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ABsTracT. We show that dependent fields have no Artin-Schreier extension,
and that simple fields have only a finite number of them.

1. INTRODUCTION

In [20], Macintyre showed that an infinite w-stable commutative field is algebraically
closed; this was subsequently generalized by Cherlin and Shelah to the superstable
case; they also showed that commutativity need not be assumed but follows [7]. It
is known [28] that separably closed infinite fields are stable; the converse has been
conjectured early on [3], but little progress has been made. In 1999 the second
author published on his web page a note proving that an infinite stable field of
characteristic p at least has no Artin-Schreier extensions, and hence no finite Galois
extension of degree divisible by p. This was later generalized to fields without the
independence property (dependent fields) by (mainly) the first author.

In the simple case, the situation is even less satisfactory. It is known that an
infinite perfect, bounded (i.e. with only finitely many extensions of each degree)
PAC (pseudo-algebraically closed: every absolutely irreducible variety has a ratio-
nal point) field is supersimple of SU-rank one [13]. Conversely, Pillay and Poizat
have shown that supersimple fields are perfect and bounded; it is conjectured that
they are PAC, but the existence of rational points has only been shown for curves of
genus zero (and more generally Brauer-Severi varieties) [23], certain elliptic or hy-
perelliptic curves [21], and abelian varieties over pro-cyclic fields [22, 16]. Bounded
PAC fields are simple [4] and again the converse is conjectured, with even less of
an idea on how to prove this [27, Conjecture 5.6.15]; note though that simple and
PAC together imply boundedness [5]. In 2006 the third author adapted Scanlon’s
argument to the simple case and showed that simple fields have only finitely many
Artin-Schreier extensions.

In this paper we present the proofs for the simple and the dependent case, and
moreover give a criterion for a valued field to be dependent due to the first author.

We would like to thank Martin Hils and Francoise Delon for some very helpful
comments and discussion on valued fields.

2. PRELIMINARIES

Notation 2.1. (1) If k is a field we denote by k2% and kP its algebraic and
separable closures, respectively.
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(2) When we write a € k for a tuple a = (ag, ..., a,) we mean that a; € k for
1 <n.

Definition 2.2. Let K be a field of characteristic p > 0. A field extension L/K
is called an Artin-Schreier extension if L = K(«) for some o € L\ K such that
o —ac K.

Note that if « is a root of the polynomial 2 — z — a then {a,a+1,...,a+p—1}
are all the roots of the polynomial. Hence, if o ¢ K then L/K is Galois and cyclic
of degree p. The converse is also true: if L/K is Galois and cyclic of degree p then
it is an Artin-Schreier extension [19, Theorem VI.6.4].

Let K be a field of characteristic p > 0, and p : K — K the additive homomorphism
given by p(z) = zP — z. Then the Artin-Schreier extensions of K are bounded by
the number of cosets in K/p(K). Indeed, if K(a) and K (3) are two Artin-Schreier
extensions, then a = p(«a) and b = p(B) are both in K \ p(K), and

a—b=gpla—p0) e pK)
implies o — 5 € K (since K contains ker p =TF,) and hence K (o) = K(3).

Remark 2.3. In fact, the Artin-Schreier extensions of a field k are in bijection
with the orbits under the action of B\ on k/p(k).

Proof. Let G = Gal(k*P/k). From |24, X.3] we know that k/p(k) is isomor-
phic to Hom(G,Z/pZ), and that the isomorphism is induced by taking ¢ € k
to pe : G — Z/pZ, where v.(g9) = g(x) — « for any z satisfying p(z) = ¢. Now,
every Artin-Schreier extension corresponds to the kernel of a non-trivial element in
Hom(G,Z/pZ). From this it is easy to conclude: Take an Artin-Schreier extension
L/k to some ¢, such that ker(p.) = Gal(k*P, L), and from there to the orbit of
¢+ (k). One can check that this is well defined and a bijection. O

We now turn to vector groups.

Definition 2.4. A wector group is a group isomorphic to a finite Cartesian power
of the additive group of a field.

Fact 2.5. [15, 20.4, Corollary] A closed connected subgroup of a vector group is a
vector group.

