nite decreasing sequence of type-de�nable additive subgroups, each of

unbounded index in its predecessor. Then K is Artin-Schreier closed.

Proof. We work in a saturated model. Let ā = (ai : i < ω) be a sequence of
algebraically independent elements from k =

⋂
Kpn

. Let Hi = ai · ℘ (K), and
recall that

⋂
j<nHij = π1(G(ai0 ,...,ain−1 )(K)) for all i0 < . . . < in−1, where π1

is the projection to the �rst coordinate. Since G(ai0 ,...,ain−1 )(K) is isomorphic

(over k) to (K,+) and we mentioned in 4.7 that the latter is strongly connected,⋂
j<nHij is strongly connected, too. By assumption, there is some n such that⋂
i<nHi =

⋂
i<n+1Hi. Now proceed as in the proof of Theorem 4.4. �

Remark 4.12. Saharon Shelah has shown [26] that this condition holds when T is

strongly2 dependent.

5. Some results on dependent valued fields

Here we �nd a nice characterization of �nice� dependent valued �elds of character-
istic p > 0. First we recall the de�nitions and notations:

De�nition 5.1. A valued �eld is a pair (K, v) where K is a �eld and v : K →
Γ ∪ {∞} for an ordered group Γ such that:

(1) v (x) =∞ if and only if x = 0,
(2) v (x · y) = v (x) + v (y), and
(3) v (x+ y) ≥ min {v (x) , v (y)}.

If (K, v) is a valued �eld, then Γ = v (K×) is the valuation group, OK = {x ∈ K |
v(x) ≥ 0} is the (local) ring of integers, mK = {x ∈ K | v(x) > 0} is its maximal

ideal, and k = OK/mK is the residue �eld. As a structure we think of it as a
3-sorted structure (K,Γ, k) equipped with the valuation map v : K× → Γ, and the
quotient map π : OK → k. Other interpretations are known to be equivalent (i.e.
bi-interpretable, and hence to preserve properties such as dependency).

In [8] Delon gave the following characterization of Henselian dependent valued �elds
of characteristic 0.

Fact 5.2. [8] Let (K, v) be a Henselian valued �eld of characteristic 0. Then (K, v)
is dependent if and only if the residue �eld k is dependent.

Historically, this theorem stated that the valuation group must also be dependent,
but by a result of Gurevich and Schmitt [12], every ordered abelian group is depen-
dent.

Here we discuss valued �elds of characteristic p, i.e. with char(K) = char(k) = p.
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Proposition 5.3. If (K, v) is a dependent valued �eld of characteristic p > 0, then
the residue �eld contains Falg

p .

Proof. Suppose π (a) ∈ k with a ∈ OK . Since K is Artin-Schreier closed, there
is b ∈ K with bp − b = a. If v(b) < 0, then v(bp) = p v(b) < v(b), whence
v(bp − b) = v(bp) < 0, contradicting v(a) ≥ 0. Hence v(b) ≥ 0 and b ∈ OK . Thus
π (b) ∈ k, and π (b)p−π (b) = π (a). In other words, k is also Artin-Schreier closed,
and hence in�nite; since it is interpretable, it is dependent, and contains Falg

p by
Corollary 4.6. �

Proposition 5.4. If (K, v) is a dependent valued �eld of characteristic p > 0, then
the valuation group Γ is p-divisible.

Proof. Let 0 > α ∈ Γ. So α = v (a) for some a ∈ K×. As K is Artin-Schreier
closed, there is some b ∈ K× such that bp − b = a. Clearly v(b) ≥ 0 is impossible.
Hence v(bp) = p v(b) < v(b), and

α = v(a) = v(bp − b) = min{v(bp), v(b)} = v(bp) = p v(b).

So α is p-divisible, as is Γ (for α positive, consider −α). �

As a corollary we obtain a result of Cherlin [6].

Corollary 5.5. Fp ((t)) is independent, and so is Falg
p ((t)).

Propositions 5.3 and 5.4 are also su�cient for a valued �eld to be dependent, under
certain conditions. In order to explain these conditions, we give two de�nitions.

De�nition 5.6. A valued �eld (K, v) of characteristic p > 0 is called a Kaplansky
�eld if it satis�es:

(1) The valuation group Γ is p-divisible,
(2) The residue �eld k is perfect, and does not admit a �nite separable extension

divisible by p.

This de�nition is taken from the unpublished book on valuation theory by Franz-
Viktor Kuhlmann [18, 13.11]. It is �rst-order expressible, as the second condition is
equivalent to saying that for every additive polynomial f ∈ k [x], and every a ∈ k,
there is a solution to f (x) = a in k (for a proof, see [17, Theorem 5]).

De�nition 5.7. A valued �eld (K, v) is called algebraically maximal if it does not
admit any non-trivial algebraic immediate extension (i.e. keeping both the residue
�eld and the valuation group).

This is also �rst order axiomatizable [18, Chapter 14, Section 2]. It always implies
Henselianity, and is equivalent to it in characteristic 0. In characteristic p, it is
weaker than being Henselian and defectless ([18, 9.39]).

We shall use the following result of Bélair.

Fact 5.8. [2, Corollaire 7.6] A valued �eld K of characteristic p which is Kaplansky

and algebraically maximal is dependent if and only if k is dependent.

Finally, we have:
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Theorem 5.9. Let (K, v) be an algebraically maximal valued �eld of characteristic

p whose residue �eld k is perfect. Then (K, v) is dependent if and only if k is

dependent and in�nite and Γ is p-divisible.

Proof. If (K, v) is dependent then k is in�nite (it even contains Falg
p ), and depen-

dent, and Γ is p-divisible, by Propositions 5.3 and 5.4. On the other hand, if k is
dependent and in�nite, by Corollary 4.5 we get that (K, v) is Kaplansky and we
can apply fact 5.8. �

It is interesting to note the connection to Kuhlmann's notion of a tame valued �eld
(see [18, Chapter 13, Section 9]). A valued �eld (K, v) is called tame if and only
if it is algebraically maximal, Γ is p-divisible and k is perfect. Note the di�erence
between this and Kaplansky.

We get as an immediate corollary:

Corollary 5.10. Let (K, v) be an algebraically maximal dependent valued �eld.

Then K is tame if and only if K is Kaplansky, if and only if k is perfect.
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