SKEW-INVARIANT CURVES AND THE ALGEBRAIC INDEPENDENCE OF MAHLER FUNCTIONS

ALICE MEDVEDEV, KHOA D. NGUYEN, AND THOMAS SCANLON

Abstract

For $p \in \mathbb{Q}_{+} \backslash\{1\}$ a positive rational number different from one, we say that the Puisseux series $f \in \mathbb{C}((t))^{\text {alg }}$ is p-Mahler of non-exceptional polynomial type if there is a polynomial $P \in \mathbb{C}(t)^{\text {alg }}[X]$ of degree at least two which is not conjugate to either a monomial or to plus or minus a Chebyshev polynomial for which the equation $f\left(t^{p}\right)=P(f(t))$ holds. We show that if p and q are multiplicatively independent and f and g are p-Mahler and q-Mahler, respectively, of non-exceptional polynomial type, then f and g are algebraically independent over $\mathbb{C}(t)$. This theorem is proven as a consequence of a more general theorem that if f is p-Mahler of non-exceptional polynomial type, and g_{1}, \ldots, g_{n} each satisfy some difference equation with respect to the substitution $t \mapsto t^{q}$, then f is algebraically independent from g_{1}, \ldots, g_{n}. These theorems are themselves consequences of a refined classification of skew-invariant curves for split polynomial dynamical systems on \mathbb{A}^{2}.

1. Introduction

Mahler introduced the class of functions which now bear his name in [6] with the aim of systematically deducing transcendence, and more generally algebraic independence, of special values of certain transcendental functions satisfying functional equations. Specifically, for a positive rational number q not equal to 1 we say that the formal Puissuex series $f \in \mathbb{C}((t))^{\text {alg }}$ is q-Mahler of polynomial type if there is a polynomial $Q(X) \in \mathbb{C}(t)^{\text {alg }}[X]$ of degree at least two for which $f\left(t^{q}\right)=Q(f(t)) .^{1}$

We address the problem of determining the possible algebraic relations between p-Mahler and q-Mahler functions for multiplicatively independent p and q. Versions of this problem have been studied. For example, Zannier shows in [14] that a transcendental function cannot be simultaneously p-Mahler and q-Mahler of polynomial type when p and q are multiplicatively independent integers and the polynomials have coefficients in $\mathbb{C}[t]$. Adamczewski and Bell [1] prove analogous results when "polynomial type" is replaced by "linear type". Our main theorem is that if p and q are multiplicatively independent positive rational numbers and f and g are p-Mahler and q-Mahler, respectively, of non-exceptional polynomial type, then f and g are algebraically independent over $\mathbb{C}(t)$.

To state this theorem precisely we should recall the notion of exceptional polynomials.

[^0]There are three basic kinds of exceptional polynomials: linear polynomials, monomials, and (scalings of) Chebyshev polynomials. ${ }^{2}$ A polynomial P is exceptional if it is linear or P is conjugate $]^{3}$ to X^{N} or to $\pm C_{N}$ where $N=\operatorname{deg}(P)$.

Otherwise, P is non-exceptional. ${ }^{4}$ For $p \in \mathbb{Q}_{+} \backslash\{1\}$ we say that $f \in \mathbb{C}((t))^{\text {alg }}$ is p Mahler of non-exceptional polynomial type if there is a non-exceptional polynomial $P \in \mathbb{C}(t)^{\text {alg }}[X]$ for which the equation $f\left(t^{p}\right)=P(f(t))$ holds. Our main theorem takes the following form.

Theorem 1.1. Let p and q be two multiplicatively independent positive rational numbers, $f \in \mathbb{C}((t))^{\text {alg }}$ and $g \in \mathbb{C}((t))^{\text {alg }}$ be two formal Puisseux series over the complex numbers, and suppose that f and g are p-Mahler and q-Mahler, respectively, of non-exceptional polynomial type. Then f and g are algebraically independent over $\mathbb{C}(t)$.

The hypotheses in Theorem 1.1 are much stronger than we actually require and the conclusion is much weaker than what prove. Indeed, it suffices to assume merely that f is p-Mahler of non-exceptional polynomial type and that g satisfies some difference equation with respect to the substitution $t \mapsto t^{q}$. In fact, our proof Theorem 1.1 is algebraic and applies in a much wider context.

The substitutions $t \mapsto t^{p}$ and $t \mapsto t^{q}$ induce commuting field automorphisms σ and τ of the fields of algebraic functions $\mathbb{C}(t)^{\text {alg }}$ and of formal Laurent series. Moreover, the multiplicative independence of p and q imply that σ and τ are independent in the sense that if h is a non-constant formal Puisseux series and $(m, n) \neq(0,0)$, then $\sigma^{m} \tau^{n}(h) \neq h$. To say that f is a p-Mahler of non-exceptional polynomial type is simply to say that there is a non-exceptional polynomial $P \in \mathbb{C}(t)^{\text {alg }}[X]$ with $\sigma(f)=P(f)$. Abstracting this situation, we formulate our more general theorem on algebraic independence.

Theorem 1.2. Let $C \subseteq K \subseteq L$ be a tower of algebraically closed fields of characteristic zero. Suppose that σ and τ are commuting automorphisms of L which preserve K and have C as their common fixed field. Suppose moreover that σ and τ are independent in the sense that if $a \in L \backslash C$ and $(m, n) \in \mathbb{Z}^{2} \backslash\{(0,0)\}$, then $\sigma^{m} \tau^{n}(a) \neq a$.

We make two additional hypotheses about difference equations. First, for any automorphism ρ in the group generated by σ and τ and any $c \in C$, there are no nonconstant solutions to the equation $\rho(x)=c x$ in L. Secondly, for ρ and μ independent automorphisms in the group generated by σ and $\tau, M \in \mathbb{Z}_{+}$a positive integer, and $a \in L^{\times}$an element of L satisfying $\rho\left(\frac{\mu(a)}{a}\right)=\left(\frac{\mu(a)}{a}\right)^{M}$, then $a \in K$.

Suppose that $f \in L$ satisfies an equation of the form $\sigma(f)=P(f)$ for some non-exceptional polynomial $P \in K[X]$ and that $g_{1}, \ldots, g_{n} \in L$ each satisfy nontrivial τ-difference equations over K. That is, for some $r \in \mathbb{N}$ there are non-zero

[^1]polynomials $Q_{i}\left(X_{0}, X_{1}, \ldots, X_{r}\right) \in K\left[X_{0}, \ldots, X_{r}\right]$ so that $Q_{i}\left(g_{i}, \tau\left(g_{i}\right), \ldots, \tau^{r}\left(g_{i}\right)\right)=$ 0 for $1 \leq i \leq n$. Then f is algebraically independent from g_{1}, \ldots, g_{n} over K.

Recently, Adamczewski, Dreyfus, Hardouin, and Wibmer [2] proved a similar algebraic independence statement under the hypothesis that f satisfies a linear σ-difference equation.

Our proof of Theorem 1.2 makes use of the full strength of the characterization of skew-invariant curves from [8. Most uses of 8 to date invoke merely the characterization of invariant curves for dynamical systems of the form $(x, y) \mapsto(P(x), P(y))$ where P. For this, the relevant description may also be obtained using the theory of orbifolds as shown by Pakovich [10] and admits a generalization to the case where P is a rational function [11. For the application to our problem on the algebraic independence of Mahler functions, we need a precise description of the possible skew-invariant curves for maps of the form $(x, y) \mapsto\left(P(x), P^{\tau}(y)\right)$ where P is a non-exceptional polynomial and $\tau: K \rightarrow K$ is any field automorphism. The main theorem of [8] describes these combinatorially and in the present paper we push that characterization further, showing in the language of [8], that these skew-invariant curves are given by skew-twists.

Let us give the requisite definitions and state the precise form of our theorem on skew-invariant curves.

A difference field (K, σ) is a field K given together with a distinguished field automorphism $\sigma: K \rightarrow K$. For any object X defined over K, we write X^{σ} for the transform of X over K. For example, for a polynomial $P \in K[X], P^{\sigma}$ is the polynomial obtained by applying σ to the coefficients of P. Given an algebraic variety X over K and a regular map $f: X \rightarrow X^{\sigma}$, we say that the subvariety $Y \subseteq X$ is skew-invariant if the restriction of f to Y maps Y to Y^{σ}.

Given two one-variable polynomials $P, Q \in K[X]$, we say that $Y \subseteq \mathbb{A}_{K}^{2}$ is a skew-twist curve for (P, Q) if there are polynomials α and β and an integer n so that $P=\beta \circ \alpha, Q=\alpha^{\sigma^{n+1}} \circ \beta^{\sigma^{n}}$, and

- either $n \geq 0$ and Y is defined by $y=\alpha^{\sigma^{n}} \circ P^{\sigma^{n-1}} \circ \cdots \circ P^{\sigma} \circ P(x)$
- or $n \leq-1$ and Y is defined by $x=\beta^{\sigma^{-1}} \circ Q^{\sigma^{-n-2}} \circ Q^{\sigma^{-n-3}} \circ \cdots \circ Q(y)$; note that when $n=-1$, this simply mean $x=\beta^{\sigma^{-1}}(y)$.
With these definitions in place we may state our theorem on skew-invariant curves.

Theorem 1.3. Let (K, σ) be a difference field of characteristic zero and $\tau: K \rightarrow K$ be a field automorphism commuting with σ. Let $P \in K[X]$ be a non-exceptional polynomial. Then every skew-invariant curve for $\left(P, P^{\tau}\right)$ is either a horizontal or vertical line or a skew-twist curve.

Section 2 comprises the bulk of this paper and is devoted to proving Theorem 1.3. In [8] we worked with a formalism of decompositions and Ritt monoid actions on these decompositions in order to encode and manipulate skew-invariant curves. Starting with Subsection 2.1 we modify that formalism by replacing the decompositions with what we call long decompositions. The monoid actions are then replaced with partial group actions and once again a (P, Q)-skew-invariant curve will be encoded by an equation of the form $w \star \vec{P}=\vec{Q}$ where \vec{P} and \vec{Q} are long decompositions of P and Q, respectively. When $Q=P^{\tau}$, then decomposition \vec{Q} may be taken to be $\overrightarrow{P^{\tau}}$, and then as far as the "shape" of the long decompositions
are concerned, it would seem that the action by w does not have any real effect. Theorem 1.3 is a mathematical expression of this observation.

In practice, we must work to produce enough invariants of these long decompositions to limit the possibilities for such a w. One such invariant might be what we call a wall, that is, a point in the decomposition at which swaps are impossible. We prove early on with Corollary 2.53 that Theorem 1.3 holds when a long decomposition of P admits a wall.

In Subsection 2.2 we study the case in which Chebyshev functions do not appear in a decomposition of P. In this case, we will find a semi-invariant way to break a long decomposition of P into blocks and then to describe the our partial group actions on the decomposition in terms of certain numerical functions. Finally, in Subsection 2.3 we expand the theory of clusterings from [8 to produce sufficiently robust combinatorial invariants in the remaining cases. We collect all of the steps required for the proof of Theorem 1.3 in Subsection 2.4 . This paper concludes with the proof of Theorems 1.1 and 1.2 in Section 3

Acknowledgements. During the writing of this paper A.M. was partially supported by the NSF grant DMS-1500976 and the Simons Foundation award 317672, K.N. was partially supported by NSERC Discovery Grant RGPIN-2018-03770 and CRC tier-2 research stipend 950-231716, and T.S. was partially supported by NSF grants FRG DMS-1760413 and DMS-1800492 and a Simons Fellowship in Mathematics.

2. Skew-invariant curves

There are two natural procedures for producing skew-invariant curves for (P, Q) where P and Q are univariate polynomials. First, we have the skew-twists. That is, if we factor $P=\beta \circ \alpha$ and $Q=\alpha^{\sigma^{n+1}} \circ \beta^{\sigma^{n}}$ for some natural number n and polynomials α and β, then the curve defined by $y=\alpha^{\sigma^{n}} \circ P^{\sigma^{n-1}} \circ \cdots \circ P(x)$, which we call a skew-twist curve is (P, Q)-skew-invariant. Note that here we allow for α or β to be linear and $n=0$, so that this includes the case that Q is skew-linearly conjugate to P. Another natural way to obtain a skew-invariant curve would be have an identity of the form $X^{n} \circ P=Q \circ X^{n}$ for some positive integer n in which case the curve defined $y=x^{n}$, which we call a monomial curve, is (P, Q)-skew-invariant. Of course, we may swap the roles of P and Q to obtain skew-invariant curves for (Q, P). For example, if we have the identity $P \circ X^{n}=X^{n} \circ Q$, then the curve defined by $y^{n}=x$ is (P, Q)-skew-invariant. Likewise, we may compose such skew-invariant curves to obtain new ones. That is, if C is (P, Q)-skew-invariant and D is (Q, R) -skew-invariant, then the (possibly reducible) $D \circ C$ is (P, R)-skew-invariant. The process of iterating these operations and possibly taking components of the resulting reducible curves gives rise to all of the skew-invariant curves. However, this fact on its own does not give a sufficiently clear picture of the class of skew-invariant curves. The description is complicated, for instance, by the fact that the composite of two skew-twists need not be a skew-twist itself since a given polynomial may admit several different presentations as a composite of other polynomials. Moreover, our two classes of basic skew-invariant curves are not disjoint. If $P=R \circ X^{n}$ and $Q=X^{n} \circ R$ where $R^{\sigma}=R$, then the (P, Q)-skew-invariant curve defined by $y=x^{n}$ is a skew-twist curve and is also a monomial curve.

The skew-invariant curves for pairs (P, Q) of non-exceptional polynomials are described in [8, Proposition 6.19] as components of curves encoded by equations of the form $w \star \vec{f}=\vec{g}$ where \vec{f} is a decomposition of f, \vec{g} is a decomposition of g, and w belongs to the augmented skew-twist monoid. With [8, Theorem 6.26], various results on canonical forms for such actions are applied to convert the equation $w \star \vec{f}=\vec{g}$ into a concise geometric form. In this section, which is dedicated to the proof of Theorem 1.3 , we modify the formalism of decompositions and monoid actions to work with what we call long decompositions and will then specialize to describe the skew-invariant curves appearing in Theorem 1.3.
2.1. Long decompositions and partial group actions. In this subsection we develop the formalism of long decompositions and partial group actions. With this work we may prove Theorem 1.3 in two cases: when P is indecomposable (Proposition 2.22) and then when P admits a decomposition with an unswappable factor (Corollary 2.53).
2.1.1. Long decompositions. While we recall some of the definitions and results from [8], the reader is advised to consult that text for further details. Let us begin by recalling and introducing our basic definitions.

Definition 2.1. A polynomial $f \in K[X]$ is indecomposable if $\operatorname{deg}(f) \geq 2$ and whenever $f=A \circ B$ with $A, B \in K[X]$, then either A or B is linear. A decomposition of the polynomial f is a finite sequence $\left(f_{k}, \ldots, f_{1}\right)$ of indecomposable polynomials for which $f=f_{k} \circ \cdots \circ f_{1}$. A $(k$ - $)$ long decomposition of f is a k-skew-periodic \mathbb{Z}-indexed sequence $\left(f_{i}\right)_{i \in \mathbb{Z}}$ of indecomposable polynomials (meaning that for every $i \in \mathbb{Z}$ we have $\left.f_{i+k}=f_{i}^{\sigma}\right)$ for which $\left(f_{k}, \ldots, f_{1}\right)$ is a decomposition of f.

Notation 2.2. Throughout the rest of this section we will fix the number k. Generally, when working with a k-long decomposition, we shall write something like $f=\left(f_{i}\right)_{i \in \mathbb{Z}}$ and may use the notation \vec{f} when we wish to distinguish between sequences and individual polynomials.

Remark 2.3. Every nonlinear polynomial admits a long decomposition. Part of Ritt's 12 theorem on polynomial decompositions is that the number k depends only on the polynomial. Of course, unless the polynomial is indecomposable, the long decomposition itself is not an invariant, but the rest of Ritt's theorem expresses the extent to which it is and how one decomposition may be obtained from another.
Definition 2.4. A k-skew periodic sequence of linear polynomials-linearis a \mathbb{Z} indexed sequence $L=\left(L_{i}\right)_{i \in \mathbb{Z}}$ of linear polynomials for which $L_{i+k}=L_{i}^{\sigma}$ holds for all $i \in \mathbb{Z}$.

The k-long decomposition f is linearly equivalent to the k-long decompositiong via the k-skew periodic sequence of linear polynomials-linear L provided that $g_{i}=$ $L_{i+1}^{-1} \circ f_{i} \circ L_{i}$ for all $i \in \mathbb{Z}$. We write \mathscr{D}_{k} for the set of equivalence classes of k-long decompositions.

Remark 2.5. On one hand, Definition 2.4 describes an operation which takes as input f and L and returns g. On the other hand, the relation " f is linearly equivalent to g via some k-skew periodic sequence of linear polynomials-linear" is an equivalence relation on the set of k-long decompositions. This notion matches the skew-linear equivalence of [8] rather than linear equivalence. For f a k-long decompositionwe write $[f]$ for its equivalence class relative to linear equivalence.

Ritt's theorems on polynomial decompositions [12] express the extent to which a polynomial admits a unique presentation as a composition of indecomposable polynomials. Loosely speaking, if the polynomial P may be expressed in two different ways as $P=P_{k} \circ \cdots \circ P_{1}$ and $P=Q_{\ell} \circ \cdots \circ Q_{1}$ where each P_{i} and Q_{j} is indecomposable, then $\ell=k$ and the decomposition $\left(Q_{k}, \ldots, Q_{1}\right)$ may be obtained from the decomposition $\left(P_{k}, \ldots, P_{1}\right)$ by transforming these sequences through a finite number of what in [8] we call Ritt swaps. We encode this process of passing from one decomposition to another via a sequence of Ritt swaps through a certain partial monoid action and then take this further to encode all skew-invariant curves through more general partial monoid actions.

Let us recall some of the formalism of Ritt identities and Ritt swaps. For more details, consult [8, page 102].
Definition 2.6. The following identities are called basic Ritt identities.

- $x^{p} \circ x^{q}=x^{q} \circ x^{p}$ for distinct prime numbers p and q,
- $C_{p} \circ C_{q}=C_{q} \circ C_{p}$ for distinct odd primes p and q where C_{p} is the $p^{\text {th }}$ Chebyshev polynomial, and
- $x^{k} \cdot u(x)^{p} \circ x^{p}=x^{p} \circ x^{k} \cdot u\left(x^{p}\right)$ (and the identity with the left and right sides reversed) where $u(0) \neq 0, p$ is prime, and $x^{k} \cdot u\left(x^{p}\right)$ is indecomposable.
Definition 2.7. Fix a polynomial u with no initial nor terminal, compositional nor multiplicative monomial factors. The in-degree and out-degree of a Ritt polynomial $g(x)=x^{k} u\left(x^{\ell}\right)^{n}$ are

$$
\operatorname{in}-\operatorname{deg}(g):=\ell \text { and out-deg }(g):=n
$$

Remark 2.8. Of course, for any polynomial $h, h \circ h=h \circ h$. However, we do not consider such tautological identities to be basic Ritt identities. It is also the case that for any prime $p, C_{2} \circ C_{p}=C_{p} \circ C_{2}$, but we do not treat this relation as a basic Ritt identity.
Definition 2.9. The polynomials appearing in basic Ritt identities are called Ritt polynomials. An indecomposable polynomial P is swappable if there are linear polynomials A and B for which $A \circ P \circ B$ is a Ritt polynomial. A swappable polynomial P is said to be of type C if there are linear polynomials A and B for which $A \circ P \circ B$ is a Chebyshev polynomial of odd degree. Otherwise, the swappable polynomial P is said to be C -free.

The distinction between type C and C-free swappable polynomials and the choice of defining C_{2} to be C-free will become clear in our work on clusterings in Subsection 2.3 ,

Remark 2.10. In [8, Definition 2.41] Ritt polynomials are required to be monic. We do not impose that condition here. However, when we speak of monomials we always mean expressions of the form x^{n} for some $n \geq 2$. Another difference between the definition of Ritt polynomial here and in [8] is that for this paper we require Ritt polynomials to be indecomposable, but this is not so in 8.
Definition 2.11. For $i \in \mathbb{Z}$, we consider the symbol t_{i}. For k-long decompositions f and g. We say that g is obtained from f by a Ritt swap at i and write $t_{i} \star[f]=[g]$ if there are linear polynomials L, M, and N such that

$$
g_{i}=S \circ N^{-1}, g_{i+1}=L \circ R, g_{i}=f_{i} \quad \text { for } j \not \equiv i, i+1 \quad(\bmod k)
$$

and $\left(L^{-1} \circ f_{i+1} \circ M\right) \circ\left(M^{-1} \circ f_{i} \circ N\right)=R \circ S$ is a basic Ritt identity.

Definition 2.12. For \tilde{f} and \tilde{g} two k-long decompositions, we say that \tilde{g} is obtained from \tilde{f} via a Ritt swap in the strict sense at i if $\tilde{f}_{i+1} \circ \tilde{f}_{i}=\tilde{g}_{i+1} \circ \tilde{g}_{i}$ is a basic Ritt identity and $\tilde{f}_{j}=\tilde{g}_{j}$ for $j \not \equiv i$ or $i+1(\bmod k)$. In this case, we write $t_{i} \bullet \tilde{f}=\tilde{g}$.
Remark 2.13. For $i \neq k$, our definition of $t_{i} \star[f]=[g]$ is exactly [8, Definition 2.43].
If $t_{i} \bullet \tilde{f}=\tilde{g}$, then taking $L=M=N=$ id shows that $t_{i} \star[\tilde{f}]=[\tilde{g}]$. For $k \neq 2$, the converse also holds: if $t_{i} \star[f]=[g]$, then there are long decompositions \tilde{f} and \tilde{g} such that $t_{i} \bullet \tilde{f}=\tilde{g}$. In this case, we say that $(L, \tilde{f}, \tilde{g}, M)$ is a witness of $t_{i} \star[f]=[g]$ when f and g are linearly equivalent to \tilde{f} and \tilde{g} via L and M.
Remark 2.14. It follows from skew-periodicity that if the k-long decompositions f and g are Ritt swap related at i, then they are also Ritt swap related at j for any $j \equiv i(\bmod k)$. Thus, it is natural to index the generators t_{i} by $\mathbb{Z} / k \mathbb{Z}$. So for example, when we write an expression like t_{k+1} we mean t_{1}. To use the order on the indices, we often choose to work with $\left\{t_{i}: a \leq i<a+k\right\}$ for some a, which is not necessarily 0 .
Remark 2.15. If the Ritt swap in Definition 2.11 involves an identity of one of the first two kinds, then it really is a swap in that $f_{i+1}=g_{i}$ and $f_{i}=g_{i+1}$. However, for an identity of the third kind, a Ritt swap at i will transform one of f_{i} or f_{i+1} into a different polynomial.