Using infinite Galois cohomology (namely, that H! (Gal(k*°P/k), (k*°P)*) = 1 for a
field k, for more on that see [24, X]), one can deduce the following fact:

Corollary 2.6. Let k be a perfect field, and G a closed connected 1-dimensional
algebraic subgroup of (kalg, +)n defined over k, for some n < w. Then G is iso-
morphic over k to (kalg, +).

This fact can also proved by combining Théoréme 6.6 and Corollaire 6.9 in [9,
IV.3.6].

We shall be working with the following group:
Definition 2.7. Let K be a field and (ay,...,a,) =a € K. Put
Ga={(t,z1,...,2,) € K" |t =a; (2F — ;) for 1 <i < n}.
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This is an algebraic subgroup of (K, +)"*!.

Recall that for an algebraic group G we denote by G the connected component
(subgroup) of the unit element of G.

Lemma 2.8. Let K be an algebraically closed field. If a € K is algebraically
independent, then Gg is connected.

Proof. By induction on n := length(a). If n = 1, then Gz = {(t,z) |t = a- (2P —x)}
is the graph of a morphism, hence isomorphic to A! and thus connected. Assume
the claim for n, and for some algebraically independent a € K of length n + 1
let @ = a | n. Consider the projection 7w : Gz — Gg. Since K is algebraically
closed, 7 is surjective. Let H = GY be the identity connected component of Gj.
As [Ga : w(H)] < [Gz : H] < oo, it follows that m(H) = G5 by the induction
hypothesis. Assume that H # Gj.

Claim. For every (t,z) € Gy there is exactly one x,1 such that (t,Z,x,4+1) € H.

Proof. Suppose for some (t,Z) there were z},, # 22, such that (¢,Z,2¢%,,) € H
for i = 1,2. Hence their difference (0,0,a) € H. But 0 # «a € F, by definition
of Gz. Hence, (0,0,1) € H, and (0,0,8) € H for all 3 € F,. We know that
for every (t,Z,zn41) € G5 there is some z’,,1 such that (¢,%,2',41) € H; as
Tny1 — ' g1 € Fp we get (¢, %, xn41) € H and G5 = H, a contradiction. ]

So H is a graph of a function f : G5 — K defined over a. Now put ¢ = 1 and
choose x; € K for i < n such that a; - (z¥ — z;) = 1. Let L =F,(x,...,2,) and
note that a; € L for ¢ < n. Then

Tny1 = f(1,Z) € dcl(ant1, @1, ..., Tn) = L(ant1)ins

where L(an1)ins is the inseparable closure J,,_,, L(an+1)p_n of L(an+1). Since
Zn41 is separable over L(ay,y1), it follows that x,11 € L(a,+1). By assumption,
an+1 is transcendental over @', whence over L, and so x,1 ¢ L. Hence x,41 =
h(an+1)/g(ans+1) for some mutually prime polynomials g, h € L[X]. But then

An41 ° [h(an+1)p/g(an+1)p - h(an+1)/g(an+1)} =1
implies
ns1 - [h(ang1)? = (ani1)g(an1)’ '] = glani1)?.

This implies that h divides g, whence h € L is constant. Similarly, g(X) divides
X, which easily yields a contradiction. (I

Corollary 2.9. If K is perfect and a € K is algebraically independent, then G is
isomorphic over K to (k™&,+). In particular, G4(K) is isomorphic to (K, +).

Proof. Over k®# the projection to the first coordinate of G is onto and has finite
fibers, so dimG; = 1 (as a variety). But then G2(k2#) is isomorphic over K to
(k8 +) by Corollary 2.6; this isomorphism sends GY(K) onto (K,+). Finally,
Ga = GY by Lemma 2.8. O
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3. SIMPLE FIELDS

For background on simplicity theory, the interested reader may consult [27]. The
only property we shall need is a type-definable variant of Schlichting’s Theorem.

Fact 3.1. |27, Theorem 4.5.13] Let G and T be type-definable groups with a definable
action of ' on G, and let § be a type-definable T'-invariant family of subgroups of
G. Then there is a I'-invariant type-definable subgroup N < G containing some
bounded intersection of groups in § such that [N : NN F] is bounded for all F € §.