We shall consider two other kinds of operations on \mathscr{D}_{k}. The symbol ϕ will be used to encode skew-twist curves.

Definition 2.16. For $f=\left(f_{i}\right)_{i \in \mathbb{Z}}$ a k-long decomposition, we define $\phi \bullet f:=$ $\left(f_{i+1}\right)_{i \in \mathbb{Z}}$ and $\phi^{-1} \bullet f:=\left(f_{i-1}\right)_{i \in \mathbb{Z}}$. This gives an action the symbol ϕ on \mathscr{D}_{k} defined by $\phi \star[f]=[\phi \bullet f]$ and of ϕ^{-1} via $\phi^{-1} \star[f]=\left[\phi^{-1} \bullet f\right]$.

Remark 2.17. Unlike the symbols t_{i}, for any $x \in \mathscr{D}_{k}, \phi \star x$ is defined. Moreover, $\phi^{-1} \star=(\phi \star)^{-1}$.
Remark 2.18. What we call ϕ^{-1} corresponds to the symbol β of 8 .
Finally, we define partial operations specifically connected to the third kind of basic Ritt identity. These are used to encode monomial curves.
Definition 2.19. For each prime number p we have symbols ϵ_{p} and ϵ_{p}^{-1}. If \tilde{f} and \tilde{g} are k-long decompositionssuch that for all $i \in \mathbb{Z}, \tilde{f}_{i}=x^{r_{i}} u_{i}\left(x^{p}\right)$ where either $u_{i}(0) \neq 0$ and $\operatorname{deg} u_{i}>0$ or $p \neq r_{i}$ and $\tilde{g}_{i}=x^{r_{i}} u_{i}(x)^{p}$, then we write $\epsilon_{p} \bullet \tilde{f}=\tilde{g}$ and $\epsilon_{p}^{-1} \bullet g=f$. This relation induces a partial action of ϵ_{p} and of ϵ_{p}^{-1} on \mathscr{D}_{k} given by $\epsilon_{p} \star[\tilde{f}]:=\left[\epsilon_{p} \bullet \tilde{f}\right]$ and $\epsilon_{p}^{-1} \bullet[\tilde{g}]:=\left[\epsilon_{p}^{-1} \bullet \tilde{g}\right]$. If f and g are k-long decompositionswith $[f]=[\tilde{f}]$ and $[g]=[\tilde{g}]$, and L and M are k-skew periodic sequences of linear polynomials-linearso that \tilde{f} is linearly equivalent to f via L and \tilde{g} is linearly equivalent to g via M, then we say that $(L, \tilde{f}, \tilde{g}, M)$ is a witness to $\epsilon_{p} \star[f]=[g]$. In this context, $\left(M^{-1}, \tilde{g}, \tilde{f}, L^{-1}\right)$ is a witness to $\epsilon_{p}^{-1} \star[g]=[f]$.
Remark 2.20. What we call here ϵ_{p}^{-1} corresponds to the δ_{p} of [8].
Remark 2.21. The condition that \tilde{f}_{i} is not a monomial of degree p is included to disambiguate the monomial curves encoded by identities of the form $\epsilon_{p} \star[f]=[g]$ and the skew-twist curves encoded by relations of the form $\phi \star[f]=[g]$.

With this notation in place, we may prove an easy case of Theorem 1.3 .

Proposition 2.22. Theorem 1.3 holds when P is indecomposable.
Our proof of Proposition 2.22 passes through several lemmas.
Lemma 2.23. Let P be an indecomposable non-exceptional polynomial and let \mathcal{C} be a skew-invariant curve for $\left(P, P^{\tau}\right)$. Then there exist non-constant polynomials Q, A, B, A_{0}, B_{0} in $K[X]$ and integers a, b, c, d with $a, b \geq 0$ and $c, d \geq-1$ satisfying the following properties:
(i) \mathcal{C} is parametrized by (A, B), i.e. the map $\mathbb{A}^{1} \rightarrow \mathbb{A}^{2}$ given by $t \mapsto(A(t), B(t))$ is dominant onto \mathcal{C}.
(ii) A and B have no shared nonlinear initial compositional factors.
(iii) $P \circ A=A^{\sigma} \circ Q$ and $P^{\tau} \circ B=B^{\sigma} \circ Q$.
(iv) $A=P^{\sigma^{-1}} \circ \cdots \circ P^{\sigma^{-a}} \circ A_{0} \circ Q^{\sigma^{c}} \circ \cdots \circ Q$ and $B=P^{\tau \sigma^{-1}} \circ \cdots \circ P^{\tau \sigma^{-b}} \circ$ $B_{0} \circ Q^{\sigma^{d}} \circ \cdots \circ Q$.
(v) $Q^{\sigma^{c+1}}$ is not an initial compositional factor of $A_{0}, P^{\sigma^{-a-1}}$ is not a terminal compositional factor of $A_{0}, Q^{\sigma^{d+1}}$ is not an initial compositional factor of B_{0}, and $P^{\tau \sigma^{-b-1}}$ is not a terminal compositional factor of B_{0}.
(vi) $P^{\sigma^{-a}} \circ A_{0}=A_{0}^{\sigma} \circ Q^{\sigma^{c+1}}$ and $P^{\tau \sigma^{-b}} \circ B_{0}=B_{0}^{\sigma} \circ Q^{\sigma^{d+1}}$.
(vii) $A=A_{0}^{\sigma^{a}} \circ Q^{\sigma^{a+c}} \circ \cdots Q=P^{\sigma^{-1}} \circ \cdots \circ P^{\sigma^{-(a+c+1)}} \circ A_{0}^{\sigma^{-(c+1)}}$ and $B=B_{0}^{\sigma^{b}} \circ$ $Q^{\sigma^{b+d}} \circ \cdots Q=P^{\tau \sigma^{-1}} \circ \cdots \circ P^{\tau \sigma^{-(b+d+1)}} \circ B_{0}^{\sigma^{-(d+1)}}$. Consequently, $A_{0}^{\sigma^{-(c+1)}}$ and $B_{0}^{\sigma^{-(d+1)}}$ do not have a nontrivial common initial compositional factor and either (a, c) or (b, d) is $(0,-1)$.

Proof. Let $d:=\operatorname{deg}(P)$. If the lemma holds for the given data (P, \mathcal{C}) then it holds for $\left(L^{\sigma} \circ P \circ L^{-1},(L, L)(C)\right)$ where L is any linear polynomial. Hence we may assume that P is centered meaning that the coefficient of X^{d-1} is 0 .

From [8, Corollary 2.35], we know that \mathcal{C} is parametrized by (A, B) and there exists a polynomial Q such that (iii) holds since \mathcal{C} is skew-invariant under $\left(P, P^{\tau}\right)$. By choosing a pair (A, B) with minimal $\operatorname{deg}(A)+\operatorname{deg}(B)$, we may assume that they do not have a common nonlinear initial compositional factors.

We now express A and B as in (iv) with maximal a, b, c, d then (v) holds. Now we establish Property (vi). From (iii) and (iv), we have:

$$
\begin{equation*}
P \circ P^{\sigma^{-1}} \circ \cdots \circ P^{\sigma^{-a}} \circ A_{0}=P \circ P^{\sigma^{-1}} \circ \cdots \circ P^{\sigma^{-(a-1)}} \circ A_{0} \circ Q^{\sigma^{c+1}} \tag{1}
\end{equation*}
$$

When $a=0$, this identity means $P \circ A_{0}=A_{0} \circ Q^{\sigma^{c+1}}$. From now on, assume $a>0$.
First, assume the case when P does not have the form $P_{1} \circ X^{m}$ where $m>1$. Since P is centered, the only linear polynomial L such that $P \circ L=P$ is the identity polynomial $L(X)=X$. Consequently, whenever $P \circ R=P \circ S$ for non-constant polynomials R, S then we have $R=S$. Applying this observation repeatedly to 11, we have:

$$
P^{\sigma^{-a}} \circ A_{0}=A_{0} \circ Q^{\sigma^{c+1}}
$$

Now suppose that $P=P_{1}\left(X^{m}\right)$ where $m>1$. Since P is indecomposable, we must have that $m=d$ is a prime and P_{1} is linear. The polynomial $P \circ P^{\sigma^{-1}} \circ \ldots \circ$ $P^{\sigma^{-(a-1)}}$ is centered and we write

$$
\begin{equation*}
P \circ P^{\sigma^{-1}} \circ \cdots \circ P^{\sigma^{-(a-1)}}=P_{2} \circ X^{\ell} \tag{2}
\end{equation*}
$$

where ℓ is largest possible. We claim that $\ell=d$. Suppose $\ell>d$ and we arrive at a contradiction. Since d is a prime, ℓ is a power of d and hence $d^{2} \mid \ell$. Identity (2)
implies:

$$
P \circ P^{\sigma^{-1}} \circ \cdots \circ P^{\sigma^{-(a-2)}} \circ P_{1}^{\sigma^{-a-1}}=P_{2} \circ X^{\ell / d^{2}} \circ X^{d}
$$

This implies:

$$
\begin{equation*}
P^{\sigma^{-(a-2)}} \circ P_{1}^{\sigma^{-a-1}}=P_{3} \circ X^{d} \tag{3}
\end{equation*}
$$

for some linear polynomial P_{3}. Since P is centered, (3) implies that P_{1} is a scaling and hence $P(X)=\lambda X^{d}$ for some constant λ, which is a contradiction. Therefore, we must have $\ell=d$. Identity (1) implies:

$$
P^{\sigma^{-a}} \circ A_{0}=\zeta \cdot\left(A_{0} \circ Q^{\sigma^{c+1}}\right)
$$

where ζ is a d-th root of unity. After replacing A_{0} by ζA_{0}, we have that A is unchanged (since $a>0$) and $P^{\sigma^{-a}} \circ A_{0}=A_{0} \circ Q^{\sigma^{c+1}}$. By similar arguments, we can also arrange for the identity $P^{\tau \sigma^{-b}} \circ B_{0}=B_{0}^{\sigma} \circ Q^{\sigma^{d+1}}$. Property (vii) follows from (iv) and repeated applications of (vi). Finally we have either (a, c) or (b, d) is $(0,-1)$ since otherwise Q would be a common initial factor of A and B.
Lemma 2.24. Let P and \mathcal{C} be as in Lemma 2.23. Let Q, A, B, \ldots satisfy the conclusion of Lemma 2.23. If A_{0} and B_{0} are linear then \mathcal{C} is a skew-invariant curve for $\left(P, P^{\tau}\right)$.
Proof. From Lemma 2.23, we have:

$$
A=\overline{A_{0}^{\sigma^{a}}} \circ Q^{\sigma^{a+c}} \circ \cdots Q, B=B_{0}^{\sigma^{b}} \circ Q^{\sigma^{b+d}} \circ \cdots Q
$$

and without loss of generality, assume $a=0$ and $c=-1$. Then $A=A_{0}$ is linear.
After replacing $\left(B, Q, B_{0}\right)$ by $\left(B \circ A^{-1}, A^{\sigma} \circ Q \circ A^{-1}, B_{0} \circ\left(A^{-1}\right)^{\sigma^{d+1}}\right)$, we may assume that $A=A_{0}=X$. Then property (vi) gives that $P=Q$ and $P^{\tau \sigma^{-b}} \circ B_{0}=$ $B_{0}^{\sigma} \circ Q^{\sigma^{d+1}}=B_{0}^{\sigma} \circ P^{\sigma^{d+1}}$. Therefore:

$$
P^{\tau}=B_{0}^{\sigma^{b+1}} \circ P^{\sigma^{b+d+1}} \circ\left(B_{0}^{-1}\right)^{\sigma^{b}}=\left(B_{0}^{\sigma^{-d}} \circ P\right)^{\sigma^{b+d+1}} \circ\left(\left(B_{0}^{-1}\right)^{\sigma^{-d}}\right)^{\sigma^{b+d}}
$$

Put $\alpha=B_{0}^{\sigma^{-d}} \circ P, \beta=\left(B_{0}^{-1}\right)^{\sigma^{-d}}$, and $n=b+d$, then we have $P=\beta \circ \alpha$, $P^{\tau}=\alpha^{\sigma^{n+1}} \circ \beta^{\sigma^{n}}$. and the curve \mathcal{C} is given by the equation:

$$
y=B(x)=B_{0}^{\sigma^{b}} \circ Q^{\sigma^{b+d}} \circ \cdots Q(x)=\alpha^{\sigma^{n}} \circ P^{\sigma^{n-1}} \circ \cdots \circ P(x)
$$

fitting the definition of a skew-twist curve.
Proof of Proposition 2.22 when P is not swappable of type C. Let P be an indecomposable non-exceptional polynomial and let \mathcal{C} be a skew-invariant curve for $\left(P, P^{\tau}\right)$. Let Q, A, B, \ldots be the data as in the conclusion of Lemma 2.23 .

Case 1: P is unswappable. From $P^{\sigma^{-a}} \circ A_{0}=A_{0}^{\sigma} \circ Q^{\sigma^{c+1}}$ and the fact that A_{0}^{σ} does not have $P^{\sigma^{-a}}$ as a terminal compositional factor, we conclude that A_{0} is linear. Similarly, B_{0} is linear and \mathcal{C} is a skew-twist curve thanks to Lemma 2.24 .

Case 2: P is swappable and not of type C. If both A_{0} and B_{0} are linear then we are done thanks to Lemma 2.24 . It remains to consider the following 2 cases.

Case 2.1: A_{0} is linear and $N:=\operatorname{deg}\left(B_{0}\right) \geq 2$. From properties (v) and (vi) in Lemma 2.23 and [8, Corollary 5.24], there exist linear polynomials L_{1} and L_{2} such that:

$$
\begin{gathered}
P^{\tau \sigma^{-b}}=L_{2}^{\sigma} \circ X^{k} U(X)^{N} \circ L_{2}^{-1} \\
B_{0}=L_{2} \circ X^{N} \circ L_{1}^{-1}
\end{gathered}
$$

$$
Q^{\sigma^{d+1}}=L_{1}^{\sigma} \circ X^{k} U\left(X^{N}\right) \circ L_{1}^{-1}
$$

where $U(X)$ is a non-constant polynomial such that $U(0) \neq 0$ and $k \in \mathbb{N}$ with $\operatorname{gcd}(k, N)=1$.

Put $\eta=\tau^{-1} \sigma^{b-a}$ and $\mu=\sigma^{c-d}$ then the above identities yield:

$$
\begin{gathered}
P^{\sigma^{-a}}=L_{2}^{\eta \sigma} \circ X^{k} U^{\eta}(X)^{N} \circ\left(L_{2}^{\eta}\right)^{-1} \text { and } \\
Q^{\sigma^{c+1}}=L_{1}^{\mu \sigma} \circ X^{k} U^{\mu}\left(X^{N}\right) \circ\left(L_{1}^{\mu}\right)^{-1}
\end{gathered}
$$

Combining this with the identity $P^{\sigma^{-a}} \circ A_{0}=A_{0}^{\sigma} \circ Q^{\sigma^{c+1}}$ and the assumption that $\operatorname{deg}\left(A_{0}\right)=1$, we have:

$$
\begin{equation*}
L^{\sigma} \circ X^{k} U^{\eta}(X)^{N} \circ L^{-1}=X^{k} U^{\mu}\left(X^{N}\right) \tag{4}
\end{equation*}
$$

where $L=A_{0}^{-1} \circ\left(L_{1}^{\mu}\right)^{-1} \circ L_{2}^{\eta}$. Since P is not type C, identity (4) yields that L is a scaling thanks to [8, Theorem 3.15]. This implies:

$$
\begin{equation*}
U\left(X^{N}\right)=c U^{\eta \mu^{-1}}(X)^{N} \tag{5}
\end{equation*}
$$

for some $c \in K^{*}$. It follows immediately that $U(X)$ must be a monomial: otherwise suppose X^{r} and X^{s} with $r>s$ are the highest degree terms with a non-zero coefficients in U, then the two such terms in $U\left(X^{N}\right)$ are $X^{N r}$ and $X^{N s}$ while the ones for $U^{\eta \mu^{-1}}(X)^{N}$ are $X^{N r}$ and $X^{r(N-1)+s}$, contradicting (5). But when U is a monomial, we have a contradiction to the assumption that $U(0) \neq 0$. Therefore the case $\operatorname{deg}\left(A_{0}\right)=1$ and $\operatorname{deg}\left(B_{0}\right) \geq 2$ cannot happen. It remains to treat the following case.

Case 2.2: $M:=\operatorname{deg}\left(A_{0}\right) \geq 2$ and $N:=\operatorname{deg}\left(B_{0}\right) \geq 2$. We proceed as in the above case. By [8, Corollary 5.24], there exist linear polynomials $\ell_{1}, \ell_{2}, L_{1}, L_{2}$ such that:

$$
\begin{gather*}
P^{\sigma^{-a}}=\ell_{2}^{\sigma} \circ X^{k^{\prime}} V(X)^{M} \circ \ell_{2}^{-1}, P^{\tau \sigma^{-b}}=L_{2}^{\sigma} \circ X^{k} U(X)^{N} \circ L_{2}^{-1} \\
A_{0}=\ell_{2} \circ X^{M} \circ \ell_{1}^{-1}, B_{0}=L_{2} \circ X^{N} \circ L_{1}^{-1} \tag{6}\\
Q^{\sigma^{c+1}}=\ell_{1}^{\sigma} \circ X^{k^{\prime}} V\left(X^{M}\right) \circ \ell_{1}^{-1}, Q^{\sigma^{d+1}}=L_{1}^{\sigma} \circ X^{k} U\left(X^{N}\right) \circ L_{1}^{-1}
\end{gather*}
$$

where $U(X), V(X)$ are non-constant polynomials such that $U(0) V(0) \neq 0$ and $k, k^{\prime} \in \mathbb{N}$ with $\operatorname{gcd}\left(k^{\prime}, M\right)=\operatorname{gcd}(k, N)=1$. As before, put $\eta=\tau^{-1} \sigma^{b-a}$ and $\mu=\sigma^{c-d}$, we then have:

$$
\begin{aligned}
P^{\sigma^{-a}} & =\ell_{2}^{\sigma} \circ X^{k^{\prime}} V(X)^{M} \circ \ell_{2}^{-1}, P^{\sigma^{-a}}=L_{2}^{\eta \sigma} \circ X^{k} U^{\eta}(X)^{N} \circ\left(L_{2}^{\eta}\right)^{-1} \\
Q^{\sigma^{c+1}} & =\ell_{1}^{\sigma} \circ X^{k^{\prime}} V\left(X^{M}\right) \circ \ell_{1}^{-1}, Q^{\sigma^{c+1}}=L_{1}^{\mu \sigma} \circ X^{k} U^{\mu}\left(X^{N}\right) \circ\left(L_{1}^{\mu}\right)^{-1}
\end{aligned}
$$

This implies:

$$
\begin{align*}
& X^{k^{\prime}} V(X)^{M}=\left(\ell_{2}^{-1}\right)^{\sigma} \circ L_{2}^{\eta \sigma} \circ X^{k} U^{\eta}(X)^{N} \circ\left(L_{2}^{\eta}\right)^{-1} \circ \ell_{2} \\
& X^{k^{\prime}} V\left(X^{M}\right)=\left(\ell_{1}^{-1}\right)^{\sigma} \circ L_{1}^{\mu \sigma} \circ X^{k} U^{\mu}\left(X^{N}\right) \circ\left(L_{1}^{\mu}\right)^{-1} \circ \ell_{1} \tag{7}
\end{align*}
$$

The first identity together with the assumption that P is not type C imply that $\ell_{2}^{-1} \circ L_{2}^{\eta}$ is a scaling thanks to [8, Theorem 3.15]. The second identity together with the fact that $X^{k^{\prime}} V\left(X^{M}\right)$ and $X^{k} U^{\eta}\left(X^{N}\right)$ are centered imply that $\ell_{1}^{-1} \circ L_{1}^{\mu}$ is a scaling. Thanks to these extra properties, (7) yields the following:

- $k=k^{\prime}$.
- in $-\operatorname{deg}(V)=\operatorname{in}-\operatorname{deg}(U)$.
- $M \cdot \operatorname{in}-\operatorname{deg}(V)=\operatorname{in}-\operatorname{deg}\left(X^{k^{\prime}} V\left(X^{M}\right)\right)=\operatorname{in}-\operatorname{deg}\left(X^{k} U^{\mu}\left(X^{N}\right)\right)=N \cdot \operatorname{in}-\operatorname{deg}(U)$.

Therefore $M=N$.

The middle pair of equations in (6) gives:

$$
B_{0}^{\mu}=L_{2}^{\mu} \circ X^{N} \circ\left(L_{1}^{\mu}\right)^{-1} \circ \ell_{1} \circ \ell_{1}^{-1}=L_{3} \circ X^{N} \circ \ell_{1}^{-1}
$$

for some linear L_{3} since $\left(L_{1}^{\mu}\right)^{-1} \circ \ell_{1}$ is a scaling. This implies that $X^{N} \circ \ell_{1}^{-1}$ is a common initial compositional factor of A_{0} and B_{0}^{μ}. After applying $\sigma^{-(c+1)}$, we have that $A_{0}^{\sigma^{-(c+1)}}$ and $B_{0}^{\sigma^{-(d+1)}}$ have a nontrivial common initial compositional factor, contradicting property (vii) in Lemma 2.23. Therefore the case when $\operatorname{deg}\left(A_{0}\right)>2$ and $\operatorname{deg}\left(B_{0}\right)>2$ cannot happen either.