Theorem 3.2. Let K be a type-definable field in a simple theory. Then K has only
boundedly many Artin-Schreier extensions.

This means that in any elementary extension 91, the number of Artin-Schreier ex-
tensions of K™ remains bounded. In particular, by compactness, if K is definable,
it has only finitely many Artin-Schreier extensions.

Proof. If K is finite, then it has precisely one Artin-Schreier extensions. So we may
assume it is infinite, and that the model is sufficiently saturated. Let k = K7~ =
N K?", a perfect infinite type-definable sub-field. Let o : K — K be the additive
homomorphism given by p(z) = 2P — 2. We shall show that p(K) has bounded
index in K.

Let § = {ap(K) | a € k}; this is a type-definable k*-invariant family of additive
subgroups of K. By Fact 3.1 there exists a type-definable additive k*-invariant
subgroup N < K containing a bounded intersection of groups in §, such that
[N : NN F]is bounded for all F' € §.

If N contains [, 4 ap(K) for some bounded A C k, then for any finite a € A
the group G2(k) is isomorphic to (k,+) by Corollary 2.9. Since k is infinite, the
projection to the first coordinate is infinite, as is [, , ag(k), and even (N, 4 ap(k)

by compactness, so N N k is infinite as well. But N Nk is k*-invariant, hence an
ideal in k, and must equal k. Since [N : p(K)] is bounded, so is [k : k N p(K)].

Now a = a? + p(—a) for any a € K, whence K = K? + p(K). Assume K =
K?" + o(K). Then K? = K?""" 4 o(KP), whence

K = K+ o(K) = K" 4 p(K?) + o(K) = K*""" + o(K);
by compactness K = k + p(K). Thus [K : p(K)] = [k : kN p(K)] is bounded. O

Remark 3.3. The important category of objects in simple theories are the hyper-
definable ones: Quotients of a type-definable set by a type-definable equivalence
relation. However, a hyper-definable field is easily seen to be type-definable: If K
is given by a partial type ™ modulo a type-definable equivalence relation E, then for
a,b € K the inequivalence —aEb is given by the partial type 3z [r(x) A (a — b)zE1].
By compactness, E is definable on .

4. DEPENDENT FIELDS

Definition 4.1. A theory T has the independence property if there is a formula
©(7,y) and some model M containing tuples (a; : i € w) and (by : I C w) such that
M = o(a;, br) if and only if i € I.
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Definition 4.2. A theory T is dependent if it does not have the independence
property.

Remark 4.3. Let k be a field, and let f : k — k be an additive polynomial, i.e.
flx4+y) = f(x) + f(y). Then f is of the form > a;x? . Furthermore, if k is
algebraically closed and ker(f) = Fp, then f =a- (2P — z)P" for some n < w and
a€k.

Proof. The first part appears in [11, Proposition 1.1.5]. Assume now that k is
algebraically closed and |ker(f)| = p. If ag # 0, then (f, f') = 1, hence f has no
multiple factors and deg(f) = p. If ap = 0, then f = (g(x))P for some additive
polynomial g with |ker(g)] = p. So by induction f = (agz + a;z?)?" for some
n < w. If moreover ker(f) = IF,, then ag +a; = 0 hence f = a- (P —z)P" for some
a € k. (]

Theorem 4.4. Let K be an infinite dependent field. Then K is Artin-Schreier
closed.

Proof. We may assume that K is No-saturated, and we put k = K?~ | a type-
definable infinite perfect sub-field. For a € k let
Hy={teK|3ze K a- (2 —z) =1t}

By dependency the Baldwin-Saxl condition [1] holds, which means that there is
n < w such that for every (n+ 1)-tuple a, there is a sub-n-tuple @’ with (,., H, =
(Naca Har- This implies that the projection 7 : Gg(K) — Ga (K) is onto, where

Ga={(t,r1,...,2,) € K" |t = q; (27 — x;) for 1 <i < n}
is the group defined in Definition 2.7. We fix some algebraically independent (n+1)-
tuple a € k.