Remark 2.25. To finish the proof of Proposition 2.22, it remains to consider the case when P is type C. We express $P=R \circ C_{q} \circ N$ where R and N are linear and $q=\operatorname{deg}(P)$ is an odd prime. Since skew-invariant curves for one pair of polynomials are transformed into skew-invariant curves for σ-linear conjugates of those polynomials, after replacing P by an appropriate σ-linear conjugate, we may assume that $R=\mathrm{id}$. Hence $P=C_{q} \circ N$ with $N \neq \pm \mathrm{id}$. As in the above proof, we let Q, A, B, \ldots be the data in the conclusion of Lemma 2.23 then [8, Corollary 5.14] implies that there exist linear polynomials L_{1} and L_{2} such that:

$$
\begin{gathered}
P^{\tau \sigma^{-b}}=L_{2}^{\sigma} \circ X^{k} U(X)^{\delta} \circ L_{2}^{-1} \\
B_{0}=L_{2} \circ X^{\delta} \circ L_{1}^{-1} \\
Q^{\sigma^{d+1}}=L_{1}^{\sigma} \circ X^{k} U\left(X^{\delta}\right) \circ L_{1}^{-1}
\end{gathered}
$$

where $\delta=\operatorname{deg}\left(B_{0}\right), U(X)$ is a non-constant polynomial such that $U(0) \neq 0$ and $k \in \mathbb{N}$ with $\operatorname{gcd}(k, \delta)=1$. Now since P is $C_{q} \circ N$, we have that $\delta \leq 2$. Hence $\operatorname{deg}\left(B_{0}\right) \leq 2$. Similarly $\operatorname{deg}\left(A_{0}\right) \leq 2$.

Lemma 2.26. Let $d \geq 3$ be an odd integer. Suppose $L_{1}(x), L_{2}(x)$, and $U(x)$ are polynomials in $K[x]$ such that $\operatorname{deg}\left(L_{1}\right)=\operatorname{deg}\left(L_{2}\right)=1, U(0) \neq 0$, and

$$
L_{1} \circ C_{d} \circ L_{2}=x U(x)^{2} .
$$

Then one of the following cases holds:
(i) $L_{1}(x)=a(x+2)$ and $L_{2}(x)=b x-2$ for some $a, b \in K^{*}$.
(ii) $L_{1}(x)=a(x-2)$ and $L_{2}(x)=b x+2$ for some $a, b \in K^{*}$.

Proof. Since 0 is a critical value of $x U(x)^{2}$ while ± 2 are the only critical values of $C_{d}(x)$, we have that $L_{1}(2)=0$ or $L_{1}(-2)=0$.

First, we consider the case $L_{1}(-2)=0$. From $L_{1}\left(C_{d}\left(L_{2}(0)\right)\right)=0$ and $L_{1}(-2)=$ 0 , we have $C_{d}\left(L_{2}(0)\right)=-2$. Henc $L_{2}(0)$ is either -2 or one of the remaining $(d-1) / 2$ critical points lying above -2 . But 0 is not a critical point of $x U(x)^{2}$, we must have $L_{2}(0)=-2$. This yields case (i). The case $L_{1}(2)=0$ is similar and we finish the proof.

Lemma 2.27. Let $d \geq 3$ be an odd integer and let $P_{2}(x)=x^{2}$. Suppose that N, L, and Q are polynomials in $K[x]$ such that $\operatorname{deg}(N)=\operatorname{deg}(L)=1, L$ is a translation, and:

$$
\begin{equation*}
N \circ C_{d} \circ L \circ P_{2}=L^{\sigma} \circ P_{2} \circ Q \tag{8}
\end{equation*}
$$

Then one of the following cases holds:
(i) $L(x)=x-2, N(x)=\lambda(x+2)-2$, and $Q(x)= \pm \sqrt{\lambda} C_{q}(x)$ for some $\lambda \in K^{*}$.
(ii) $L(x)=x+2, N(x)=\lambda(x-2)+2$, and $Q(x)= \pm \sqrt{\lambda} C_{q}(x)$ for some $\lambda \in K^{*}$.

Proof. Write $L(x)=x+\ell$. By Ritt's theorem, there exist linear polynomials $\alpha, \beta, \gamma, \delta$ and polynomial $U(x)$ in $K[x]$ such that:

$$
\begin{align*}
\alpha \circ N \circ C_{d} \circ \beta^{-1} & =x U(x)^{2}, \tag{9}\\
\beta \circ L \circ P_{2} \circ \gamma & =x^{2}, \tag{10}\\
\alpha \circ L^{\sigma} \circ P_{2} \circ \delta^{-1} & =x^{2}, \tag{11}\\
\delta \circ Q \circ P_{2} \circ \gamma & =x U\left(x^{2}\right) \tag{12}
\end{align*}
$$

By Lemma 2.26 for (9), we have two cases. The first case is that:

$$
\begin{equation*}
\alpha \circ N=a(x+2) \text { and } \beta^{-1}=b x-2 \text { for some } a, b \in K^{*} . \tag{13}
\end{equation*}
$$

Since $P_{2}(x)=x^{2}$ and $L(x)=x+\ell$, from (10), we have:

$$
\begin{equation*}
\gamma(x)=c x, \beta \circ L=\frac{1}{c^{2}} x, \beta=\frac{1}{c^{2}}(x-\ell) \text { for some } c \in K^{*} . \tag{14}
\end{equation*}
$$

From (13) and (14), we have:

$$
\frac{x+2}{b}=\frac{1}{c^{2}}(x-\ell) .
$$

This gives $b=c^{2}$ and $\ell=-2$. We now have $L(x)=x-2$ and the given (8) becomes:

$$
N\left(C_{d}\left(x^{2}-2\right)\right)=Q(x)^{2}-2 .
$$

Combining this with the identity $C_{d}\left(x^{2} \pm 2\right)=C_{d}(x)^{2} \pm 2$ and expressing $N(x)=$ $\lambda x+d$, we have:

$$
\lambda C_{d}(x)^{2}-2 \lambda+d=Q(x)^{2}-2 .
$$

This implies $\lambda C_{d}(x)^{2}=Q(x)^{2}$ and $-2 \lambda+d=-2$. This yields case (i).
The remaining case when applying Lemma 2.26 for (9) is that:

$$
\begin{equation*}
\alpha \circ N=a(x-2) \text { and } \beta^{-1}=b x+2 \text { for some } a, b \in K^{*} . \tag{15}
\end{equation*}
$$

This can be settled by similar arguments.
Proof of Proposition 2.22. We apply the reduction and observation in Remark 2.25 $P=C_{q} \circ N$ where q is an odd prime and $N \neq \pm \mathrm{id}$ is linear, let Q, A, B, \ldots be the data in the conclusion of Lemma 2.23 and we have $\operatorname{deg}\left(A_{0}\right), \operatorname{deg}\left(B_{0}\right) \leq 2$. We prove by contradiction that the case $\left(\operatorname{deg}\left(A_{0}\right), \operatorname{deg}\left(B_{0}\right)\right) \neq(1,1)$ cannot happen then Lemma 2.24 finishes the proof.

Case 1: $\operatorname{deg}\left(A_{0}\right)=\operatorname{deg}\left(B_{0}\right)=2$. With $P_{2}(x)=x^{2}$, we can express $A_{0}=$ $L \circ P_{2} \circ M$ and $B_{0}=L_{1} \circ P_{2} \circ M_{1}$ where L, L_{1}, M, M_{1} are linear and L and L_{1} are translation. Then property (vi) in Lemma 2.23 together with $P=N \circ C_{q}$ yield:

$$
\begin{align*}
N^{\sigma^{-a}} \circ C_{q} \circ L \circ P_{2} & =L^{\sigma} \circ P_{2} \circ\left(M^{\sigma} \circ Q^{\sigma^{c+1}} \circ M^{-1}\right), \tag{16}\\
N^{\tau \sigma^{-b}} \circ C_{q} \circ L_{1} \circ P_{2} & =L_{1}^{\sigma} \circ P_{2} \circ\left(M_{1}^{\sigma} \circ Q^{\sigma^{d+1}} \circ M_{1}^{-1}\right) . \tag{17}
\end{align*}
$$

We apply Lemma 2.27 to the above pair of equations.
Case 1.1: both data $\left(N^{\sigma^{-a}}, L, M^{\sigma} \circ Q^{\sigma^{c+1}} \circ M^{-1}\right)$ and $\left(N^{\tau \sigma^{-b}}, L_{1}, M_{1}^{\sigma} \circ Q^{\sigma^{d+1}} \circ\right.$ M_{1}^{-1}) satisfy the conclusion in case (i) of Lemma 2.27 or both data satisfy the
conclusion in case (ii). This gives $L=L_{1}=x-2$ or $L=L_{1}=x+2$ and there exist $\alpha, \alpha_{1} \in K^{*}$ such that:

$$
M^{\sigma} \circ Q^{\sigma^{c+1}} \circ M^{-1}=\alpha C_{q} \text { and } M_{1}^{\sigma} \circ Q^{\sigma^{d+1}} \circ M_{1}^{-1}=\alpha_{1} C_{q} .
$$

This implies:

$$
Q^{\sigma^{c+1}}=\left(M^{-1}\right)^{\sigma} \circ(\cdot \alpha) \circ C_{q} \circ M \text { and } Q^{\sigma^{d+1}}=\left(M_{1}^{-1}\right)^{\sigma} \circ\left(\cdot \alpha_{1}\right) \circ C_{q} \circ M_{1}
$$

Together with the fact that if $\ell_{1} \circ C_{q} \circ \ell_{2}=C_{q}$ for some linear polynomials ℓ_{1} and ℓ_{2} then $\ell_{1}=\ell_{2}= \pm x$, we have:

$$
M^{\sigma^{-(c+1)}}= \pm M_{1}^{\sigma^{-(d+1)}}
$$

We now have:

$$
A_{0}^{\sigma^{-(c+1)}}=L \circ P_{2} \circ M^{\sigma^{-(c+1)}}=L_{1} \circ P_{2} \circ M_{1}^{\sigma^{-(d+1)}}=B_{0}^{\sigma^{-(d+1)}}
$$

This contradicts property (vii) in Lemma 2.23
Case 1.2: between the data ($N^{\sigma^{-a}}, L, M^{\sigma} \circ Q^{\sigma^{c+1}} \circ M^{-1}$) and ($N^{\tau \sigma^{-b}}, L_{1}, M_{1}^{\sigma} \circ$ $Q^{\sigma^{d+1}} \circ M_{1}^{-1}$), one satisfies (i) while the other one satisfies (ii) in Lemma 2.27 Without loss of generality, assume the first data satisfies (i) and the second satisfies (ii). Hence there exist $\alpha, \beta \in K^{*}$ such that:

$$
N^{\sigma^{-a}}=\alpha x+2 \alpha-2 \text { and } N^{\tau \sigma^{-b}}=\beta x-2 \beta+2
$$

This gives $\beta=\alpha^{\tau \sigma^{a-b}}$ and $-2 \beta+2=2 \alpha^{\tau \sigma^{a-b}}-2=2 \beta-2$. Hence $\beta=1$ and $N(x)=x$, contradicting the condition that $N \neq \pm \mathrm{id}$.

Case 2: without loss of generality, the remaining case is that $\operatorname{deg}\left(A_{0}\right)=2$ and $\operatorname{deg}\left(B_{0}\right)=1$. From property (vi) in Lemma 2.23 , we have:

$$
Q^{\sigma^{d+1}}=\left(B_{0}^{-1}\right)^{\sigma} \circ P^{\tau \sigma^{-b}} \circ B_{0}=\left(B_{0}^{-1}\right)^{\sigma} \circ N^{\tau \sigma^{-b}} \circ C_{q} \circ B_{0}
$$

Applying σ^{c-d} both sides gives:

$$
\begin{equation*}
Q^{\sigma^{c+1}}=\left(B_{0}^{-1}\right)^{\sigma^{c-d+1}} \circ N^{\tau \sigma^{c-d-b}} \circ C_{q} \circ B_{0}^{\sigma^{c-d}} \tag{18}
\end{equation*}
$$

As in the earlier Case 1, we express $A_{0}=L \circ P_{2} \circ M$ where M is linear and L is a translation. Then we get

$$
\begin{equation*}
N^{\sigma^{-a}} \circ C_{q} \circ L \circ P_{2}=L^{\sigma} \circ P_{2} \circ\left(M^{\sigma} \circ Q^{\sigma^{c+1}} \circ M^{-1}\right) \tag{19}
\end{equation*}
$$

from property (vi) in Lemma 2.23 as before. Applying Lemma 2.27 to $\sqrt{19}$, there exists $\alpha \in K^{*}$ such that:

$$
\begin{equation*}
M^{\sigma} \circ Q^{\sigma^{c+1}} \circ M^{-1}=\alpha C_{q} \tag{20}
\end{equation*}
$$

Together with 18), we have:

$$
\begin{equation*}
\left(M \circ B_{0}^{-1}\right)^{\sigma} \circ N^{\tau \sigma^{c-d-b}} \circ C_{d} \circ B_{0} \circ M^{-1}=\alpha C_{q} . \tag{21}
\end{equation*}
$$

This implies $B_{0} \circ M^{-1}= \pm x$, then $\left(M \circ B_{0}^{-1}\right)^{\sigma}= \pm x$, and hence

$$
\begin{equation*}
N^{\tau \sigma^{c-d-b}}= \pm \alpha x \tag{22}
\end{equation*}
$$

Applying Lemma 2.27 to 19 again, there is $\beta \in K^{*}$ such that $N^{\sigma^{-a}}=\beta x+2 \beta-2$ or $N^{\sigma^{-a}}=\beta x-2 \beta+2$. But in either case, 22 implies that $\beta=1$ and hence $N(x)=x$ contradicting the condition $N \neq \pm$ id.
2.1.2. Partial group actions. We introduce partial actions and rewriting systems to view the result of sequences of these partial operations on \mathscr{D}_{k} as partial group actions. From the intended actions of these generators of the groups to get a (usual) group action, we would have to show that the relations given by a presentation of the relevant group are respected. However, this is not the case here. To get these desired partial group actions, asymmetric term-rewriting systems replace the relations in a presentation.

All of the following definitions are standard, with the exception of the very simple and natural notion of actionability. A standard reference for rewriting systems is [3] and for partial group actions is [5]. However, we use somewhat different notation from these other authors.

Definition 2.28. For a set X, let M_{X} be the monoid of partial injective functions on X. That is, elements of M_{X} are injections $m: Y \rightarrow X$ for some $Y \subseteq X$, and the operation is composition, with maximal possible domain.

For a set T, let T^{*} be the free monoid generated by T, also known as the set of words on T. For a function $\alpha: T \rightarrow M_{X}$, let $\alpha^{*}: T^{*} \rightarrow M_{X}$ be the induced monoid homomorphism.

For a monoid G and a set X, a partial action of G on X is a function $\beta: G \rightarrow M_{X}$ such that for any $a, b \in G$,

$$
\beta(b) \circ \beta(a) \subseteq \beta(b a)
$$

Here, the subset relation is in the sense of the graphs of functions. In more functional notation, $m_{1} \subseteq m_{2}$ means that m_{1} is the restriction of m_{2} to a possibly smaller set. When β is clear, we write $g \star x$ instead of $\beta(g)(x)$ for $g \in G$ and $x \in X$.

The purpose of a rewriting system R is that whenever $(u, v) \in R$, we are allowed to replace a substring u in some big string $a u b$ by the string v to get $a v b$. This is the asymmetric analog of the relations in a group presentation.

Definition 2.29. (See [3, Definition 2.1.1 and 2.1.2]) A string rewriting system on T is a subset R of $T^{*} \times T^{*}$. The reduction relation \vec{R} induced by R is the reflexive transitive closure of the relation

$$
\left.\left\{(a u b, a v b) \in T^{*} \times T^{*}\right): a, b \in T^{*} \text { and }(u, v) \in R\right\}
$$

The equivalence relation generated by \vec{R} is denoted by \bar{R}. It is the monoid congruence generated by R. The quotient monoid and the quotient map are denoted by G_{R} and $\pi_{R}: T^{*} \rightarrow G_{R}$, respectively.

The string rewriting system R is confluent if whenever $(v, w) \in \bar{R}$, there is another word u with both $(v, u) \in \vec{R}$ and $(w, u) \in \vec{R}$. That is, whenever two words are R-equivalent, they are R-reducible to the same word.

A word $w \in T^{*}$ is \bar{R}-reduced if it is not \bar{R}-equivalent to any shorter word.
Definition 2.30. Fix sets X and T, a function $\alpha: T \rightarrow M_{X}$, and a confluent rewriting system R on T. The pair (α, R) is actionable if $\alpha^{*}(u) \subseteq \alpha^{*}(v)$ for all $u, v \in T^{*}$ with $(u, v) \in R$.

The next proposition demonstrates that the technical notion of "actionable" from Definitions 2.30 exactly corresponds to the idea that an action defined on generators is really "actionable" in that it may be made into a partial action.

Proposition 2.31. Fix sets X and T, a function $\alpha: T \rightarrow M_{X}$, and a confluent rewriting system R on T. If the pair (α, R) is actionable, then

$$
\bar{\alpha}(g):=\cup\left\{\alpha^{*}(w): w \in T^{*} \text { and } \pi_{R}(w)=g\right\}
$$

defines a partial action \star of G_{R} on X.
In functional notation, this union means that for $g \in G$ and $x, y \in X$,
$g \star x=y$ if and only if $\alpha^{*}(w)(x)=y$ for some $w \in T^{*}$ with $\pi_{R}(w)=g$.
Proof. It is clear that whenever (R, α) is actionable, so is (\vec{R}, α).
We first show that the union $\bar{\alpha}(g)$ of functions is itself a function. Suppose that $g \star x=y$ and $g \star x=y^{\prime}$; that is, there are words $w, w^{\prime} \in T^{*}$ with $\pi_{R}(w)=\pi_{R}\left(w^{\prime}\right)=g$ and $\alpha^{*}(w)(x)=y$ and $\alpha^{*}\left(w^{\prime}\right)(x)=y^{\prime}$. Since $\pi_{R}(w)=\pi_{R}\left(w^{\prime}\right)=g$, we must have $\left(w, w^{\prime}\right) \in \bar{R}$. Since R is confluent, there is a word $u \in T^{*}$ with both (w, u) and $\left(w^{\prime}, u\right)$ in \vec{R}. Since (\vec{R}, α) is actionable, $(w, u) \in \vec{R}$ and $\alpha^{*}(w)(x)=y$ implies that $\alpha^{*}(u)(x)=y$. The same reasoning with w^{\prime} and y^{\prime} shows that $\alpha^{*}(u)(x)=y^{\prime}$. So $y=y^{\prime}$ as wanted.

We now show that $\bar{\alpha}$ satisfies the definition of partial action. Fix $a, b \in G_{R}$ and $x, y, z \in X$, and suppose that $a \star x=y$ and $b \star y=z$. Then there are words $u, v \in T^{*}$ with $\pi_{R}(u)=a$ and $\pi_{R}(v)=b$ and $\alpha^{*}(u)(x)=y$ and $\alpha^{*}(v)(y)=z$. Let $w:=v u$ be the concatenation of the two words. Then $\pi_{R}(w)=\pi_{R}(v u)=b a$ and $\alpha^{*}(w)(x)=z$. So $(b a) \star x=z$.

The generators we are interested in are ϕ and its inverse; the ϵ_{p} for prime p, and their inverses; and the t_{i} for $i=1,2, \ldots k$.
Definition 2.32. Foe $k \geq 3$, here are the four groups we are interested in and their rewriting systems.

- Sym_{k} is generated by $T_{\mathrm{Sym}_{k}}:=\left\{t_{1}, t_{2}, \ldots t_{k-1}\right\}$ and defined by the rewriting system

$$
R_{\mathrm{Sym}_{k}}:=\left\{\left(t_{i} t_{i}, \mathrm{id}\right)\right\} \cup\left\{\left(t_{i} t_{j}, t_{j} t_{i}\right): j \neq i \pm 1\right\} \cup\left\{\left(t_{i} t_{j} t_{i}, t_{j} t_{i} t_{j}\right): j=i \pm 1\right\} .
$$

- ASym_{k} is generated by $T_{\mathrm{ASym}_{k}}:=\left\{t_{1}, t_{2}, \ldots t_{k-1}, t_{k}\right\}$ and defined by the rewriting system

$$
\begin{aligned}
R_{\mathrm{ASym}_{k}}:= & \left\{\left(t_{i} t_{i}, \mathrm{id}\right)\right\} \cup\left\{\left(t_{i} t_{j}, t_{j} t_{i}\right): j \not \equiv i \pm 1 \quad(\bmod k)\right\} \\
& \cup\left\{\left(t_{i} t_{j} t_{i}, t_{j} t_{i} t_{j}\right): j \equiv i \pm 1 \quad(\bmod k)\right\}
\end{aligned}
$$

where addition of indices is modulo k, so including $\left(t_{k} t_{1} t_{k}, t_{1} t_{k} t_{1}\right)$ and excluding $\left(t_{1} t_{k}, t_{k} t_{1}\right)$.

- ST_{k} is generated by $T_{\mathrm{ST}_{k}}:=T_{\mathrm{ASym}_{k}} \cup\left\{\phi, \phi^{-1}\right\}$ and defined by the rewriting system

$$
\begin{aligned}
R_{\mathrm{ST}_{k}} & :=R_{\mathrm{ASym}_{k}} \cup\left\{\left(\phi \phi^{-1}, \mathrm{id}\right),\left(\phi^{-1} \phi, \mathrm{id}\right),\left(\mathrm{id}, \phi^{-1} \phi\right),\left(\mathrm{id}, \phi \phi^{-1}\right)\right\} \cup \\
& \cup\left\{\left(\phi t_{i}, t_{i+1} \phi\right): 1 \leq i \leq k\right\} \cup\left\{\left(t_{i+1} \phi, \phi t_{i}\right): 1 \leq i \leq k\right\}
\end{aligned}
$$

where addition of indices is again modulo k.

- ST_{k}^{+}is generated by $T_{\mathrm{ST}_{k}^{+}}:=T_{\mathrm{ST}_{k}} \cup\left\{\epsilon_{p}, \epsilon_{p}^{-1}:\right.$ prime $\left.p\right\}$ and defined by the rewriting system

$$
\begin{gathered}
R_{\mathrm{ST}_{k}^{+}}:=R_{\mathrm{ST}_{k}} \cup\left\{\left(\epsilon_{p} \omega, \omega \epsilon_{p}\right),\left(\omega \epsilon_{p}, \epsilon_{p} \omega\right): p \text { prime }, \omega \in T_{\mathrm{ST}_{k}^{+}}\right\} \\
\cup\left\{\left(\epsilon_{p} \epsilon_{p}^{-1}, \mathrm{id}\right),\left(\epsilon_{p}^{-1} \epsilon_{p}, \mathrm{id}\right): p \text { prime }\right\} .
\end{gathered}
$$

That is, ϵ_{p} commutes with everything and ϵ_{p}^{-1} is its inverse.