By Corollary 2.9 we have algebraic isomorphisms G; — (k% +) and Gy —
(k*&, 1) over k. Hence we can find an algebraic map p over k which makes the
following diagram commute:

Ga(k¥8) —= G (k')

Lo

(k¥¢, +) —> (k*'&, +)

As all groups and maps are defined over k£ C K, we can restrict to K. But 7 [ G5(K)
is onto Gy (K), so p | K must be onto as well. Moreover,

| ker(p)| = |ker(m)| = |(0,0) x Fp| = p;

since ker(w) is contained in Gz(K), this remains true in the restrictions to K.
Finally, p is a group homomorphism, i.e. additive, and a polynomial, as it is an
algebraic morphism of (k8 +).

Suppose that 0 # ¢ € ker(p) C K, and put p'(z) = ¢=*-p(x). Then p’ is an additive
polynomial whose kernel is IF,,. By Remark 4.3 there are a € k and n < w such that
P (x)=a-(zP —x)?". As p/ | K is onto K, for any y € K there is some = € K with

a-(z? —z)?" =a-y"",
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50 p(x) = 2P — x = y and we are done.

In fact, n must be 0, as the degree of = (as algebraic morphism) is p, and so is the
degree of o, since the vertical arrows are algebraic isomorphisms. O

Corollary 4.5. If K is an infinite dependent field of characteristic p > 0 and L/K
is a finite separable extension, then p does not divide [L : K.

Proof. Assume not, and let L’ be the normal closure of L/K. Then p | [L' : K], so
we may assume that L/K is Galois. Let G < Gal(L/K) be a subgroup of order p,
and let K¢ C L be its fixed field. As K€ is interpretable in K, it is also dependent.
But L/K® is an Artin-Schreier extension, contradicting Theorem 4.4. ]

Corollary 4.6. Let K be an infinite dependent field of characteristic p > 0. Then
K contains leg_

Proof. Let k = KN F;lg, the relative algebraic closure of IF,, in K. As K is Artin-
Schreier closed, so is k. Hence k is infinite, perfect, and pseudo-algebraically closed.
But [10, Theorem 6.4] of Duret states that a field with a relatively algebraically
closed PAC subfield which is not separably closed has the independence property.
Hence k is algebraically closed, i.e. k = ]F;lg . O

One might wonder what happens for a type-definable field in a dependent theory.
We were unable to generalize our theorem to this case. However, one easily sees:

Proposition 4.7. Let K be a type-definable field in a dependent theory. Then K
has either no, or unboundedly many Artin-Schreier extensions.

Proof. By [25] (another presentation appears in [14, Proposition 6.1]) there is a
minimal type-definable subgroup K% of (K,+) of bounded index. As for any
A\ € KX, the multiplicative translate A\G® is also a type-definable additive subgroup
of bounded index, K% is an ideal of bounded index and must therefore be equal
to K. On the other hand, the image of p is a type-definable subgroup of (K, +).
Remark 2.3 tells us that it has bounded index if and only if there are boundedly
many Artin-Schreier extensions. But if it has bounded index, then it contains
K% = K, and K is Artin-Schreier closed. O

In an attempt to prove the theorem for type-definable fields, we found the following
lemma concerning type-definable groups in dependent theories:

Definition 4.8. Let G be a group, $ a family of subgroups of G and « a cardinal.
The x-almost intersection is the subgroup

(TH={9eG|card{H €$H|g¢ H}) <k}

Proposition 4.9. Let G be a type-definable group in a dependent theory. Then for
any type-definable family $Ho of subgroups of G there is a cardinal ko such that for
any reqular cardinal k > kg, and subfamily $ C $Hy in any elementary extension,
the intersection (| $) is a subintersection of size less than k intersected with the
k-almost intersection () 9. In fact, if k1 is a bound for the number of parameters
defining a group in Ho and every g € G is a tuple of length ks, then we can take
Ko = \T|+ + K1 + Ka.
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Proof. Let k > ko be regular. Sets of cardinality less than s will be called small.
Assume that there is some family $ = {H; | ¢ < A} of uniformly type-definable
subgroups of G which is not equal to a small subintersection intersected with the
k-almost intersection. For g € G define J, = {t <X | g € H;}. So g € (" $ if and
only if A\ J, is small.