When $k=2$, we drop the braid relation $t_{1} t_{2} t_{1}=t_{2} t_{1} t_{2}$. So, ASym_{2} is the infinite dihedral group. We do not define these groups when $k=1$.
Remark 2.33. Interpreting t_{i} as the transposition switching i and $i+1$ in the set $\{1,2, \ldots, k\}$ identifies Sym_{k} with the usual symmetric group. For $k \geq 3$, the next group ASym_{k} is well-known under many names including "affine symmetric group." It has several copies of Sym_{k} inside it, generated by $T_{j}:=\left\{t_{i}: i \neq j, 1 \leq i \leq k\right\}$ for any fixed $j \leq k$. Even when $k=2$, the group ASym_{k} admits a surjective homomorphism to Sym_{k} sending t_{i} to the transposition switching i and $i+1$ for $i \neq k$ and sending t_{k} to the one switching 1 and k. This homomorphism restricts to an isomorphism on each copy of Sym_{k} inside ASym_{k}. The kernel of this homormophism is a copy of \mathbb{Z}. In particular, ASym_{k} is infinite. It is clear from the rewriting system that ST_{k} is the semidirect product of $\mathrm{ASym}_{k} \unlhd \mathrm{ST}_{k}$ and the infinite cyclic group generated by ϕ. It can be useful to think of ST_{k} and ASym_{k} as subgroups of permutations of \mathbb{Z}, where t_{i} is the permutation that switches $i+r k$ with $i+1+r k$ for all $r \in \mathbb{Z}$ and ϕ is the shift by 1 . We write $\pi: \operatorname{ASym}_{k} \rightarrow \operatorname{Sym}(\mathbb{Z})$ for this group homomorphism.

Remark 2.34. The generating sets of Definition 2.32 form a chain, and the groups are a chain of groups $\mathrm{Sym}_{k}<\mathrm{ASym}_{k}<\mathrm{ST}_{k}<\mathrm{ST}_{k}^{+}$. We have presented ST_{k} as a semidirect product of $\mathbb{Z} \cong\langle\phi\rangle$ with ASym_{k}. The action of conjugation by ϕ on ASym_{k} is given by the automorphism $\eta: \mathrm{ASym}_{k} \rightarrow \mathrm{ASym}_{k}$ induced by $t_{i} \mapsto t_{i+1}$. Likewise, we have presented ST_{k}^{+}as a product of ST_{k} with $\bigoplus_{i=0}^{\infty} \mathbb{Z} \cong$ $\left\langle\epsilon_{p}: p\right.$ a prime \rangle. Thus, any element of ST_{k}^{+}may be written in the form $\prod_{p} \epsilon^{m_{p}} \phi^{n} w$ where $m_{p} \in \mathbb{Z}$, all but finitely many of which are zero, $n \in \mathbb{Z}$, and $w \in \mathrm{ASym}_{k}$.

The first two groups, Sym_{k} and ASym_{k} are Coxeter groups (see [4) with their usual Coxeter rewriting systems. The first part of each, relations of the form $\left(t_{i} t_{i}, \mathrm{id}\right)$, shorten the word they act on and are asymmetric; while the rest are symmetric and do not change the length of the word they act on. Matsumoto's Theorem applies to Sym_{k} and ASym_{k}, with $R_{\text {cox }}$ consisting of the second and third sets of rewriting rules, that is, not including the pairs $\left(t_{i} t_{i}\right.$, id), and $R_{\text {cox }}$ being the whole rewriting system.
Fact 2.35 (Matsumoto's Theorem [7]). Any two $R_{\text {cox+ }}$-equivalent, $R_{\text {cox+ }}$-reduced words are also $R_{\text {cox }}$-equivalent; and every word is $R_{\text {cox+ }}$-reducible to an $R_{\text {cox+ }}{ }^{-}$ reduced one. Since $R_{\text {cox }}$ is symmetric, any two $R_{\text {cox }}$-equivalent words are $R_{\text {cox }}$ reducible to each other. In particular, it follows that $R_{\text {cox+ }}$ is confluent.

Recall that a word $w \in T^{*}$ is \bar{R}-reduced if it is not \bar{R}-equivalent to any shorter word. The next corollary follows easily from the hard result, Theorem 2.149 below, analogous to [8, Theorem 2.52], that the braid relations $\left(t_{i} t_{i+1} t_{i}, t_{i+1} t_{i} t_{i+1}\right)$ hold for Ritt swaps.
Corollary 2.36. Each of the four confluent rewriting systems of Definition 2.32 together with the actions of its generators defined Definitions 2.11, 2.16, and 2.19 is actionable, and the partial group action $\bar{\alpha}$ is also given by

$$
g \star x=y \text { if and only if } \alpha^{*}(w)(x)=y \text { for every reduced } w \in T^{*} \text { with } \pi_{R}(w)=g .
$$

Proof. For $k \geq 3$, confluence of the first two rewriting systems $R_{\mathrm{Sym}_{k}}$ and $R_{\mathrm{ASym}_{k}}$ is a special case of Matsumoto's Theorem. Confluence in the case of $k=2$ is triival. By Remark 2.34, confluence of $R_{\mathrm{ST}_{k}}$ and of $R_{\mathrm{ST}_{k}^{+}}$follows.

For $k<3$, braid relations are irrelevant. For $k \geq 3$, Theorem 2.149 verifies the braid relations that

$$
t_{i} \star\left(t_{i+1} \star\left(t_{i} \star[f]\right)\right)=t_{i+1} \star\left(t_{i} \star\left(t_{i+1} \star[f]\right)\right)
$$

for any $i=1,2, \ldots k$ and any long decomposition f. That is, they are equal when defined, and one is defined if and only if the other is. All other instances of the definition of "actionable" are immediate.

We can replace "some $w \in T^{*}$ with $\pi_{R}(w)=g$ " in the functional version of Proposition 2.31 with "any reduced $w \in T^{*}$ with $\pi_{R}(w)=g$ " because the conclusion of Matsumoto's theorem is this strong version of confluence.

Remark 2.37. In [8] we worked with the language of monoid actions rather than partial group actions and the space on which those monoids acted was the set of equivalence classes up to skew-linear equivalence of decompositions of length k. The actions of $\mathrm{Sym}_{k}, \mathrm{ST}_{k}$, and ST_{k}^{+}given here correspond to the actions of the Ritt Monoid RM_{k}, the skew-twist monoid ST_{k}, and the augmented skew-twist monoid ST_{k}^{+}there. Our ST_{k} is generated as a monoid by $t_{1}, \ldots, t_{k-1}, \phi$, and ϕ^{-1} because $t_{k}=\phi t_{1} \phi^{-1}$. The subgroup of ST_{k} generated by $t_{1}, t_{2}, \ldots t_{k-2}$ along with $\psi:=t_{k-1} \phi$ and $\gamma:=\phi^{-1} t_{k-1}$ would be the analog of the border guard monoid BG_{k} from [8]; but the new intermediate group ASym_{k} turns out to be much more convenient.

The two canonical forms for words in Sym_{k} from [8] fit nicely with Matsumoto's theorem. We shall use them here, not only with the standard copy of Sym_{k} in ASym_{k}, but also with the other copies of Remark 2.33 . The following are intuitive explanations of analogues of [8, Definitions 5.6, 5.8, and 5.14].

Definition 2.38. For $b+k>a>b$, the word $t_{a-1} t_{a-2} \ldots t_{b}$ in $T_{\text {Sym }_{k}}^{*}$ is called a right-to-left transit. In the action of Sym_{k} on long decompositions, this drags the factor f_{b} left from its original position at b to its new position at a, across all the intermediate factors. A left-to-right transit is defined symmetrically. A transit is one of the two.

Remark 2.39. A sequence of Ritt swaps in the right-to-left first canonical form is a sequence of right-to-left transits whose action resembles an insert-sort: having arranged the factors f_{k} through f_{i+1} in the correct order, this sequence inserts the next factor f_{i} in the required place among f_{k} through f_{i+1}; and then proceeds to deal with f_{i-1}, and so on, until all factors are arranged as wanted. We define left-to-right first canonical form analogously.

Sometimes, there is a natural way to break a long decomposition into chunks. Rooms of Section 2.1.3 and clusters in the technical Section 2.3 are two examples. Words in second canonical form (with respect to such a chunkification) first shuffle factors within each chunk as much as necessary and only then move factors between chunks. This is closely related, but not identical, to a merge-sort.

Given integers $c_{0}+k=c_{r}>c_{r-1}>\ldots>c_{1}>c_{0}$, a word $T_{\operatorname{Sym}_{k}}^{*}$ is in second canonical form with respect to \bar{c} if it is of the form $v w_{r} w_{r-1} \ldots w_{1}$ where

- each w_{j} is a word in first canonical form, using only t_{i} with $c_{i+1}>i>c_{i}$; and
- v is a word in first canonical form that does not change the order of factors originating within the same chunk.

We restate the key Propositions 5.11 and 5.15 from [8] in the language of rewriting systems and observe that they are immediate consequences of Matsumoto's theorem

Proposition 2.40. Every word in $T_{\mathrm{Sym}_{k}}^{*}$ is $R_{\mathrm{Sym}_{k}}$-reducible to a word in first canonical form. For every \bar{c}, every word in $T_{\mathrm{Sym}_{k}}^{*}$ is $R_{\mathrm{Sym}_{k}}$-reducible to a word in second canonical form with respect to \bar{c}.

Proof. This proof is really a template that can likely work for other canonical forms.
As should be clear, and is proven in detail in [8, Propositions 5.11 and 5.15], every permutation in Sym_{k} is represented by a word in $T_{\mathrm{Sym}_{k}}^{*}$ in each of our canonical forms. It is clear that words in these canonical forms are reduced: to write a permutation σ as a product of adjacent transpositions requires at least one such transposition for each pair $a<b$ with $\sigma(b)<\sigma(a)$, and these canonical forms use exactly this many generators. So, for each word w in $T_{\mathrm{Sym}_{k}}^{*}$, there is a reduced word v in this canonical form, representing the same permutation as w. That is, v and w are $R_{\mathrm{Sym}_{k}}$-equivalent, and v is $R_{\mathrm{Sym}_{k}}$-reduced; so by Matsumoto's theorem, w is $R_{\text {Sym }_{k}}$-reducible to v.
Remark 2.41. Words in first or second canonical form are themselves reduced since we have shown that every word is not only equivalent to, but reducible to such a word.

The following refined version of the second canonical form, needed very soon, showcases how long decompositions make it easy to talk about a period that is not $\left(f_{k}, f_{k-1}, \ldots f_{1}\right)$. Instead, we focus on the behavior of $w \star$ on the substring $\left(f_{k+i}, f_{k+i-1}, \ldots, f_{k+1}, f_{k}, \ldots f_{i+1}\right)$ separated into two chunks $\left(f_{k+i}, f_{k+i-1}, \ldots, f_{k+1}\right)$ and $\left(f_{k}, \ldots f_{i+1}\right)$.
Lemma 2.42. Fix some i with $0<i<k$. Suppose $w \star f$ is defined for some long decomposition f and some word w in $\left\{t_{j}: j \neq i\right\}$. Then there are words u_{L}^{+}, u_{R}^{+}, v, u_{L}^{-}, and u_{L}^{+}so that

- $u_{L}^{+} u_{R}^{+} v u_{L}^{-} u_{R}^{-} \star f=w \star f$,
- u_{L}^{+}and u_{L}^{-}are words in $\left\{t_{j}: 1 \leq j<i\right\}$,
- u_{R}^{+}and u_{R}^{-}are words in $\left\{t_{j}: i<j<k\right\}$,
- for some $m \leq \min \{i, k-i\}, v \star$ has the effect of swapping the block $\left(f_{k}, \ldots, f_{k-m+1}\right)$ with $\left(f_{k+m}, \ldots, f_{k+1}\right)$. In terms of our generators, v takes the form $v=$ $v_{k+1-m} \cdots v_{k}$ where where $v_{j}=t_{m+j-1} \cdots t_{j}$.
Proof. Indeed, using the second canonical form of [8, Proposition 5.15], we may find words u_{L}^{-}, u_{R}^{-}, and \hat{w} so that
- $\hat{w} u_{L}^{-} u_{R}^{-} \star f=w \star f$,
- u_{L}^{-}is a word in $\left\{t_{j}: 1 \leq j<i\right\}$,
- u_{R}^{-}is a word in $\left\{t_{j}: i<j<k\right\}$, and
- \hat{w} is composed of nonoverlapping right-to-left transits across k : there are numbers $k+i-1 \geq \ell_{k}>\ell_{k-1}>\cdots>\ell_{i} \geq i$ so that we may write $\hat{w}=\hat{w}_{i} \cdots \hat{w}_{k}$ with $\hat{w}_{j}=t_{\ell_{j}} t_{\ell_{j}-1} \cdots t_{j}$ if $\ell_{j} \geq j$ and \hat{w}_{j} is empty and $\ell_{j}=j-1$ otherwise.
We now further decompose \hat{w}. Let $n:=\min \left\{j: k>j \geq i \& \ell_{j+1} \geq k\right\}$.
If no such n exists, then \hat{w} is the empty word, so that we may take $\bar{u}_{R}^{+}, u_{L}^{+}$, and v to all be the empty word.

Otherwise, let $u_{R}^{+}:=\hat{w}_{n} \cdots \hat{w}_{i}$. From the construction, u_{R}^{+}is a word in $\left\{t_{j}: i<\right.$ $j<k\}$. If $n=k$, then $\hat{w}=u_{R}^{+}$and we finish by taking v and u_{L}^{+}to be the empty word. So, we may assume that $n<k$. Let $m:=k-n$. Consider the expanded product

$$
\begin{aligned}
\hat{w}_{n+1} \cdots \hat{w}_{k}= & \left(t_{\ell_{n+1}} \cdots t_{n+1}\right) \cdots\left(t_{\ell_{k-1}} \cdots t_{k-1}\right)\left(t_{\ell_{k}} \cdots t_{k}\right) \\
= & \left(t_{\ell_{n+1}} \cdots t_{k+1} t_{k} \cdots t_{n+1}\right) \cdots \\
& \left(t_{\ell_{k-1}} \cdots t_{k+m} t_{k-1+m} \cdots t_{k-1}\right)\left(t_{\ell_{k}} \cdots t_{k+m+1} t_{k+m} \cdots t_{k}\right)
\end{aligned}
$$

The blocks $t_{k-1+m} \cdots t_{k-1}$ and $t_{\ell_{k}} \cdots t_{k+m+1}$ commute. Hence, the word \hat{w} is equivalent to

$$
\begin{gathered}
\left(t_{\ell_{n+1}} \cdots t_{k+1} t_{k} \cdots t_{n+1}\right) \cdots\left(t_{\ell_{k-2}} \cdots t_{k-1+m} t_{k-2+m} \cdots t_{k-2}\right)\left[t_{\ell_{k-1}} \cdots\right. \\
\left.t_{k+m}\right]\left[t_{\ell_{k}} \cdots t_{k+m+1}\right]\left[t_{k+m-1} \cdots t_{k-1}\right]\left[t_{k+m} \cdots t_{k}\right]
\end{gathered}
$$

Continuing in this way, if we set

$$
u_{L}^{+}:=\left[t_{\ell_{n+1}} \cdots t_{k+1}\right]\left[t_{\ell_{n+2}} \cdots t_{k+2}\right] \cdots\left[t_{\ell_{k}} \cdots t_{k+m+1}\right]
$$

then we obtain the requisite decomposition.
The following strong version of the braid relations will be useful in analyzing wandering quadratics (see for example, the proof of Lemma 2.163).
Lemma 2.43. Fix $b>a>b-k$. Suppose that $s=t_{(b, a]}$ is a transit from b to a, and w is a word in t_{i} for $b>i>a$, and \widehat{w} is obtained from w by replacing every t_{i} by t_{i-1}. Then $s w=\widehat{w} s$.

Proof. Apply the left-to-right first canonical form to maybe $(s w)^{-1}$ (see Remark 2.39).

An identity of the form $w \star[\vec{f}]=[\vec{g}]$ with $w \in \mathrm{ST}_{k}^{+}$and long decompositions \vec{f} and \vec{g} of f and g, respectively, encodes an (f, g)-skew-invariant curve [8, Definition 6.3]. Moreover, every such (f, g)-skew-invariant curve is encoded by such an identity [8, Proposition 6.19]. Let us explain how this relates our new formalism from Remark 2.13

Remark 2.44. When $k \neq 2$, Remark 2.13 permits a more elegant characterization of an encoded curve.

If f is a k-long decompositionand $w=w_{n} \cdots w_{1} \in \mathrm{ST}_{k}^{+}$where each w_{j} is a generator not equal to t_{k}, then a witnessing sequence for $w \star[f]$ consists of a sequence $\left(f^{0}, \ldots, f^{n}\right)$ of k-long decompositionsand a sequence $\left(L^{1}, \ldots, L^{n}\right)$ of k skew periodic sequences of linear polynomials-linearso that

- $f=f^{0}$,
- if $w_{j} \neq t_{k}$, then $w_{j} \bullet\left(\phi \bullet L^{j}\right)^{-1} f^{j-1} L^{j}=f^{j}$, and
- if $w_{j}=\phi$ or $w_{j}=\phi^{-1}$, then every component of L^{j} is the polynomial x.

We say that \mathcal{A} is a correspondence encoded by this witnessing sequence if \mathcal{A} is a composition of curves $\mathcal{B}_{n} \circ \cdots \circ \mathcal{B}_{1}$ where for each j

- if $w_{j}=t_{i}$, then \mathcal{B}_{j} is the curve defined by $L_{1}^{j}\left(x_{2}\right)=x_{1}$,
- if $w_{j}=\epsilon_{p}$, then \mathcal{B}_{j} is the curve defined by $x_{2}=\left(L_{1}^{j}\right)^{-1}\left(x_{1}\right)^{p}$,
- if $w_{j}=\epsilon_{p}^{-1}$, then \mathcal{B}_{j} is the curve defined by $x_{1}=\left(L_{1}^{j}\right)^{-1}\left(x_{2}\right)^{p}$,
- if $w_{j}=\phi$, then \mathcal{B}_{j} is the curve defined by $x_{2}=f_{1}^{j}\left(x_{1}\right)$, and
- if $w_{j}=\phi^{-1}$, then \mathcal{B}_{j} is the curve defined by $x_{2}=f_{1}^{j+1}\left(x_{1}\right)$.

Remark 2.45. (See [8, Lemma 2.61(3)]) The correspondence \mathcal{A} encoded by an identity of the form $w \star[f]=[g]$ is well-defined up to pre- and post-composition with linear functions corresponding to the choices of representative of the classes $[f]$ and of $[g]$. Even though \mathcal{A} is defined in terms of sequences of generators, it is, in fact, well-defined for elements of the group. The verification of this fact depends on knowing that Ritt swaps satisfy the braid relations and will be proven with Theorem 2.149 .

Remark 2.46. (See [8, Proposition 6.19]) For any pair of non-exceptional polynomials f and g, for any (f, g)-skew-invariant curve \mathcal{A} and all long decompositions \vec{f} and \vec{g} of f and g, respectively, there is a word $w \in \mathrm{ST}_{k}^{+}$so that \mathcal{A} is an irreducible component of a curve encoded by the identity $w \star[\vec{f}]=[\vec{g}]$. Recall from Remark 2.34 that we may assume that w has the form $\prod_{p} \epsilon_{p}^{m_{p}} \phi^{n} u$ where $m_{p} \in \mathbb{Z}$ and all but finitely many are zero, $n \in \mathbb{Z}$, and $u \in \operatorname{ASym}_{k}$.

If \mathcal{A} is a skew-twist, then w may be taken to be $\phi^{N} u$ for some $N \in \mathbb{Z}$ and $u \in \mathrm{Sym}_{k}$. Conversely, any curve so encoded is a skew-twist.

Indeed, any curve encoded by $v \phi^{N} u \star \vec{f}=\vec{g}$ with $v, u \in \operatorname{Sym}_{k}$ and $N \in \mathbb{Z}$ is a skew-twist because $v^{-1} \star \vec{g}$ is another long decomposition of g and $u \star \vec{f}$ is another long decomposition of f.
2.1.3. Walls. Let us recall that we wish to characterize $\left(f, f^{\tau}\right)$-skew-invariant curves where f is a non-exceptional polynomial and τ is another field automorphism which commutes with σ. We know by Remark 2.46 that any such curve will be a component of a curve encoded by an identity of the form $w \star[f]=\left[f^{\tau}\right]$, where we have written f for a long decomposition of the polynomial f.

Before we take on some of the combinatorial complexity of the theory of decompositions, let us pause to work out a simple case of Theorem 1.3 where one of the t_{i} 's cannot act.

Definition 2.47. For f a k-long decompositionand an integer i we say that f has a wall at i if

- for all words $w \in \mathrm{ASym}_{k}$, the action $t_{i} w \star f$ is not defined and
- for every prime number p neither $\epsilon_{p} \star f$ nor $\epsilon_{p}^{-1} \star f$ is defined.

The easiest way to have a wall in a decomposition is to have an unswappable factor in the sense of Definition 2.9,
Lemma 2.48. If f is k-long decomposition, $i \in \mathbb{Z}$, and f_{i} is unswappable, then f has walls at $i-1$ and at i.

Proof. Let us check that for no $w \in \mathrm{ST}_{k}$ is $t_{i} w \star f$ defined. We do this by showing by induction on the length of a word in the generators representing w that, if defined, $w \star f$ has an unswappable factor at i. This is trivial for the empty word. By induction, it suffices to consider the case that $w=t_{j}$ for some j. If $j \equiv i$ or $i-1$ $(\bmod k)$, then $t_{j} \star f$ is not defined because f_{i} is unswappable. Otherwise, the $i^{\text {th }}$ factor of $t_{j} \star f$ is f_{i}. From this we see that neither $t_{i} w \star f$ nor $t_{i-1} w \star f$ is defined.

For the second part of the definition of a wall, observe that whenever $\epsilon_{p}^{ \pm} \star f$ is defined, then every factor of f must be swappable (see Definition 2.19), which is not the case for f_{i}.

Remark 2.49. In Subsection 2.3 we will work with other classes of k-long decomposition's with walls.

Definition 2.50. A wall set for a k-long decomposition f is a translate \mathcal{W} of $M \mathbb{Z}$ for an integer M dividing k such that f has a wall at i for all $i \in \mathcal{W}$.

A room of (\mathcal{W}, f) consists of the M factors of f between consecutive elements of \mathcal{W}. For example, if $k=16$ and $M=4$ and $\mathcal{W}=3+4 \mathbb{Z}$, one room of (\mathcal{W}, f) is $\left(f_{7}, f_{6}, f_{5}, f_{4}\right)$.

Two rooms are different if they are different modulo k. There are $\frac{k}{M}$ different rooms. Continuing the above example, $\left(f_{23}, f_{22}, f_{21}, f_{20}\right)$ is not a different room from $\left(f_{7}, f_{6}, f_{5}, f_{4}\right)$, but $\left(f_{27}, f_{26}, f_{25}, f_{24}\right)$ is.

Proposition 2.51. If \mathcal{W} is a wall set for a k-long decompositionf with R rooms and $w \in \mathrm{ASym}_{k}$ with $w \star f$ defined, then w may be represented as $w_{R} \cdots w_{2} w_{1}$ where each w_{i} acts on factors in a different $i^{\text {th }}$ room of (\mathcal{W}, f). Moreover, \mathcal{W} is still a wall set for $w \star f$.

Proof. If \mathcal{W} is a wall set for f and the Ritt swap $t_{i} \star f$ is defined, the two factors swapped are in the same room.

If two Ritt swaps t_{i} and t_{j} act on factors in different rooms, the indices i and j cannot be adjacent modulo k, so the Ritt swaps commute.

To complete the proof, present w as a product of t_{i} 's, use commutation to collect all of the t_{i} 's with i in the $j^{\text {th }}$ room in order to form w_{j}.

That \mathcal{W} is a wall set for $w \star f$ follows from the definition of a wall.

Recall from Remark 2.34 that conjugation by ϕ induces the automorphism η of ASym_{k} given by $t_{i} \mapsto t_{i+1}$.

If $i_{0}+M \mathbb{Z}$ is a wall set of f and w_{i} acts on the i th room of f, then $\eta^{j M}\left(w_{i}\right)$ acts on the $(i+j)^{\text {th }}$ room.

Proposition 2.52. Suppose that P is a polynomial admitting the decomposition $P=P_{k} \circ \cdots \circ P_{1}$ with associated long decomposition \vec{P} and that \vec{P} has a wall at i. Then any $\left(P, P^{\tau}\right)$-skew invariant curve is a skew-twist.

Proof. From Remark 2.46 and the fact that no $\epsilon_{p}^{ \pm 1} \star \vec{P}$ is defined, every $\left(P, P^{\tau}\right)$ -skew-invariant curve is encoded by an identity of the form $\phi^{N} w \star \vec{P}=\vec{P}^{\tau}$ with $w \in \operatorname{ASym}_{k}$ and $N \in \mathbb{Z}$. In fact, because we \vec{P} has a wall at i, w may be expressed as a reduced word in $\left\{t_{j}: j \not \equiv i(\bmod k)\right\}$.

If $i=k$, then curve encoded by this identity is already a skew-twist and we are done. So, from now on, we take $1 \leq i<k$.

We break into two cases depending on whether k divides N or not.

Case N is not divisible by k : Write $N=N^{\prime} k+L$ with $0<L<k$. Let $M:=\operatorname{gcd}(k, L)$, let $R:=\frac{k}{M}$, and set $\mu:=\tau \sigma^{-N^{\prime}}$. We work instead with the identity $\phi^{L} w \star \vec{P}=\vec{P}^{\mu}$. From the hypothesis that we have a wall at i, it follows that $i+M \mathbb{Z}$ is a wall set for \vec{P}. Without loss of generality, $0<i<M$. By Proposition 2.51 we may express w as a product $w_{R} \cdots w_{1}$ where each w_{s} acts on the $s^{\text {th }}$ room. Setting $\tilde{w}_{R}:=\eta^{L}\left(w_{R}\right)$,
we have $\phi^{L} w_{R} \cdots w_{1} \star \vec{P}=\tilde{w}_{R} \phi^{L} w_{R-1} \cdots w_{1} \star \vec{P}=\vec{P}^{\mu}$. Taking u to be the reverse word of \tilde{w}_{R}, we have $\phi^{L} w_{R-1} \cdots w_{1} \star \vec{P}=u \vec{P}^{\mu}$ where now $u, w_{1}, \ldots, w_{R-1}$ are all words omitting t_{k}. Such an equation encodes a skew-twist curve, as required.

Case N is divisible by k : We will show in this case that w may be expressed without t_{k}. Write $N=k N^{\prime}$. Then we have $\phi^{k N^{\prime}} w \star \vec{P}=\vec{P}^{\tau}$ from which we conclude that $w \star \vec{P}=\phi^{-k N^{\prime}} \vec{P}^{\tau}=\vec{P}^{\tau \sigma^{-N^{\prime}}}$. Write $\mu=\tau \sigma^{-N^{\prime}}$, we would then have $w \star \vec{P}=\vec{P}^{\mu}$.

Let us focus on the behavior of $w \star$ on the substring $\left(P_{i-1}^{\sigma}, \ldots, P_{1}^{\sigma}, P_{k}, \ldots P_{i+1}, P_{i}\right)$.
By Lemma 2.42, we may find words $u_{L}^{+}, u_{R}^{+}, v, u_{L}^{-}$, and u_{L}^{+}so that

- $u_{L}^{+} u_{R}^{+} v u_{L}^{-} u_{R}^{-} \star \vec{P}=w \star \vec{P}$,
- u_{L}^{+}and u_{L}^{-}are words in $\left\{t_{j}: 1 \leq j<i\right\}$,
- u_{R}^{+}and u_{R}^{-}are words in $\left\{t_{j}: i<j<k\right\}$,
- for some $m \leq \min \{i, k-i\}, v \star$ has the effect of swapping the block $\left(P_{k}, \ldots, P_{k-m+1}\right)$ with $\left(P_{k+m}^{\sigma}, \ldots, P_{k+1}^{\sigma}\right)$. In terms of our generators, v takes the form $v=v_{k+1-m} \cdots v_{k}$ where where $v_{j}=t_{m+j-1} \cdots t_{j}$.
We will show that v must be trivial so that w may be expressed without t_{k}.
Observe that because t_{k} does not appear in $u_{L}^{+} u_{L}^{-}$, the result of applying this word to \vec{P} is another long decomposition of P, which we will temporarily call \vec{Q}. Unless v is trivial, for the action $v \star \vec{Q}$ to be defined, it is necessary that (possibly replacing \vec{Q} by a linearly equivalent long decomposition) either
- the polynomial $Q_{k+m} \circ Q_{k+m-1} \circ \cdots \circ Q_{k-m+1}$ is an odd degree Chebyshev polynomial and for $k-m<j<k<s \leq k+m \operatorname{deg}\left(Q_{j}\right)$ and $\operatorname{deg}\left(Q_{s}\right)$ are distinct prime numbers or
- the polynomial $Q_{k+m} \circ \cdots \circ Q_{k+1}$ is a monomial of degree prime to every monomial appearing amongst the set $\left\{Q_{j}: k-m<j \leq k\right\}$ or
- the polynomial $Q_{k} \circ \cdots \circ Q_{k-m+1}$ is a monomial of degree prime to every monomial appearing amongst the set $\left\{Q_{j}: k<j \leq k+m\right\}$.
Each of these possibilities leads to a contradiction. Let now $\vec{R}:=v \star \vec{Q}$.
In the first case, the degree of the polynomial $R_{k} \circ \cdots \circ R_{i}$ is different from that of the polynomial $Q_{k} \circ \cdots \circ Q_{i}$. However, $\operatorname{deg}\left(Q_{k} \circ \cdots \circ Q_{i}\right)=\operatorname{deg}\left(P_{k} \circ \cdots \circ P_{i}\right)$ and because $\vec{P}^{\mu}=w \star \vec{P}=u_{L}^{+} u_{R}^{+} \star R$ and u_{R}^{+}being a word in $\left\{t_{j}: i<j<k\right\}$ does not affect the resulting polynomial obtained by composing the terms from i to k, $\operatorname{deg}\left(R_{k} \circ \cdots \circ R_{i}\right)=\operatorname{deg}\left(P_{k}^{\mu} \circ \cdots \circ P_{i}^{\mu}\right)=\operatorname{deg}\left(P_{k} \circ \cdots \circ P_{i}\right)$.

The other two cases are handled similarly noting that the number of instances of a given monomial appearing in the block from i to k is also invariant. With this, we end the proof of the proposition in the case that k divides N. Notice that in this case, the plain skew-twist is given by a skew-compositional power of P.

Corollary 2.53. If P is a polynomial having an unswappable compositional factor, then Theorem 1.3 holds for P.

Proof. By Lemma 2.48 any decomposition of P has a wall. By Proposition 2.52 any $\left(P, P^{\tau}\right)$-skew-invariant curve is a skew-twist.
2.2. in/out degrees. In this section, we focus on the use of the in-degree and out-degree functions as a way to study compositional identities. A highlight of this section is the proof of Theorem 1.3 for the case when the polynomial P has a clean C-free long decomposition f.

Definition 2.54. A long decomposition f is a clean C-free long decomposition if all factors f_{i} are monomials or Ritt polynomials, at least one factor is not a monomial, and all of factors are C-free. (See Definition 2.9.)

Let us record a easy and useful fact about linear equivalence between clean C-free long decompositions.

Lemma 2.55. Linear equivalence between two clean C-free long decompositions is always witnessed by scalings.

Proof. Suppose that f is a clean C-free long decomposition and L is a k-skew periodic sequence of linear polynomials-linearand g is a clean C-free long decomposition linearly related to f via L. By definition of linear equivalence, we have $g_{i}=L_{i+1}^{-1} \circ f_{i} \circ L_{i}$ for all i. By [8, Theorem 3.15], this forces L_{i+1} to be a scaling.

As in the other cases of Theorem 1.3, a (P, P^{τ}) skew-invariant curve \mathcal{C} is encoded by $u \star f=f^{\tau}$ for some $u \in \mathrm{ST}_{k}^{+}$. To show that \mathcal{C} is a skew-twist curve, we show in Lemma 2.98 that we may take $u \in \mathrm{ST}_{k}$ so that $\phi^{N} w \star f=f^{\tau}$ for some $w \in \mathrm{ASym}_{k}$. We will show that the curve \mathcal{C} is also encoded by $u_{1} \phi^{N} u_{2} \star f=f^{\tau}$ for some $u_{1}, u_{2} \in \operatorname{Sym}_{k}$.

The key idea of the proof in this case is to associate certain combinatorial data, which we call nomodata to f and then to find another long decomposition g of the same polynomial for which this nomodata is e - periodic for a certain special e.
Definition 2.56. Let f be a clean C-free long decomposition, and let $w \in \mathrm{ST}_{k}$ be such that $w \star f=f^{\tau}$ encodes a curve \mathcal{C} parametrized by $(A(t), B(t))$ for some polynomials A and B.

Let n_{A}, n_{B}, and n_{f} be the number of non-monomial factors in A, B, and one k-period of f, respectively.

The echo of $w \star f=f^{\tau}$ is $e:=\operatorname{gcd}\left(n_{f},\left(n_{B}-n_{A}\right)\right)$.
In Section 2.2.1, we set up and analyze the nomodata that is used throughout this section. In Section 2.2.2, we find some $v \in \operatorname{ASym}_{k}$ for which $v \star f$ has e-periodic nomodata. Then in Section 2.2.3, we show that the same can be accomplished with some $u \in \operatorname{Sym}_{k}$. Then $g:=u \star f$ is the desired other long decomposition of the same polynomial, with e-periodic nomodata. The skew-invariant curve \mathcal{C} is now also encoded by $\phi^{N} w^{\prime} \star g=g^{\tau}$ for some $w^{\prime} \in \mathrm{ASym}_{k}$. We observe (Lemma 2.97) that w^{\prime} cannot change the nomodata of g, and it will follow that all it can do is permute adjacent monomials. The proof ends just like the proof in the "walls" case, with "puddles" of monomials between non-monomials replacing the "rooms" between walls.
2.2.1. Scaffolding. In this subsection we identify and analyze the combinatorial data of a clean C-free long decomposition f in full generality, that is, without assuming that f has anything to do with the Mahler problem.

With the following definition, we recall the definitions of in-degree and out-degree from Definition 2.7 and then decompose these into their prime components.

Definition 2.57. Fix a polynomial u with no initial nor terminal, compositional nor multiplicative monomial factors. Recall that the in-degree and out-degree of a Ritt polynomial $g(x)=x^{k} u\left(x^{\ell}\right)^{n}$ are

$$
\operatorname{in}-\operatorname{deg}(g):=\ell \text { and out-deg }(g):=n
$$

We decompose the in- and out-degrees into their prime components by the formulae

$$
\operatorname{in}-\operatorname{deg}(g)=\prod_{p \in \mathcal{P}} p^{\mathrm{in}-\operatorname{deg}(g, p)}
$$

and

$$
\operatorname{out-deg}(g)=\prod_{p \in \mathcal{P}} p^{\text {out-deg }(g, p)}
$$

where the products are taken over the set \mathcal{P} all of the prime numbers.
The condition on u just means that u has a non-zero constant coefficient, is not a power of another polynomial, and cannot be written as $u(x)=v\left(x^{p}\right)$ for any polynomial v and any integer $p \geq 2$.

Each non-monomial Ritt polynomial has a unique representation of this form, so in-degree and out-degree are indeed properties of the polynomial itself.

These integers k, ℓ, n are the same for two scaling-related Ritt polynomials. Thus, by Lemma 2.55 the "in-degree of f_{i} " (respectively, "out-degree of f_{i} ") is a property of the linear-equivalence class of a clean C-free long decomposition f.

Definition 2.58. An increasing function $\alpha: \mathbb{Z} \rightarrow \mathbb{Z}$ is a non-monomial listing function for a clean C-free long decomposition f if

- for each $j \in \mathbb{Z}, f_{\alpha(j)}$ is not a monomial, and
- for each $i \in \mathbb{Z}$, if f_{i} is not a monomial, then i is in the range of α.

A nomodata for a clean C-free long decomposition f is a quadruple (α, in, out, pud) where

- α is a non-monomial listing function for $f ;$
- in : $\mathbb{Z} \times \mathcal{P} \rightarrow \mathbb{N}$ is defined by $\operatorname{in}(j, p):=\operatorname{in}-\operatorname{deg}\left(f_{\alpha(j)}, p\right)$;
- out : $\mathbb{Z} \times \mathcal{P} \rightarrow \mathbb{N}$ is defined by out $(j, p):=\operatorname{out}-\operatorname{deg}\left(f_{\alpha(j)}, p\right)$; and
- pud: $\mathbb{Z} \times \mathcal{P} \rightarrow \mathbb{N}$ is defined by

$$
\operatorname{pud}(j, p):=\#\left\{i \in(\alpha(j-1), \alpha(j)): f_{i}=x^{p}\right\}
$$

Remark 2.59. The last part pud of the nomodata of f keeps track of the monomials f_{i} with $\alpha(j-1)<i<\alpha(j)$:

$$
\prod_{i=\alpha(j-1)+1}^{\alpha(j)-1} \operatorname{deg}\left(f_{i}\right)=\prod_{p \in \mathcal{P}} p^{\operatorname{pud}(j, p)}
$$

We informally say that these monomials are the j th puddle, viewing the long decomposition f as a sequence of alternating non-monomials and puddles. These puddles may be empty.

Remark 2.60. The components in, out, and pud of a nomodata are two-variable functions of j, an integer, and p a prime. Sometimes, we will drop p from the notation regarding them simply as functions of the variable j.

Remark 2.61. If $(\alpha(j), \operatorname{in}(j, p), \operatorname{out}(j, p), \operatorname{pud}(j, p))$ is a nomodata for f, then $(\alpha(j+$ $m), \operatorname{in}(j+m, p), \operatorname{out}(j+m, p), \operatorname{pud}(j+m, p))$ is another nomodata for the same f for any $m \in \mathbb{Z}$. Conversely, any two non-monomial listing functions α and β for f are related by a shift: $\beta(j)=\alpha(j+m)$ for some $m \in \mathbb{Z}$. The nomodata for f is determined by the non-monomial listing function.

If there are exactly m non-monomials in one k-period of f (that is, amongst f_{1}, \ldots, f_{k}, then $\alpha(j+m)=\alpha(j)+k$ for all j; and the three degree functions are m-periodic.
Remark 2.62. If (α, in, out, pud) is a nomodata for h, then ($\alpha-N$, in, out, pud) is a nomodata for $\phi^{N} \star h$.

Remark 2.63. If τ is a field automorphism, then f and f^{τ} obtained from f by applying τ to all the coefficients of f have the same nomodata.
Remark 2.64. The index j of a non-monomial factor $f_{\alpha(j)}$ is often the more reliable counter than the index i of the factor f_{i}. For example, the periodicity of nomodata is better stated in terms of j.

The key feature of the nomodata is that it completely determines whether $t_{i} \star f$ is defined and the nomodata of $t_{i} \star f$ can be read off from the nomodata of f. The following trace function keeps track of this.

Definition 2.65. Suppose that (α, in, out, pud) is a nomodata for a long decomposition f, and suppose that $t_{i} \star f$ is defined. The trace of t_{i} on (f, α), $\operatorname{trace}_{t_{i}, f, \alpha}$, is the following function $\lambda: \mathbb{Z} \times \mathcal{P} \rightarrow \mathbb{Z}$.

- If i and $i+1$ are not in the range of α,
the trace λ is the constant function zero.
- If $i=\alpha(j)$ and f_{i+1} is the monomial x^{p}, then $\lambda(x, p)=1$ for $x \equiv j(\bmod m)$, and zero for all other inputs.
- If $i+1=\alpha(j)$ and f_{i} is the monomial x^{p}, then $\lambda(x, p)=-1$ for $x \equiv j(\bmod m)$, and zero for all other inputs.
If w is a word in t_{i} with $w \star f$ defined, the trace of w on (f, α) is the recursive sum:

$$
\operatorname{trace}_{u t_{i}, f, \alpha}:=\operatorname{trace}_{u, t_{i} \star f, \beta}+\operatorname{trace}_{t_{i}, f, \alpha}
$$

where $\beta=\alpha+\sum_{p \in \mathcal{P}} \operatorname{trace}_{t_{i}, f, \alpha}$.
In general, we write $w \star(f, \alpha)=(g, \beta)$ when $g=w \star f$ and $\beta=\alpha+\sum_{p \in \mathcal{P}}$ trace $_{w, f, \alpha}$. This notation is justified by Lemma 2.67 below.

Remark 2.66. It is easy to see that the trace of w on (f, α) is well-defined for $w \in \mathrm{ASym}_{k}$, independent of its representation as a product of generators.
Lemma 2.67. Suppose that $\left(\alpha, \mathrm{in}_{f, \alpha}\right.$, out $\left._{f, \alpha}, \operatorname{pud}_{f, \alpha}\right)$ is a nomodata for a k-long decompositionf; that $w \in \mathrm{ASym}_{k}$ with $w \star f$ defined; that $\lambda=\operatorname{trace}_{w, f, \alpha}$ is the trace of w on (f, α). Then a nomodata for $g:=w \star f$ can be computed as follows. The function

$$
\beta(j):=\alpha(j)+\sum_{p} \lambda(j, p)
$$

identifies the non-monomials of g.

$$
\begin{gathered}
\operatorname{in}_{g, \beta}(j, p)=\operatorname{in}_{f, \alpha}(j, p)-\lambda(j, p) \\
\operatorname{out}_{g, \beta}(j, p)=\operatorname{out}_{f, \alpha}(j, p)+\lambda(j, p), \text { and } \\
\operatorname{pud}_{g, \beta}(j, p)=\operatorname{pud}_{f, \alpha}(j, p)+\lambda(j, p)-\lambda(j-1, p)
\end{gathered}
$$

Proof. This easy induction on the length of a word representing w is left to the reader.

Definition 2.68. The admissibility conditions for an m-periodic function $\lambda: \mathbb{Z} \times$ $\mathcal{P} \rightarrow \mathbb{Z}$ to be a trace of a word acting on a k-long decomposition f with m nonmonomials per k-period and with nomodata (α, in, out, pud) are
(1) $-\operatorname{out}(j, p) \leq \lambda(j, p) \leq i n(j, p)$ for all j and p;
(2) $\operatorname{pud}(j, p)+\lambda(j, p)-\lambda(x-1, p) \geq 0$ for all j and p;
(3) for each p, if $\operatorname{pud}(j, p)=0$ for all j, then $\lambda(j, p)=0$ for all j.

The first two admissibility conditions are necessary because the functions $\mathrm{in}_{f, \alpha}-\lambda$, out ${ }_{f, \alpha}+\lambda$, and $\operatorname{pud}_{f, \alpha}(j, p)+\lambda(j, p)-\lambda(j-1, p)$ are parts of the nomodata for $w \star(f, \alpha)$, so they must be non-negative. The last is also clearly necessary: if a monomial x^{p} is not available anywhere in f, actions by ASym $_{k}$ cannot change the p-parts of in- and out-degrees of non-monomials in f. The main result of this subsection is Theorem 2.74 showing that these admissibility conditions are also sufficient: given f with nomodata (α, in, out, pud) and a function λ satisfying the admissibility conditions, we shall produce a word w with $w \star f$ defined and with trace λ. We will build this word out of long-swaps, each of which moves its monomial through a puddle and then swaps it with a non-monomial.

Definition 2.69. If i and $i+1$ are not in the range of α, then t_{i} is a puddle-swap for (f, α). A long-swap for (f, α) is a word of the form

$$
t_{\alpha(j)} t_{\alpha(j)+1} \ldots t_{i-1} t_{i} \text { for } i \leq \alpha(j+1) \text {; or } t_{\alpha(j)-1} t_{\alpha(j)-2} \ldots t_{i} \text { for } i>\alpha(j-1) .
$$

The first option above is a left-to-right transit (see Definition 2.38) that brings a monomial through the puddle to the left of $\alpha(j)$, followed by the Ritt swap of that monomial with the non-monomial $f_{\alpha(j)}$.