We shall define inductively on i < & elements g; € ()" $), subsets I; C X and ordinals
a; < A, such that

2) I, is decreasing,
3) «; is increasing,
4) I; C Jgi7
5) ﬂjek\li H; >N HnN ﬂjel H; for some small J C X, and
(6) for i # j we have g; € Ho, \ Ha,-
Assume that g;, I;, a; have been chosen for j < i. Put I; = (;_; I; (where Ij = \).
Let a; € I be minimal such that there is some element
gi € ([ V9N () Hay)\Ha,-
i<i
Such an o; must exist, as otherwise (1" 9 N (;; Ha, € jep Hj, s0
o=(V9n(Hs, 0 () Hj
Jj<i JEMNI]
But now [0,4) is small, and by (5) and regularity of x there is a small J with
() B 290 H
FEAI jeJ
This contradicts our assumption on $).

Let I; ={j € I | j > a;} N Jg,. This takes care of (1) and (4). Now (2) is obvious,
and (3) follows from (1) in the induction. By the minimality of «,

(TPon(Haey © () Hi

j<i FEIN[0,a;)
So
N Hn () H= N Hy 2 (V90 () Ha, N () Hj
J€0,04] JENI] je(MIHU([0,a:]n17) j<i jeJ
As
N 4= () #&n () #H0 (] H
JEMNI; JEMNJg, F€[0,054] JENI!

we get (5). Finally for j <4 we have g; € Ha; \ Hq, by choice of g;, and for j > i
we have g; € H,; since o € I; C Jy,, so (6) holds as well.

Now the usual argument works: Since d; -g;-do ¢ H,, for any dy,ds € H,,, by com-
pactness there is some formula @;(z,b;) containing H,, such that —p;(dyg:d2,b;)
for all dy,ds € H,,. As k > |T|, we can extract an infinite subset I of x such that
the same formula ¢ (z,y) will work for all ¢ € I. Now for any finite subset s of
I'let g5 be the product J[,c, gi- Then ¢(gs,b;) if and only if i ¢ s, contradicting
dependency. ([
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We can, however, prove that a type-definable field is Artin-Schreier closed under a
stronger hypothesis.

Definition 4.10. Call a type-definable group G strongly connected when G%° = G.

Note that if 7 : G — H is a definable surjective group homomorphism and G is
strongly connected, then so is H, since |G : 7~} (H)| is bounded by |H : H*| and
7 is onto.

Theorem 4.11. Let K be a type-definable field in a dependent theory such that
there is no infinite decreasing sequence of type-definable additive subgroups, each of
unbounded index in its predecessor. Then K is Artin-Schreier closed.

Proof. We work in a saturated model. Let a = (a; : ¢ < w) be a sequence of
algebraically independent elements from k = (K?". Let H; = a; - p (K), and
recall that ﬂj<n H;, = Wl(G(aio,m,ain,l)(K)) for all i9 < ... < t,_1, where m

is the projection to the first coordinate. Since G(aim y(K) is isomorphic

v @i g
(over k) to (K,+) and we mentioned in 4.7 that the latter is strongly connected,
, i, 1s strongly connected, too. By assumption, there is some n such tha
i< Hi, is strongl ted, too. B tion, there i h that

MNicn Hi = ;<41 Hi- Now proceed as in the proof of Theorem 4.4. O

Remark 4.12. Saharon Shelah has shown [26] that this condition holds when T is
strongly® dependent.

5. SOME RESULTS ON DEPENDENT VALUED FIELDS

Here we find a nice characterization of “nice” dependent valued fields of character-
istic p > 0. First we recall the definitions and notations:

Definition 5.1. A valued field is a pair (K,v) where K is a field and v : K —
' U {oo} for an ordered group I such that:

(1) v(z) = oo if and only if 2 =0,
(2) v(zy) = v (z) +v(y), and
(3) v (@ +y) = min{v (), v(y)}.

If (K,v) is a valued field, then T' = v (K*) is the valuation group, O = {z € K |
v(xz) > 0} is the (local) ring of integers, mx = {x € K | v(z) > 0} is its mazimal
ideal, and k = Ok /mg is the residue field. As a structure we think of it as a
3-sorted structure (K, T, k) equipped with the valuation map v : K* — I', and the
quotient map 7w : O — k. Other interpretations are known to be equivalent (i.e.
bi-interpretable, and hence to preserve properties such as dependency).