If x^{p} is a monomial that swaps with the non-monomial when a long-swap w acts, we call w a p-long-swap.

Remark 2.70. (1) The concepts in Definition 2.69 only depend on the range of α. Thus, they are the same for different nomodata for the same f.
(2) Puddle-swaps in different puddles commute.
(3) Suppose that w is a word in puddle-swaps for (f, α), and that f has r puddles per period. Then $w \approx w_{r} \ldots w_{1}$ where each w_{j} is a word in puddleswaps in the j th puddle; and these w_{j} commute with each other.
(4) If w is a word in puddle-swaps for (f, α), then $\operatorname{trace}_{w, f, \alpha}$ is identically zero. Lemma 2.71 provides a converse.
Lemma 2.71. Suppose that w is a reduced word for which $w \star f$ is defined and $\operatorname{trace}_{w, f, \alpha}$ is identically zero. Then w is a product of puddleswaps for (f, α).

Proof. Fix a non-monomial $f_{\alpha(j)}$. If suffices to show that $t_{\alpha(j)}$ and $t_{(\alpha(j)+1)}$ do not occur in w.

Let w_{x} be the initial segment of w of length x, so $w_{x} \star(f, \alpha)$ is an intermediate decomposition that occurs as $w \star f$ is carried out generator by generator. Let $I(x)$ be in-degree of the $j^{\text {th }}$ non-monomial of $w_{x} \star(f, \alpha)$. If $I(x)$ is constant in x, we are done. Otherwise, there is some prime p for which the p-part of I changes at some points. We work out the case that it increases at some point; the other case is symmetric. Let y and z be such that the p-part of $I(x)$ attains its maximal value for $y<x<z$ but not at y or z; and let $u:=w_{[z, y]}$ be a middle subword of w.

Let us pause and regroup. We now work with $(g, \beta):=w_{y-1} \star(f, \alpha)$ and the word u, focusing on the non-monomial factor $g_{\beta(j)}$ and the monomial x^{p}. Since
the first thing that happens as $u \star g$ is evaluated is the p-part of the in-degree of $g_{\beta(j)}$ increasing, it follows that w_{y} (the first letter of u) is $t_{\alpha(j)-1}$ and $g_{\alpha(j)-1}$ is the monomial of degree p.

For $x:=y, y+1, \ldots, z$, let $N(x)$ and $M(x)$ be the positions of the $j^{\text {th }}$ nonmonomial and this particular degree- p monomial in $u_{x} \star f$, where $u_{x}=w_{[x, y]}$. Because the p-part of the the in-degree of the non-monomial does not change again, for $x=y+1, \ldots, z-1$ we always have $M(x)>N(x)$, and there are no degree- p monomials between these. Because at the end, the p-part of the the in-degree of the non-monomial decreases, we must have a degree- p monomial immediately to the left of this non-monomial at the end, so $M(z-1)=N(z-1)+1$.

Case 1: If this degree- p monomial does not cross any other non-monomials as $u \star g$ is carried out, then it stays in the $(j+1)^{\text {st }}$ puddle of all intermediate decompositions. We first rewrite u, keeping the same length, so that it stays at the right edge of that puddle, except to let through other-degree monomials who cross our non-monomial. We then rewrite u, decreasing its length by 2 , so that this degree- p monomial stays on the right, rather than on the left, of the non-monomial throughout. The decrease in length is a contradiction.

Case 2: If this degree- p monomial does cross other non-monomials, it must in particular cross $g_{\alpha(j+1)}$. Consider the middle subword v of u which begins with this degree- p monomial crossing $g_{\alpha(j+1)}$ right-to-left and ends with it crossing back. This v is shorter than u, and satisfies the same hypotheses.

Lemma 2.72. Suppose that $\lambda: \mathbb{Z} \times \mathcal{P} \rightarrow \mathbb{Z}$ looks like the trace of one Ritt swap in the sense that there is exactly one pair (j, p) with $\lambda(j, p)= \pm 1$ and $\lambda\left(j^{\prime}, p^{\prime}\right)=0$ for all other pairs. Suppose that λ satisfies the admissibility conditions for some (f, α). Then there is a long-swap v with trace λ on (f, α).

Proof. We work out the case that $\lambda(j, p)=1$. The other case is handled symmetrically.

By the second admissibility condition, there is a monomial x^{p} in the puddle to the left of $f_{\alpha(j)}$, say $x_{p}=f_{i}$ with $\alpha(j+1)>i>\alpha(j)$, and i is minimal such. The transit $w=t_{\alpha(j)+1} \cdots t_{i-1}$ is a word in puddle-swaps for (f, α). By the first admissibility condition, $\operatorname{in}-\operatorname{deg}\left(f_{\alpha(j)}, p\right) \geq \lambda(j, p)=1$. Thus, $t_{\alpha(j)} w \star f$ is defined and has trace λ on (f, α).

Lemma 2.73. Suppose that $w_{i} \star f$ is defined for $i=1,2$; that w_{i} is a p_{i}-longswap for f; and that $p_{1} \neq p_{2}$. Then there is a word v_{2} such that $v_{2} w_{1} \star f$ is defined, and v_{2} is a p_{2}-longswap for $w_{1} \star f$, and the trace of v_{2} on $w_{1} \star f$ is the same as the trace of w_{2} on f.

Proof. If the factors moved by w_{1} and w_{2} are disjoint, then w_{1} and w_{2} already commute. Let us consider a case where w_{1} and w_{2} affect the same puddle but the nonmonomials on opposite ends of that puddle. Here we treat the subcase where w_{1} is right-to-left and w_{2} is left-to-right. The other subcase is handled similarly. So, $w_{1}=t_{\alpha(j)-1} \cdots t_{a+1} t_{a}$ and $w_{2}=t_{\alpha(j-1)} \cdots t_{b-1} t_{b}$ for some j, and $\alpha(j)>b+1>a>\alpha(j-1)$. Set $v_{2}:=t_{\alpha(j-1)} \cdots t_{b-1}$; so that $w_{2}=v_{2} t_{b}$.

The other cases where w_{1} and w_{2} affect the same non-monomial are equally tedious and straightforward.

Theorem 2.74. Fix (f, α) with m non-monomials per period, and suppose that $\lambda: \mathbb{Z} \times \mathcal{P} \rightarrow \mathbb{Z}$ is an m-periodic function satisfying the admissibility conditions (see Definition 2.68). Then there is some $w \in \operatorname{ASym}_{k}$ such that $w \star(f, \alpha)$ is defined, and the trace of w on (f, α) is λ.
Proof. The third condition in Definition 2.68 implies that λ is supported on finitely many primes p : those with $f_{i}=x^{p}$ for some i. We first produce words w_{p} for each such prime p, and then put them together, via Lemma 2.73.

Let $N:=\sum_{j=1}^{m}|\lambda(j, p)|$. This is the total number of monomials x^{p} that need to cross non-monomials, per period. The word w_{p} that will be a sequence of $N p$ longswaps. We induct on N to build the word w_{p}, adding a longswap to decrement N. More precisely, we shall find a word u which is a p-longswap for f, with trace μ on (f, α), such that $\lambda-\mu$ has a smaller N. The only hard part is finding a starting point where the monomial x^{p} is available in the appropriate puddle.

Case 0. If $\lambda(j, p)=0$ for all j, then $N=0$ and the induction is over.
Case 1. If for some j we have $\lambda(j, p) \leq 0$ and $\lambda(j-1, p) \geq 0$ and they are not both zero, then $\operatorname{pud}_{f, \alpha}(j, p)+\lambda(j, p)-\lambda(j-1, p) \geq 0$ gives $\operatorname{pud}_{f, \alpha}(j, p) \geq$ $-\lambda(j, p)+\lambda(j-1, p)>0$. The hypothesis of this Case says that the $j^{\text {th }}$ puddle is not supposed to gain any monomials x^{p} on either side, and is supposed to lose at least one monomial x^{p} on at least one side; and we just showed that there is at least one monomial x^{p} in this j th puddle. Lemma 2.72 now gives the desired longswap u.

Case 2 [resp. 3]. If $\lambda(j, p)>0$ for all j [resp., $\lambda(j, p)<0$ for all j], fix j such that the $j^{\text {th }}$ puddle contains at least one monomial x^{p}; this is possible by the assumption of Step 2. Use Lemma 2.72 to get a longswap u that takes this monomial out of this puddle on the right, decreasing the positive $\lambda(j+1, p)$ [resp.,on the left, inreasing the negative $\lambda(j, p)]$.

That covers all possible cases, by periodicity: λ cannot force us to only remove monomials x^{p} from every puddle.
2.2.2. Building the trace function. We now return to analyzing a clean C-free long decomposition f that fits into the Mahler problem. Our goal for this section, accomplished in Theorem 2.85 at the end, is to find some $v \in \mathrm{ASym}_{k}$ for which $v \star f$ is defined and has e-periodic nomodata. With Theorem 2.74, it suffices to find the trace λ of such a word, accomplished in Proposition 2.83 right before the main theorem.

We first need to connect the combinatorics from Section 2.2.1 to the echo e. Suppose that $w \star f=f^{\tau}$ for some $w \in \mathrm{ST}_{k}$, that α is a non-monomial listing function for f, and that λ is the trace of w on (f, α). By Lemma 2.67, $\beta(j):=$ $\alpha(j)+\sum_{p} \lambda(j, p)$ is a nomodata for f^{τ}. Since α is also a nonmonomial listing function for f^{τ}, we must have $\beta(j)=\alpha(j+r)$ for some integer r. The next lemma identifies this r explicitly. A proof of Lemma 2.67 could follow this template.

Lemma 2.75. Let f be a clean C -free long decomposition, and let $w \in \mathrm{ST}_{k}^{+}$be such that $w \star f=g$ encodes a curve parametrized by $\{(A(t), B(t))\}$ for some polynomials A and B. Let n_{A} and n_{B} be the number of non-monomial factors in A and B, respectively. Let α and β be increasing listings of the indices on non-monomial factors of f and g, respectively. Suppose that $\alpha(0)$ and $\beta(0)$ are the least positive indices of non-monomials in the f and g, respectively. If the factor f_{b}^{τ} corresponds to $f_{\alpha(j)}$ via $w \star f=g$, then $b=\beta\left(j+\left(n_{B}-n_{A}\right)\right)$.

Proof. We argue by induction on the length of a word representing w. As is our wont, we will identify w with this word.

The base case where w is empty is trivial. The induction step where w is a single generator is verified below. The conclusion is obviously additive, which concludes the proof. We organize the long case-out in order of increasing complexity of the argument.

Let us start with the cases where $\beta=\alpha$ works. If $w=\epsilon_{p}$ or $w=\epsilon_{p}^{-1}$, one of A and B is identity and the other is a monomial, so $n_{B}-n_{A}=0$. If $w=t_{k}$ and both f_{k} and f_{k+1} are monomials, both A and B are monomials, so $n_{B}-n_{A}=0$. In both cases, $\beta:=\alpha$ works for g, and $g_{\alpha(j)}$ comes from $f_{\alpha(j)}$ via $w \star f=g$ for every j.

We next consider the cases where the non-monomials do move, but do not cross between k and $k+1$. If $w=t_{i}$ for some $i \neq k$, both A and B are identity, so $n_{B}-n_{A}=0$. Now $\beta:=\pi \circ \alpha$ is the desired non-monomial listing function for g, where π is the permutation of \mathbb{Z} associated with t_{i}, that is, swapping $i+k n$ with $i+1+k n$ for all $n \in \mathbb{Z}$. If $w=\phi$ and f_{1} is a monomial, then A is identity and B a monomial, so $n_{B}-n_{A}=0$. Now $\beta(j):=\alpha(j)-1$ is a non-monomial listing function for g, and $\alpha(0)-1>0$ since $\alpha(0) \neq 1$ since f_{1} is a monomial. The argument for ϕ^{-1} and monomial f_{k} is symmetric.

Finally, we consider the cases when a non-monomial crosses between k and $k+1$. If $w=\phi$ and f_{1} is not a monomial, then A is identity and B not a monomial, so $n_{B}-n_{A}=1$. Now $\alpha(0)=1$, so while $\alpha(j)-1$ is a non-monomial listing function for g, it does not satisfy our extra requirement; but $\beta(j):=\alpha(j+1)-1$ does. The argument for ϕ^{-1} is symmetric. If $w=t_{k}$ and f_{1} is not a monomial, then A is a monomial and B not a monomial, so $n_{B}-n_{A}=1$. Now $\alpha(0)=1$, and g_{1} (which comes from f_{0}) is a monomial, so $\beta(0)$ must be greater than 1 . In particular, $g_{\beta(0)}$ does not correspond to $f_{\alpha(0)}$, but to the next non-monomial to the left of it, namely $f_{\alpha}(1)$, as wanted. The case where f_{k} rather than f_{1} is not a monomial is symmetric.

The special case of Lemma 2.75 where $g=f^{\tau}$ is a key step in solving the Mahler problem.

Corollary 2.76. Let f be a clean C-free long decomposition, and let $w \in \mathrm{ST}_{k}^{+}$ be such that $w \star f=f^{\tau}$ encodes a curve parametrized by $(A(t), B(t))$ for some polynomials A and B. Let n_{A} and n_{B} be the number of non-monomial factors in A and B, respectively. Let α be non-monomial listing function for f.

If the factor f_{b}^{τ} corresponds to $f_{\alpha(j)}$ via $w \star f=f^{\tau}$, then $b=\alpha\left(j+\left(n_{B}-n_{A}\right)\right)$.
Proposition 2.77. Suppose that (α, in, out, pud) is a nomodata for f, that $w \in$ ASym_{k} has trace $\mu=\operatorname{trace}_{w, f, \alpha}$, and that $\phi^{N} w \star f=f^{\tau}$ encodes a curve parametrized by $(A(t), B(t))$ for some polynomials A and B. Let n_{A} and n_{B} be the number of non-monomial factors in A and B, respectively. Set $r:=n_{A}-n_{B}$.

Then for all j,

$$
\begin{aligned}
\operatorname{in}(j)-\mu(j) & =\operatorname{in}(j+r) \\
\operatorname{out}(j)+\mu(j) & =\operatorname{out}(j+r) \\
\operatorname{pud}(j)+\mu(j)-\mu(j & -1)=\operatorname{pud}(j+r) .
\end{aligned}
$$

Proof. Lemma 2.67 gives a nomodata for $(g, \beta):=w \star(f, \alpha)$ as

$$
\beta(j):=\alpha(j)+\sum_{p} \mu(j, p)
$$

$$
\begin{gathered}
\operatorname{in}_{g, \beta}=\operatorname{in}_{f, \alpha}-\mu \\
\operatorname{out}_{g, \beta}=\operatorname{out}_{f, \alpha}+\mu \\
\operatorname{pud}_{g, \beta}(j)=\operatorname{pud}_{f, \alpha}(j)+\mu(j)-\mu(j-1)
\end{gathered}
$$

By Remark 2.62, a nomodata for $\phi^{N} w \star f$ is given by $\beta-N$ with the same in, out, and pud. Since $\phi^{N} w \star f=f^{\tau}$, this is also a nomodata for f^{τ}, and so it is another nomodata for f. By Remark 2.61, we get some s with

$$
\begin{gathered}
\alpha(j)+\sum_{p} \mu(j, p)-N=\alpha(j+s) \\
\operatorname{in}(j)-\mu(j)=\operatorname{in}(j+s) \\
\operatorname{out}(j)+\mu(j)=\operatorname{out}(j+s) \\
\operatorname{pud}(j)+\mu(j)-\mu(j-1)=\operatorname{pud}(j+s)
\end{gathered}
$$

Corollary 2.76 shows that $s=r$.
Remark 2.78. With the setup in Proposition 2.77, it follows that the sum in $(j)+$ out (j) is r-periodic:

$$
\operatorname{in}(j+r)+\operatorname{out}(j+r)=\operatorname{in}(j)-\mu(j)+\operatorname{out}(j)+\mu(j)=\operatorname{in}(j)+\operatorname{out}(j)
$$

For those primes p whose monomials x^{p} do not appear in f, we must have $\mu(j, p)=0$ for all j, so $\operatorname{in}(j, p)$ and out (j, p) are also r-periodic.

Suppose that f has n_{f} nonmonomials per k-period. Anything that is both $n_{f^{-}}$ periodic and r-periodic is also e-periodic, where e is the echo $\operatorname{gcd}\left(n_{f}, r\right)$.

Lemma 2.79. Fix some f with m non-monomials per k-period. Suppose that for some integer r, a nomodata (α, in, out, pud) for f satisfies $\operatorname{in}(j+r)+\operatorname{out}(j+r)=$ $\operatorname{in}(j)+\operatorname{out}(j)$ for all j. Suppose that the trace of $u \star(f, \alpha)=:(g, \beta)$ is $\lambda:=\operatorname{trace}_{u, f, \alpha}$ for some $u \in \mathrm{ASym}_{k}$. Then the following are equivalent:
(1) $\operatorname{in}_{g, \beta}(j+r, p)=\operatorname{in}_{g, \beta}(j, p)$ for all j and prime p, that is, $\mathrm{in}_{g, \beta}$ is r-periodic in j;
(2) out $_{g, \beta}(j+r, p)=$ out $_{g, \beta}(j, p)$ for all j and prime p, that is, out ${ }_{g, \beta}$ is r periodic in j;
(3) for each prime p there are constants $C_{i}(p)$ for $i=1,2, \ldots d:=\operatorname{gcd}(m, r)$ such that $\lambda(j, p)=\operatorname{in}(j, p)+C_{i}(p)$ for all $j \equiv i(\bmod d)$.

Proof. Ritt swaps do not change the sum of in- and out-degree, so these sums are still r-periodic. That is,

$$
\operatorname{in}_{g, \beta}(j+r)+\operatorname{out}_{g, \beta}(j+r)=\operatorname{in}_{g, \beta}(j)+\operatorname{out}_{g, \beta}(j)
$$

for all j. It follows that (1) and (2) are equivalent.
By Lemma 2.67, $\mathrm{in}_{g, \beta}=\mathrm{in}-\lambda$, so (1) is equivalent to in $-\lambda$ being r-periodic. Since it is already m-periodic, it is r-periodic if and only if it is d-periodic. The constants $C_{i}(p)$ in (3) are the values of in $(j, p)-\lambda(j, p)$ for $j \in i+d \mathbb{Z}$.

Lemma 2.80. Let f be a clean C-free long decomposition with nomodata (α, in, out, pud). Let e be the echo of $w \star f=f^{\tau}$ for some $w \in \mathrm{ST}_{k}$. Let p be a prime for which the monomial x^{p} does not appear in f. Then the p-part of the nomodata for f is e-periodic. That is, $\operatorname{in}(j, p), \operatorname{out}(j, p)$, and $\operatorname{pud}(j, p)$ are e-periodic in j.

Proof. By Corollary 2.76, a non-monomial $f_{\alpha(j)}$ corresponds to $f_{\alpha\left(j+\left(n_{B}-n_{A}\right)\right)}^{\tau}$ via $w \star f=f^{\tau}$. Since x^{p} does not occur in f, the p-part of the in-degree of this nonmonomial does not change as $w \star f$ is carried out. So $\operatorname{in}(j, p)=\operatorname{in}-\operatorname{deg}\left(f_{\alpha(j)}, p\right)=$
 is, the function $\operatorname{in}(j, p)$ is $\left(n_{B}-n_{A}\right)$-periodic in j. Of course, it is also n_{f}-periodic in j, so it is e-periodic. The exact same argument works for the out-degree. Since x^{p} does not appear in f, we get $\operatorname{pud}(j, p)=0$ for all j, and constant functions are as periodic as it gets.

Lemma 2.81. Let f be a clean C-free long decomposition with m non-monomials per k-period and with nomodata (α, in, out, pud). Let e be the echo of $w \star f=f^{\tau}$ for some $w \in \mathrm{ST}_{k}$. Suppose that we have numbers $C_{i}(p)$ for $i \in \mathbb{Z} / e \mathbb{Z}$ and p prime satisfying

$$
-(\operatorname{out}(j, p)+\operatorname{in}(j, p)) \leq C_{i}(p) \leq 0
$$

and

$$
C_{i}(p)+\operatorname{in}(j+z r, p) \geq C_{i-1}(p)+\operatorname{in}(j-1+z r, p)
$$

for some r and for all primes p, all i, and all $j \equiv i(\bmod e)$ and some z which may depend on j. Suppose further that for primes p for which the monomials x^{p} do not appear in f, we have $C_{i}(p)=-\operatorname{in}(j, p)$ for all i and all $j \equiv i(\bmod e)$.

Then λ defined by $\lambda(j, p)=\operatorname{in}(j, p)+C_{i}(p)($ for $j \equiv i(\bmod e))$ satisfies the admissibility conditions for (f, α) and all of the following functions are e-periodic:

$$
\alpha(j)+\sum_{p} \lambda(j, p), \text { in }-\lambda, \text { out }+\lambda, \operatorname{pud}(j)+\lambda(j)-\lambda(j-1)
$$

Proof. The only interaction between different primes is the conclusion that $\alpha(j)+$ $\sum_{p} \lambda(j, p)$ is e-periodic. We return to this conclusion after proving the rest of the lemma separately for each prime.

For primes p for which the monomials x^{p} do not appear in f, we get $\lambda(j, p)=0$ for all j, immediately satisfying the admissibility conditions. The last three functions in the conclusion of this lemma are just the p-parts of the nomodata of f, shown to be e-periodic in Lemma 2.80. The third admissibility condition only refers to these primes, so it is now verified for all primes.

Proposition 2.77 is our main tool for verifying the second admissibility condition. Let $u \in \operatorname{ASym}_{k}$ be such that $w=\phi^{N} u$ for some integer N and let μ be the trace of u on (f, α). Solving one of the conclusions of Proposition 2.77 for μ in terms of the function $\operatorname{in}(j, p)$ and substituting into the last conclusion of Proposition 2.77 gives
(23) $[\operatorname{in}(j, p)-\operatorname{in}(j+r, p)]-[\operatorname{in}(j-1, p)-\operatorname{in}(j-1+r, p)]=\operatorname{pud}(j+r, p)-\operatorname{pud}(j, p)$.