In [8] Delon gave the following characterization of Henselian dependent valued fields
of characteristic 0.

Fact 5.2. [8] Let (K,v) be a Henselian valued field of characteristic 0. Then (K, v)
is dependent if and only if the residue field k is dependent.

Historically, this theorem stated that the valuation group must also be dependent,
but by a result of Gurevich and Schmitt [12], every ordered abelian group is depen-
dent.

Here we discuss valued fields of characteristic p, i.e. with char(K) = char(k) = p.
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Proposition 5.3. If (K,v) is a dependent valued field of characteristic p > 0, then
the residue field contains ]F;lg.

Proof. Suppose 7 (a) € k with a € Og. Since K is Artin-Schreier closed, there
is b e K with ¥ —b = a. If v(b) < 0, then v(b?) = pv(b) < v(b), whence
v(bP — b) = v(b?) < 0, contradicting v(a) > 0. Hence v(b) > 0 and b € Ok. Thus
7 (b) € k, and 7 (b)Y — 7 (b) = 7 (a). In other words, k is also Artin-Schreier closed,
and hence infinite; since it is interpretable, it is dependent, and contains Fglg by
Corollary 4.6. O

Proposition 5.4. If (K,v) is a dependent valued field of characteristic p > 0, then
the valuation group T is p-divisible.

Proof. Let 0 > a € I. So @ = v(a) for some a € K*. As K is Artin-Schreier
closed, there is some b € K* such that b» — b = a. Clearly v(b) > 0 is impossible.
Hence v(b?) = p v(b) < v(b), and

a=v(a) = v —b) = min{v(b*),v(b)} = v(b*) = pv(b).

So « is p-divisible, as is I (for « positive, consider —a). O

As a corollary we obtain a result of Cherlin [6].

Corollary 5.5. F, ((t)) is independent, and so is F3' ((t)).

Propositions 5.3 and 5.4 are also sufficient for a valued field to be dependent, under
certain conditions. In order to explain these conditions, we give two definitions.

Definition 5.6. A valued field (K, v) of characteristic p > 0 is called a Kaplansky
field if it satisfies:

(1) The valuation group I is p-divisible,
(2) The residue field k is perfect, and does not admit a finite separable extension
divisible by p.

This definition is taken from the unpublished book on valuation theory by Franz-
Viktor Kuhlmann [18, 13.11]. It is first-order expressible, as the second condition is
equivalent to saying that for every additive polynomial f € k[z], and every a € k,
there is a solution to f (r) = a in k (for a proof, see [17, Theorem 5]).

Definition 5.7. A valued field (K, v) is called algebraically maximal if it does not
admit any non-trivial algebraic immediate extension (i.e. keeping both the residue
field and the valuation group).

This is also first order axiomatizable [18, Chapter 14, Section 2|. It always implies
Henselianity, and is equivalent to it in characteristic 0. In characteristic p, it is
weaker than being Henselian and defectless ([18, 9.39]).

We shall use the following result of Bélair.

Fact 5.8. [2, Corollaire 7.6] A valued field K of characteristic p which is Kaplansky
and algebraically mazimal is dependent if and only if k is dependent.

Finally, we have:
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Theorem 5.9. Let (K, v) be an algebraically maximal valued field of characteristic
p whose residue field k is perfect. Then (K,v) is dependent if and only if k is
dependent and infinite and T is p-divisible.

Proof. If (K,v) is dependent then k is infinite (it even contains F2'¢), and depen-
dent, and T is p-divisible, by Propositions 5.3 and 5.4. On the other hand, if k is
dependent and infinite, by Corollary 4.5 we get that (K,v) is Kaplansky and we
can apply fact 5.8. (]

It is interesting to note the connection to Kuhlmann’s notion of a tame valued field
(see [18, Chapter 13, Section 9]). A valued field (K,v) is called tame if and only
if it is algebraically maximal, I" is p-divisible and k is perfect. Note the difference
between this and Kaplansky.

We get as an immediate corollary:

Corollary 5.10. Let (K,v) be an algebraically mazimal dependent valued field.
Then K is tame if and only if K is Kaplansky, if and only if k is perfect.
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