Iterating Equation $23 z$-times and adding the telescoping sums, we obtain

$$
\begin{equation*}
[\operatorname{in}(j, p)-\operatorname{in}(j+z r, p)]-[\operatorname{in}(j-1, p)-\operatorname{in}(j-1+z r, p)]=\operatorname{pud}(j+z r, p)-\operatorname{pud}(j, p) . \tag{24}
\end{equation*}
$$

Rearranging gives
$\operatorname{pud}(j, p)+\operatorname{in}(j, p)-\operatorname{in}(j-1, p)+\operatorname{in}(j-1+z r, p)-\operatorname{in}(j+z r, p))=\operatorname{pud}(j+z r, p) \geq 0$.
When $j \equiv i(\bmod e)$

$$
\begin{equation*}
C_{i}(p)+\operatorname{in}(j+z r, p) \geq C_{i-1}(p)+\operatorname{in}(j-1+z r, p) \tag{26}
\end{equation*}
$$

is one of our hypotheses for some z.
Equivalently,

$$
\begin{equation*}
C_{i}(p)-C_{i-1}(p) \geq \operatorname{in}(j-1+z r, p)-\operatorname{in}(j+z r, p) \tag{27}
\end{equation*}
$$

Combining Equation 25 which we know for all z and Equation 27 which we know for some z gives

$$
\begin{equation*}
\operatorname{pud}(j, p)+\operatorname{in}(j, p)-\operatorname{in}(j-1, p)+\left(C_{i}(p)-C_{i-1}(p)\right) \geq 0 \tag{28}
\end{equation*}
$$

Rearranging Equation 28 and recalling that $\lambda(j, p)=\operatorname{in}(j, p)+C_{i}(p)$ for $j \equiv i$ $(\bmod e)$ produces

$$
\operatorname{pud}(j, p)+\lambda(j, p)-\lambda(j-1, p) \geq 0
$$

which is precisely the second admissibility condition for λ.
The first admissibility condition $-\operatorname{out}(j, p) \leq \lambda(j, p) \leq \operatorname{in}(j, p)$ follows immediately from the hypothesis that $-(\operatorname{out}(j, p)+\operatorname{in}(j, p)) \leq C_{i}(p) \leq 0$.

Since λ satisfies the admissibility conditions for (f, α), by Theorem 2.74 there exists some $v \in \operatorname{ASym}_{k}$ with trace λ on (f, α). Let $(g, \beta):=v \star(f, \alpha)$. The four functions in the conclusion of this lemma are then a nomodata for for (g, β).

By Remark 2.78, (in + out) is e-periodic, so Lemma 2.79 applies, and condition (3) there is satisfied. From the equivalent conditions (1) and (2) in that lemma, we get that in $-\lambda=\operatorname{in}_{g, \beta}$ and out $+\lambda=$ out $_{g, \beta}$ are e-periodic in j. With Equation 23 . this implies that $\operatorname{pud}(j)+\lambda(j)-\lambda(j-1)=\operatorname{pud}_{g, \beta}$ is e-periodic.

We know that $\operatorname{pud}_{g, \beta}$ is e-periodic for all p, so their $\operatorname{sum} \sum_{p \in \mathcal{P}} \operatorname{pud}_{g, \beta}$ is e periodic. This sum is exactly the total number of monomials (of all degrees) in the j th puddle! That is, the function $(\beta(j)-\beta(j-1))$ is e-periodic; and it follows that β itself is, too.

Lemma 2.82. Fix positive integers e and k with k being a multiple of e. For every function $\varpi: \mathbb{Z} / k \mathbb{Z} \rightarrow \mathbb{N}$ there is a non-positive e-periodic function $\zeta: \mathbb{Z} / k \mathbb{Z} \rightarrow \mathbb{Z}$ so that their sum $\lambda:=\varpi+\zeta$ takes values in \mathbb{N} and satisfies that for every $j \in \mathbb{Z} / k \mathbb{Z}$ there is some $z \in \mathbb{Z}$ such that

$$
\begin{equation*}
\lambda(j+z e) \geq \lambda(j+z e-1) \tag{29}
\end{equation*}
$$

Proof. The desired Inequality 29 unwraps to

$$
\begin{equation*}
\varpi(j+z e)+\zeta(j+z e) \geq \varpi(j+z e-1)+\zeta(j+z e-1) \tag{30}
\end{equation*}
$$

Since ζ will be e-periodic, Inequality 30 is equivalent to

$$
\begin{equation*}
\varpi(j+z e)+\zeta(j) \geq \varpi(j+z e-1)+\zeta(j-1) \tag{31}
\end{equation*}
$$

Take $s \in \mathbb{Z} / k \mathbb{Z}$ so that ϖ attains its minimal value at s. We construct $\zeta(s-x)$ by recursion on $x=0,1, \ldots e-1$; and then extend by e-periodicity. Throughout this construction we verify that Inequality 31 holds for $j \equiv s-x(\bmod e)$ and will maintain an additional property that

$$
\lambda(s-x+z e) \geq \lambda(s) \text { for all } z
$$

We start by setting $\zeta(s):=0$. Condition holds in this case by minimality of $\varpi(s)$. For the recursive step, we are given $\zeta(s-x)$ and we need to choose $\zeta(s-x-1)$. We set $\zeta(s-x-1):=0$ if

$$
\begin{equation*}
\varpi(s-x+z e)+\zeta(s-x) \geq \varpi(s-x+z e-1) \tag{32}
\end{equation*}
$$

is satisfied for some z for in so doing Inequality 31 holds for this choice of $\zeta(s-x-1)$. Condition \dagger is satisfied in this case because for $j \equiv s-x-1(\bmod e)$, we get

$$
\lambda(j)=\varpi(j)+\zeta(s-x-1)=\varpi(j)+0=\varpi(j) \geq \varpi(s)=\varpi(s)+0=\lambda(s)
$$

Otherwise,

$$
\varpi(s-x+z e)-\varpi(s-x+z e-1)+\zeta(s-x)<0
$$

for all z. In this case, we let $\zeta(s-x-1)$ be the largest (i.e. the least negative) of all these possible values:

$$
\zeta(s-x-1):=\max _{z}(\varpi(s-x+z e)-\varpi(s-x+z e-1)+\zeta(s-x))
$$

In particular, for some z we have

$$
\zeta(s-x-1)=\varpi(s-x+z e)-\varpi(s-x+z e-1)+\zeta(s-x)
$$

so

$$
\varpi(s-x+z e-1)+\zeta(s-x-1)=\varpi(s-x+z e)+\zeta(s-x) .
$$

In particular, we conclude

$$
\varpi(s-x+z e)+\zeta(s-x) \geq \varpi(s-x+z e-1)+\zeta(s-x-1)
$$

which verifies Inequality 31 for this value of z.
To obtain Condition unwrap the maximum function to see that

$$
\zeta(s-x-1) \geq \varpi(s-x+z e)-\varpi(s-x+z e-1)+\zeta(s-x)
$$

for all z. Rearranging and unwrapping the definition of λ gives
$\lambda(s-x+z e-1)=\varpi(s-x+z e-1)+\zeta(s-x-1) \geq \varpi(s-x+z e)+\zeta(s-x)=\lambda(s-x+z e)$
for all z. By the truth of Condition $\boldsymbol{\Phi}$ for $s-x$,

$$
\lambda(s-x+z e) \geq \lambda(s)
$$

The recursive step and, therefore, the whole recursive construction, is now complete. To verify the last remaining instance of the desired inequality, note that

$$
\lambda(s+1) \geq \lambda(s)
$$

is an instance of Condition \square.
Since $\lambda(s)=\varpi(s) \geq 0$, Condition Φ also implies that λ is nonnegative.

Proposition 2.83. Let f be a clean C-free long decomposition with m non-monomials per k-period and with nomodata (α, in, out, pud). Let e be the echo of $w \star f=f^{\tau}$ for some $w \in \mathrm{ST}_{k}$. Then there exists an m-periodic function λ satisfying the $A d-$ missibility Conditions for f such that all of the following functions are e-periodic:

$$
\alpha(j)+\sum_{p} \lambda(j, p), \text { in }-\lambda, \text { out }+\lambda, \quad \operatorname{pud}(j)+\lambda(j)-\lambda(j-1)
$$

Proof. Applying Lemma 2.82 to the function $\varpi(j):=\operatorname{in}(l, p)$ and set $C_{i}(p):=\zeta(i)$. These values satisfy the hypotheses of Lemma 2.81, thus completing the proof.

Remark 2.84. The λ we obtained in 2.83 using Lemma 2.82 is necessarily nonnegative, but there may be (probably are) other functions satisfying the conclusion of that proposition. The one we built is an upper bound on solutions of $-\operatorname{out}(j) \leq$ $\lambda(j) \leq \operatorname{in}(j)$ for all j; and for all j there is some z such that $\lambda(j+z r) \geq \lambda(j-1+z r)$. The same reasoning starting with - out and adding positive constants on cosets to obtain the desired inequality would produce a non-positive solution, which would be a lower bound on other solutions. The trace of $u \in \operatorname{Sym}_{k}$ obtained in Theorem 2.86 will be one of these other solutions.

The main result of this section is now an immediate consequence of Proposition 2.83 and Theorem 2.74

Theorem 2.85. Let f be a clean C-free long decomposition with m non-monomials per k-period and with nomodata (α, in, out, pud). Let e be the echo of $w \star f=f^{\tau}$ for some $w \in \mathrm{ST}_{k}$. Then there exists some $v \in \mathrm{ASym}_{k}$ for which $v \star f$ is defined and has e-periodic nomodata.

Proof. Applying Proposition 2.83 we obtain a function λ satisfying the Admissibility conditions for (f, α). By Theorem 2.74 there is some $v \in \mathrm{ASym}_{k}$ for which $v \star f$ is defined and has trace λ on (f, α). The e-periodic functions in the conclusion of Proposition 2.83 are exactly a nomodata for $v \star f$.
2.2.3. From ASym_{k} to Sym_{k}. The main result of this Subsection 2.2.3 is Theorem 2.86 in which Theorem 2.85 is upgraded replacing ASym_{k} by Sym_{k}.

Theorem 2.86. Let N be an integer dividing k, and let f be a clean C-free long decomposition, and suppose that $v \star f$ has N-periodic nomodata for some $v \in \mathrm{ASym}_{k}$. Then $u \star f$ has N-periodic nomodata for some $u \in \operatorname{Sym}_{k}$.

Remark 2.87. Theorem 2.86 holds trivially when $N=k$. For the remainder of this subsection we take $N<k$.

We prove Theorem 2.86 through a series of reductions.
Proposition 2.88. Theorem 2.86 follows from the special case where $v=v_{0} t_{k}$ for some $v_{0} \in \mathrm{Sym}_{k}$.
Proof. We induct on the number M of instances of t_{k} in some presentation of v as a word in $\left\{t_{1}, \ldots, t_{k}\right\}$. When $M=0$ and there are no instances of t_{k} in v, let $u=v$. For the induction step, take a word $v=v_{0} t_{k} \widehat{v}$ where \widehat{v} has M instances of t_{k}. Let $g:=\widehat{v} \star f$. Now $v_{0} t_{k} \star g$ has periodic nomodata, so by the special case, there is some word \widehat{u} with no t_{k} 's for which $\widehat{u} \star g$ has periodic nomodata. But then $\widehat{u} \widehat{v} \star f=\widehat{u} \star g$ has periodic nomodata. Now $\widehat{u} \widehat{v}$ has only M instances of t_{k} in it, so by the induction hypothesis, there is some $u \in\left(t_{1}, \ldots, t_{k-1}\right)$ such that $u \star f$ has periodic nomodata.

Let us consider how the expression $v=v_{0} t_{k}$ in Proposition 2.88 acts on f. First, t_{k} swaps the boundary factors and then v_{0} mixes everything else using Ritt swaps. The next lemma expresses the sense in which it would have been possible to first perform this kind of mixing before performing a swap at the boundary. That is, one can arrange all of the factors in the correct order first, allow t_{k} to swap the boundard factors, and then bring the newly changed boundary factors into the middle of the decomposition.

Lemma 2.89. For any $v_{0} \in \mathrm{Sym}_{k}$ there is some $\widehat{v} \in\left\langle t_{2}, \ldots, t_{k-2}\right\rangle$ such that $v_{0} t_{k}=v_{r} v_{\ell} t_{k} \widehat{v}$ where v_{ℓ} is a left-to-right transit $t_{a} t_{a+1} \ldots t_{k-1}$ and v_{r} is a right-toleft transit $t_{b} t_{b-1} \ldots t_{1}$.

Proof. First, put v_{0} into first canonical (See Remark 2.39):

$$
v_{0}=v_{r} v^{\prime}
$$

where v_{r} is as above, and $v^{\prime} \in\left\langle t_{2}, \ldots, t_{k-1}\right\rangle$. Then put v^{\prime} into reverse first canonical form:

$$
v^{\prime}=v_{\ell} \widehat{v}
$$

where v_{ℓ} and \widehat{v} are as required. So,

$$
v_{0} t_{k}=v_{r} v_{\ell} \widehat{v} t_{k}
$$

Since non-adjacent Ritt swaps commute,

$$
v_{0} t_{k}=v_{r} v_{\ell} t_{k} \widehat{v}
$$

as wanted.
Proposition 2.90. Theorem 2.86 follows from the special case where $v=v_{r} v_{\ell} t_{k}$ where v_{ℓ} is a left-to-right transit $t_{a} t_{a+1} \ldots t_{k-1}$ bringing the leftmost factor into the middle and v_{r} is a right-to-left transit $t_{b} t_{b-1} \ldots t_{1}$ bringing the rightmost factor into the middle.

Proof. From the Proposition 2.88, we know it suffices to prove the special case where $v=v_{0} t_{k}$ and $v_{0} \in \operatorname{Sym}_{k}$. Lemma 2.89 gives us v_{r} and v_{ℓ} as in the statement of this proposition and $\widehat{v} \in \operatorname{Sym}_{k}$ such that $v_{0} t_{k}=v_{r} v_{\ell} t_{k} \widehat{v}$ in ASym_{k}. As in the proof of Proposition 2.88, let $g:=\widehat{v} \star f$. Now $v_{r} v_{\ell} t_{k} \star g$ has periodic nomodata, so for some $\widehat{u} \in \operatorname{Sym}_{k}$ we have that $\widehat{u} \star g$ has periodic nomodata. Thus, $\widehat{u} \widehat{v} \star f$ has periodic nomodata. That is, $u:=\widehat{u} \widehat{v}$ works.

The next proposition says that the altered boundary factors cannot go very far into the middle: they must stay within the first/last period of the periodic nomodata of $v_{r} v_{\ell} t_{k} \star f$.
Proposition 2.91. Fix a long decomposition f and a natural number $N<k$. Suppose that $v_{r} v_{\ell} t_{k} \star f$ has N-periodic nomodata for some $v_{\ell}=t_{a} t_{a+1} \ldots t_{k-1}$ and $v_{r}=t_{b} t_{b-1} \ldots t_{1}$. Then $b+1 \leq N$ and $a \geq k-N$.

Proof. We first show that $b+1 \leq N$. Leting $h:=v_{\ell} t_{k} \star f$, we get that $t_{b} t_{b-1} \ldots t_{1} \star h$ has N-periodic nomodata. In evaluating $t_{b} t_{b-1} \ldots t_{1} \star h$, the rightmost factor h_{1} of h has to swap with h_{2} and h_{3} and so on until h_{b+1}. If h_{1} is not a monomial, this means that all of $h_{2}, h_{3}, \ldots, h_{b+1}$ are monomials. If h_{1} is a monomial x^{p}, this means none of $h_{2}, h_{3}, \ldots, h_{b+1}$ are monomials of the same degree p. In particular, whatever h_{1} becomes after all these swaps cannot be the same shape as any of the things that $h_{2}, h_{3}, \ldots, h_{b+1}$ become after these swaps (recall Definition 2.155 for the notion of "becoming") . However, if $b+1>N$, this list $h_{2}, h_{3}, \ldots, h_{b+1}$ contains a full N-period of $t_{b} t_{b-1} \ldots t_{1} \star h$, so h_{1} has to have the same shape as one of them!

So we now know that v_{r} does not touch the factors $h_{k}, \ldots, h_{N+2}, h_{N+1}$. Thus, these are also the factors of $v_{r} \star h$ which has N-periodic nomodata. Because N is a proper divisor of k it is at most $k / 2$. Thus, v_{r} leaves fixed at least half of the factors and, in particular, leaves fixed the whole left-most period.

Exactly the same reasoning applies to v_{ℓ}. Let $g:=t_{k} \star f$, so that $v_{\ell} \star g=h$. If $a<k-N$, then g_{k} swaps across at least N factors of g which then become the leftmost N factors $h_{k}, h_{k-1}, \ldots, h_{k-N+1}$ of h, which are then untouched by v_{r} and become the leftmost period of $v_{r} \star h$ which has N-periodic nomodata. Whatever g_{k} has become after all these swaps has to have something like the shape of one of these factors $h_{k}, h_{k-1}, \ldots, h_{k-N+1}$ that this very g_{k} swapped across, giving the same contradiction.

With the next proposition we extend the reduction of Proposition 2.90 arguing that we may drop v_{r}. The idea here is that v_{r} acts on the rightmost N-period, and we can instead undo its action on all other N-periods. Since these periods have the same nomodata, and nomodata completely determine whether Ritt swaps are defined, this action will necessarily be defined.

Proposition 2.92. Let f be a long decomposition and N a proper divisor of k. Suppose that $g:=v_{r} v_{\ell} t_{k} \star f$ has N-periodic nomodata for some $v_{\ell}=t_{a} t_{a+1} \cdots t_{k-1}$ and $v_{r}=t_{b} t_{b-1} \ldots t_{1}$. Then $w_{\ell} t_{k} u \star f$ has N-periodic nomodata for some left-toright transit $w_{\ell}=t_{a^{\prime}} t_{a^{\prime}+1} \cdots t_{k-1}$ and some $u \in \operatorname{Sym}_{k}$.
Proof. From Proposition 2.91, we know that $b \leq N-1$, so that v_{r} acts on the rightmost N-period. For $j=1,2,3, \ldots, k / N$, let u_{j} be the word that acts like v_{r}^{-1} on the $j^{\text {th }} N$-period. Formally, expressing v_{r} as a word in t_{i} 's, u_{j} is obtained from v_{r}^{-1} by adding $(j-1) N$ to the index of each Ritt swap t_{i} in the word. So, $u_{1}=v_{r}^{-1}$. Since $v_{r}^{-1} \star g$ is defined, and g has N-periodic nomodata, $u_{j} \star g$ is also defined for each j. Since these u_{j} act on disjoint parts of g, the composition $u_{k / N} \ldots u_{2} u_{1} \star g$ is also defined. Since $u_{k / n} \ldots u_{2} u_{1}$ does the same thing to each N-period, the new decomposition

$$
u_{k / N} \ldots u_{2} u_{1} \star g=u_{k / N} \ldots u_{2} u_{1} v_{r} v_{\ell} t_{k} \star f=u_{k / N} \ldots u_{2} v_{\ell} t_{k} \star f
$$

also has N-periodic nomodata. For $j=2,3, \ldots, k / N-1$, the u_{j} act on the "middle" N-periods - not the first nor the last - so they commute with v_{ℓ} and with t_{k}. Thus, we see that

$$
u_{k / N} \ldots u_{2} v_{\ell} t_{k} \star f=\left(u_{k / N} v_{\ell}\right) t_{k}\left(u_{k / N-1} \ldots u_{2}\right) \star f
$$

has N-periodic nomodata. Finally, putting $u_{k / N} v_{\ell}$ into first canonical form $w_{\ell} u_{0}$ for some $u_{0} \in\left\langle t_{k-N}, \ldots t_{k-2}\right\rangle$, acting on all but the leftmost of the factors of the leftmost N-period, and and left-to-right transit $w_{\ell}=t_{a^{\prime}} t_{a^{\prime}+1} \cdots t_{k-1}$. Again, u_{0} commutes with t_{k}. So we get
$\left(u_{k / N} v_{\ell}\right) t_{k}\left(u_{k / N-1} \ldots u_{2}\right) \star f=w_{\ell} u_{0} t_{k}\left(u_{k / N-1} \ldots u_{2}\right) \star f=w_{\ell} t_{k}\left(u_{0} u_{k / N-1} \ldots u_{2}\right) \star f$ to have N-periodic nomodata. Setting $u:=u_{0} u_{k / N-1} \ldots u_{2}$ completes the proof.

Next, we drop v_{ℓ} from Proposition 2.90 in the same way.
Proposition 2.93. Fix a long decomposition f and a proper divisor N of k. Suppose that $g:=v_{\ell} t_{k} \star f$ has N-periodic nomodata for some $v_{\ell}=t_{a} t_{a+1} \ldots t_{k-1}$. Then $t_{k} u \star f$ has N-periodic nomodata for some word $u \in \operatorname{Sym}_{k}$.
Proof. In Proposition 2.91 we proved that $a \geq k / N+1$. We now improve this to $a>k / N+1$. Suppose towards contradiction that $a=k / N+1$. Then the rightmost factor $g_{k / N+1}$ of the leftmost N-period in $g=v_{\ell} t_{k} \star f$ comes from f_{1} : first, t_{k} moves f_{1} to the $k^{\text {th }}$ spot, and then v_{ℓ} moves it right to the end of the period. Since g
has N-periodic nomodata, this $g_{k / N+1}$ has the same combinatorial shape as the rightmost factor g_{1}, which came from f_{k}. So, something that came from f_{1} and something that came from f_{k} now have the same combinatorial shape, but this contradicts the fact that f_{1} and f_{k} Ritt-swapped when t_{k} acted on f.

As in the proof of the Proposition 2.92, for $j=1,2, \ldots, k / N$, let u_{j} act on the $j^{\text {th }} N$-period the same way that v_{ℓ}^{-1} acts on the leftmost N-period. So u_{j} is obtained from v_{ℓ}^{-1} by adding $j N$ to (equivalently, subtracting $N(k / N-j)$ from) the index of each Ritt swap t_{i} occurring in some presentation of v_{ℓ}^{-1}. As before, $u_{1} u_{2} \cdots u_{k / N} \star g$ is defined and has N-periodic nomodata. Thus we conclude that

$$
u_{1} u_{2} \cdots u_{k / N} \star g=u_{1} u_{2} \cdots u_{k / N} v_{\ell} t_{k} \star f=u_{1} u_{2} \cdots u_{k / N-1} t_{k} \star f
$$

is N-periodic. As before, u_{j} with $j=2,3, \ldots, k / N-1$ commute with t_{k}. We also know that v_{ℓ} does not involve $t_{k / N+1}$, so u_{1} does not involve t_{1} implying that u_{1} also commutes with t_{k}. Thus,

$$
u_{1} u_{2} \cdots u_{k / N-1} t_{k} \star f=t_{k}\left(u_{1} u_{2} \cdots u_{k / N-1}\right) \star f
$$

has N-periodic nomodata. Setting $u:=u_{1} u_{2} \cdots u_{k / N-1}$ completes the proof.
Finally, we get drop t_{k} in the same way.
Proposition 2.94. Fix a long decomposition f and a proper divisor N of k. Suppose that $g:=t_{k} \star f$ has N-periodic nomodata. Then $u \star f$ has N-periodic nomodata for some $u \in \operatorname{Sym}_{k}$.

Proof. Instead of t_{k} swapping across the boundary of the k-period to achieve periodicity, swap across all the boundaries of N-periods that are not boundaries of the k-periods. That is, let

$$
u:=t_{N} t_{2 N} \ldots t_{(k-N)}
$$

The proof of Theorem 2.86 is now complete.
Corollary 2.95. Let f be a clean C-free long decomposition. Let e be the echo of $w \star f=f^{\tau}$ for some $w \in \mathrm{ST}_{k}$. Then there exists some $u \in \operatorname{Sym}_{k}$ for which $u \star f$ is defined and has e-periodic nomodata.

Proof. Theorem 2.85 provides some $v \in \operatorname{ASym}_{k}$ for which $v \star f$ is defined and has e periodic nomodata. Theorem 2.86 allows us to replace $v \in \operatorname{ASym}_{k}$ by $u \in \operatorname{Sym}_{k}$.

Let us record the reduction of the proof of Theorem 1.3 for clean C-free long decompositions to the special case of e-periodic nomodata.

Proposition 2.96. Let f be a clean C-free long decomposition of a polynomial P, let \mathcal{C} be the $\left(P, P^{\tau}\right)$ skew-invariant curve encoded by $w \star f=f^{\tau}$ for some $w \in \mathrm{ST}_{k}$, and let e be the echo of $w \star f=f^{\tau}$.

There exists another clean C -free long decomposition g of the polynomial P and another $w^{\prime} \in \mathrm{ST}_{k}$ with $w^{\prime} \star g=g^{\tau}$ encoding the same curve \mathcal{C} with the additional property that the nomodata of g is e-periodic.
Proof. Corollary 2.95 provides the new decomposition $g:=u \star f$ of the same polynomial P with e-periodic nomodata, for some $u \in \operatorname{Sym}_{k}$.

Replacing f by $u^{-1} \star g$ in the Mahler equation $\phi^{N} w \star f=f^{\tau}$ encoding the skew-invariant curve \mathcal{C} yields

$$
\phi^{N} w u^{-1} \star g=u^{-1} \star g^{\tau}
$$

and then

$$
u \phi^{N} w u^{-1} \star g=g^{\tau}
$$

and

$$
\phi^{N} w^{\prime} \star g=g^{\tau}
$$

where $w^{\prime}=\widehat{u} w u^{-1}$ where \widehat{u} is defined by $u \phi^{N}=\phi^{N} \widehat{u}$. Since $u \in \operatorname{Sym}_{k}$, the curve it encodes is the diagonal. Thus, all these equations encode the same curve \mathcal{C}, with the same echo e.

In the remainder of this section we complete the proof of Theorem 1.3 for polynomials admitting long decompositions with sufficiently periodic nomodata.

Lemma 2.97. Let f be a clean C -free long decomposition of a polynomial P, let \mathcal{C} be the $\left(P, P^{\tau}\right)$ skew-invariant curve encoded by $\phi^{N} w \star f=f^{\tau}$ for some $w \in \mathrm{ASym}_{k}$, and let e be the echo of $w \star f=f^{\tau}$. Fix a nonmonomial listing function α for f. If f has e-periodic nomodata, then the trace of w on (f, α) is trivial.

Proof. Since f and f^{τ} admit identical nomodata and $w \star f$ is defined, so is $w \star f^{\tau}$. It follows from Corollary 2.76 that there is a multiple r of e such that $w \star(f, \alpha)=$ $\left(f^{\tau}, \beta\right)$ where $\beta(j)=\alpha(j+r)$ for all j. Because α is e-periodic, $\beta=\alpha$. Because the in- and out-degrees of the corresponding factors of f and f^{τ} are the same, we see that $0=\operatorname{trace}_{w, f, \alpha}$.

Lemma 2.98. If $w \in \mathrm{ST}_{k}^{+}$satisfies $w \star f=f^{\tau}$ for some clean C -free long decomposition f of some non-exceptional polynomial, then $w \in \mathrm{ST}_{k}$.
Proof. By Remark 2.34, we may write $w=u \varepsilon$ where $u \in \mathrm{ST}_{k}$ and $\varepsilon=\prod_{p \in \mathcal{P}} \epsilon_{p}^{m_{p}}$ is a product of powers of ϵ_{p} for various p. We may choose words \widehat{u} and $\widehat{\varepsilon}$ representing u and ε, respectively, for which the such $\widehat{u} \widehat{\varepsilon}$ is reduced. Since $w \star f$ is defined, so is $\widehat{u} \widehat{\varepsilon} \star f$. If $m_{p}>0$ (respecitvely, $m_{p}<0$) for some p, then $\epsilon_{p} \star f$ (resp., $\epsilon_{p}^{-1} \star f$) is defined. Thus, in particular, the monomial x^{p} does not occur in f.

Fix a nonmonomial listing function α for f. Recall that α is also a nomonomial listing function for f^{τ} and for $\varepsilon^{-1} \star f^{\tau}$. Note that because x^{p} does not appear in f, the $\operatorname{trace}_{u, f, \alpha}(j, p)=0$ for all j. Rewrite the equation $\varepsilon u \star f=f^{\tau}$ as $u \star f=\varepsilon^{-1} \star f^{\tau}$ and compare the p-part of the nomodata for the two sides of the equation. On the left, there is some r for which

$$
\operatorname{in}_{u \star(f, \alpha)}(j, p)=\operatorname{in}_{f, \alpha}(j+r, p)+\operatorname{trace}_{u, f, \alpha}(j, p)=\operatorname{in}_{f, \alpha}(j+r, p)
$$

(see Lemma 2.67 and Remarks 2.61 and 2.62 . On the right, $\mathrm{in}_{f^{\tau}, \alpha}=\mathrm{in}_{f, \alpha}$, while $\operatorname{in}_{\varepsilon^{-1}{ }_{\star f^{\tau}}, \alpha}(j, p)=\operatorname{in}_{f^{\tau}, \alpha}(j, p)+m_{p}$. If $m_{p} \neq 0$, this gives a contradiction since $\operatorname{in}_{f, \alpha}(j, p)$ is bounded.

We conclude this section by proving Theorem 1.3 for clean C-free long decompositions.

Proposition 2.99. Theorem 1.3 holds in the case that the polynomial P admits a clean C-free long decomposition f.

Proof. Let \mathcal{C} be a $\left(P, P^{\tau}\right)$-skew invariant curve encoded by $f^{\tau}=w \star f$ for some long decomposition f of P and $w \in \mathrm{ST}_{k}^{+}$. Fix a parameterization $(A(t), B(t))$ of \mathcal{C} by polynomials with no common nonlinear initial compositional factors. Recall from Definition 2.56 that n_{f} (respectively, n_{A} and n_{B}) is the number of nonmonomials appearing in one k-period of f (respectively, in a decomposition of A or B) and the echo is $e=\operatorname{gcd}\left(n_{f},\left(n_{B}-n_{A}\right)\right)$. Fix α a nonmonomial listing function for f.

By Lemma 2.98, $w \in \mathrm{ST}_{k}$. Write $w=\phi^{N} w^{\prime}$ for some $N \in \mathbb{Z}$ and $w^{\prime} \in$ ASym_{k}. By Proposition 2.96, we may assume that f has e-periodic nomodata. By Lemma 2.97, $\operatorname{trace}_{w^{\prime}, f, \alpha}$ is identically zero. Then Lemma 2.71 shows that w^{\prime} may be expressed as $w^{\prime}=u_{n_{f}} \cdots u_{2} u_{1}$, a commuting product of u_{j} 's, where each u_{j} is a product of puddleswaps in the $j^{\text {th }}$ puddle. In particular, the part of the curve encoded by w^{\prime} consists of monomials. Thus, $n_{A}=0$ and n_{B} is the number of non-monomials among $f_{N}, \ldots f_{2}, f_{1}$.

As noted in Remark 2.46, it suffices to show that $w=u \phi^{N} v$ for some $u, v \in \operatorname{Sym}_{k}$.
If t_{k} is not a puddle-swap, it does not occur in w^{\prime} so that we may take $u=\mathrm{id}$ and $v=w^{\prime}$.

From now on, at the cost of replacing α, we may take u_{1} to act on the puddle containing f_{k} and f_{k+1}.

If n_{f} does not divide $\left(n_{B}-n_{A}\right)$, then ϕ^{N} moves the puddle containing f_{k} and f_{k+1} to another puddle. Thus, $\phi^{N} w^{\prime}=\widehat{u_{1}} \phi^{N} u_{n_{f}} \ldots u_{2}$ with both $u_{n_{f}} \ldots u_{2}$ and $\widehat{u_{1}}$ in Sym_{k}.

Otherwise, if n_{f} does divide $\left(n_{B}-n_{A}\right)$, then the puddle containing f_{k} and f_{k+1} in f corresponds to the "same" puddle containing f_{k}^{τ} and f_{k+1}^{τ} in f^{τ} via $\phi^{N} w^{\prime} \star f=f^{\tau}$. In particular, u_{1} must be empty, so again we may take $u=$ id and $v=w^{\prime} \in \operatorname{Sym}_{k}$.
2.3. Clusterings. In this section, we adapt the technology of clusterings from 8] to long decompositions to identify more sophisticated combinatorial invariants, beyond wall sets and nomodata. This allows us to identify several ways for walls to appear in decompositions all of whose compositional factors are swappable (see Propositions 2.112 and 2.153 and Lemma 2.158). The same technology characterizes and then handles the last remaining case of decompositions with type C factors but without walls (see Proposition 2.172). The key difference from [8] is that the boundary between the $k^{\text {th }}$ and $(k+1)^{\text {st }}$ entries is now treated just like all the others.
2.3.1. Preclusterings. The following definition is closely related to [8, Definitions 4.2 and 6.10].

Definition 2.100. A preclustering A of a k-long decompositionf is a k-periodic subset of \mathbb{Z} such that for any integers $b>a$ in A with no elements of A between them,

$$
f_{[b, a)}:=\left(f_{b}, f_{b-1}, \ldots, f_{a+1}\right)
$$

is a cluster in the sense of [8, Definition 4.2]. That is, either one of the two following conditions holds.

- There are linear polynomials E and B so that $B \circ f_{b} \circ \cdots \circ f_{a+1} \circ E=C_{n}$ is a Chebyshev polynomial of degree n not a power of two.In this case, $f_{[b, a)}$ is called a C-cluster.
- There are linear polynomials E and B so that $B \circ f_{b} \circ \cdots \circ f_{a+1} \circ E=$ $h_{b} \circ \cdots \circ h_{a+1}$ where each h_{i} is a monomial or a Ritt polynomial which is not type C for all $i \in(a, b]$. In this case, $f_{[b, a)}$ is called a C-free cluster.
Such $f_{[b, a)}$ is a cluster of (f, A).
The empty set is a preclustering of f if $f_{[b, a)}$ is a cluster for any integers $b \geq a+k$.
Remark 2.101. Let us translate parts (1), (2), and (3) of [8, Remark 4.5] to this context.
(1) If some factor of f is unswappable, f has no preclusterings.
(2) If all factors of a k-long decomposition f are swappable, then \mathbb{Z} is a preclustering of f.
(3) Linearly-equivalent long decompositions have the same preclusterings.

Let us expand the less trivial [8, Remark 4.5(4)]. It concerns the requirement that the degree of a C-cluster must not be a power of 2 . Because of it, we cannot drop the hypothesis that $a, b \in A$ from the definition of "preclustering". This is also the reason for $b \geq a+k$ instead of $b>a$ in the definition of empty preclustering.

With the following remark we record how a piece of a cluster may fail to be a cluster itself.

Remark 2.102. A piece of a cluster is usually a cluster: if $d \geq c>b \geq a$ and $f_{[d, a)}$ is a cluster, then $f_{[c, b)}$ is a cluster unless $f_{[d, a)}$ is a C-cluster, and all factors of $f_{[c, b)}$ are quadratic, and $f_{[c, b)}$ has at least two factors. Here are some useful ways to avoid the exception.
(1) Any piece of a C-free cluster is a C-free cluster.
(2) Any piece of a C-cluster is one of the following:

- contains an odd-degree factor and is a C-cluster;
- contains exactly one factor, which is quadratic; and is a C-free cluster;
- contains multiple quadratic factors and no odd-degree factors; and is not a cluster.
(3) Removing a quadratic factor from a cluster is harmless: if $f_{[b, a)}$ is a cluster and f_{a+1} (respectively, f_{b}) is quadratic, then $f_{[b, a+1)}$ (respectively, $f_{[b-1, a)}$) is a cluster of the same kind, C or C-free.
(4) A piece of a C-cluster that contains a big-enough cluster is itself a C-cluster. That is, if $b^{\prime \prime} \geq b \geq b^{\prime}>a^{\prime} \geq a \geq a^{\prime \prime}$, and $f_{\left[b^{\prime \prime}, a^{\prime \prime}\right)}$ is a C-cluster, and $f_{\left[b^{\prime}, a^{\prime}\right)}$ is a cluster, but is not a single quadratic, then $f_{[b, a)}$ is also a C-cluster.
(5) In (4), the inner cluster $f_{\left[b^{\prime}, a^{\prime}\right)}$ being big enough is equivalent to it being a C-cluster.
Suppose that A is a preclustering of f and $B \supset A$ is also k-periodic. This B is also a preclustering of the same f if and only if for every C-cluster of (A, f), the degrees of its pieces in (B, f) are either 2 or not powers of 2 .

With the next remark we correlate our notion of preclustering on long decompositions with the corresponding version in 8 for decompositions.

Remark 2.103. The first two observations are related to parts of [8, Lemma 6.11] and the third is related to [8, Lemma 6.14].
(1) If A is a preclustering of f, and $0 \in A$, then $A \cap\{0,1, \ldots k\}$ is a preclustering of $\left(f_{k}, \ldots f_{1}\right)$ in the sense of [8, Definition 4.2]. The assumption $0 \in A$ is not cosmetic, because of Remark 2.102,
(2) More generally, for any $a \in A$, the tuple $A \cap\{a, a+1, \ldots a+k\}$ is a preclustering of the decomposition $\left(f_{a+k}, \ldots f_{a+1}\right)$, in the sense of [8, Definition 4.2].
(3) If the empty set is a preclustering of f, then the polynomial $f_{k} \circ \cdots \circ f_{1}$ is linearly related to a (possibly decomposable) Ritt polynomial in the sense of [8, Definition 2.41]. In Proposition 2.120 below, we almost drop "linearly related" from that statement.

The next definition is very close to [8, Definition 4.3] and to the cleanup in [8, Lemma $6.11(6)]$. When at least one of the clusters is a C cluster, this literally translates the old definition into the new notation because a linear factor which is both a translation and a scaling is identity. When all clusters are C-free, we no longer have a canonical place to put scalings.

Definition 2.104. Fix a preclustering A of a k-long decomposition f.
A precleanup of (A, f) is a pair (h, L), where h is a k-long decomposition, L is a k-skew periodic sequence of linear polynomials-linear, and the following hold.
(1) The k-long decomposition $L \circ h$ is linearly equivalent to f.
(2) For $i \notin A$, the linear L_{i} is identity.
(3) If $f_{[b, a)}$ is a C-cluster of (A, f), and $b \geq i>a$, then h_{i} is a Chebyshev polynomial;
(4) If $f_{[b, a)}$ is a C-free cluster of (A, f), and $b \geq i>a$, then h_{i} is a monic Ritt polynomial;
The precleanup is a cleanup if, furthermore,
(5a) if there is a C-cluster, whenever $f_{[b, a)}$ is a C-free cluster, L_{a} is a translation, and
(5b) whenever $f_{[b, a)}$ is a C-free cluster and $h_{a+1} \circ L_{a}$ is also a Ritt polynomial, L_{a} is a scaling.

All these notions - preclusterings, precleanups, and cleanups - are invariant under linear-equivalence. In particular, if (h, L) is a (pre)cleanup of the preclustering A for some f, then is is also a (pre)cleanup of the same preclustering A of the long decomposition $L \circ h$. We now work towards existence and something like uniqueness of precleanups of a fixed preclustering.

Lemma 2.105. Every non-empty preclustering admits a precleanup.
Proof. Take the ordered sequence $a_{r}>a_{r-1}>\ldots>a_{1}>a_{0}=a_{r}-k$ of consecutive elements of A in one period, including both endponits of the period. For each $j=0,1, \ldots, r-1$, unwrap the definition of " $f_{\left[a_{j+1}, a_{j}\right)}$ is a cluster" to get h_{i} for $a_{0}<i \leq a_{r}$, and linear B_{j} and E_{j}. Let $L_{a_{j}}:=E_{j} \circ B_{j-1}$ for $j>0$, and $L_{a_{0}}:=$ $E_{0} \circ \sigma^{-1}\left(B_{k}\right)$. For all other i with $a_{0}<i<a_{r}$, define L_{i} to be identity. These k-tuples \vec{h} and \vec{L} extend uniquely to a k-long decomposition h and a k-skew periodic sequence of linear polynomials-linear L, and the pair (h, L) is a precleanup of f.
2.3.2. C-free decompositions. As long as odd-degree Chebyshev polynomials do not enter the picture, the preclusterings suffice for the Mahler problem. We now work towards Proposition 2.112 which shows that in this situation we may either reduce to an analysis of walls (and thus Proposition 2.52) or to an analysis of in-out-degrees (and thus Proposition 2.99).

Definition 2.106. A long decomposition f is C-free if all factors f_{i} are swappable and C-free.

As noted Remark 2.101, \mathbb{Z} is a preclustering of any C-free long decomposition. The following is an easy special case of Proposition 2.119 below.

Lemma 2.107. The preclustering \mathbb{Z} of a C-free long decomposition admits a cleanup.
Proof. Start with a precleanup (h, L) of (\mathbb{Z}, f) obtained in Lemma 2.105.
To satisfy requirement (5b) from the definition of cleanup, just absorb the translation part of L_{a} into the Ritt polynomial h_{a+1} whenever possible.

Because a C-free long decomposition has no C-clusters, the remaining requirement (5a) is vacuously satisfied.

Lemma 2.108. Suppose that (g, M) and (h, L) are both cleanups of the same preclustering \mathbb{Z} of the same C-free long decomposition. Then for each i, M_{i} is a scaling if and only if L_{i} is a scaling.
Proof. Here, we pay the price of lining up the indices of linear factors with the indices of Ritt swaps, but not with the indices of the factors they naturally go with. First, replace the long decomposition $L \circ h$ (respectively, $M \circ g$) by the one whose factors are $h_{i} \circ L_{i-1}$ (respectively, $g_{i} \circ M_{i-1}$). Each new one is linearly equivalent to the corresponding old one, via L and M, respectively. Thus, if the old ones were linearly related, then so are the new ones. Let N witness the linear equivalence of the new ones.

We first show that all N_{i} are scalings. From the definition of linearly equivalence,

$$
h_{i} \circ L_{i-1}=N_{i+1}^{-1} \circ g_{i} \circ M_{i-1} \circ N_{i}
$$

Since g_{i} and h_{i} are C-free Ritt polynomials, N_{i+1}^{-1} must be a scaling by [8, Theorem 3.15].

If M_{i-1} is a scaling, the right-hand side of the displayed equation is a (not necessarily monic) Ritt polynomial. Condition (5b) in the definition of cleanup then forces L_{i-1} to also be a scaling.

The "clean C-free long decompositions" of Section 2.2 are precisely those C-free long decompositions that admit a cleanup where all linear factors are scalings. We now work towards showing that every other C-free long decomposition has a wall.

A C-free long decomposition f has a prewall at i if L_{i} is not a scaling in some/every cleanup (h, L) of (\mathbb{Z}, f).

This terminology is only used in the next three lemmas, where we show that a prewall is in fact a wall.

Lemma 2.109. If a C-free long decomposition f has a prewall at i, then $t_{i} \star f$ is not defined.

Proof. Suppose toward contradiction that (h, L) is a cleanup of the clustering \mathbb{Z} of $f, t_{i} \star(L \circ h)$ is defined, and L_{i} is not a scaling. Then there must be linear polynomial A, B, and E for which $\left(A \circ h_{i+1} \circ L_{i} \circ B^{-1}, B \circ h_{i} \circ E\right)$ is one side of a basic Ritt identity. Since both h_{i} and $B \circ h_{i} \circ E$ are C-free Ritt polynomials, B is a scaling by [8, Theorem 3.15]. Since both h_{i+1} and $A \circ h_{i+1} \circ L_{i} \circ B^{-1}$ are C-free Ritt polynomials A is a scaling by [8, Theorem 3.15]. So now $h_{i+1} \circ L_{i}$ is a non-monic Ritt polynomial, and by definition of "cleanup", L_{i} must be a scaling.

Lemma 2.110. Suppose that $t_{i} \star f$ is defined for a C-free long decomposition f. Then $t_{i} \star f$ has a prewall at j if and only if f does.

Proof. Lemma 2.109 shows that neither f nor $t_{i} \star f$ has a prewall at i. All cleanups in this proof are for the preclustering \mathbb{Z}.

We first show that f admits a cleanup (h, L) with $L_{i}=\mathrm{id}$. By Lemma 2.109 , L_{i} is a scaling in any cleanup. Replacing $L_{i}(x)=: \lambda x$ by identity, h_{i+1} by $\lambda * h_{i+1}$, and $L_{i+1}(x)$ by $L_{i+1}\left(\lambda^{-\operatorname{deg}\left(h_{i+1}\right)} x\right)$ produces the desired cleanup.

Since $t_{i} \star f$ is defined, there are linear polynomials A, B, and E for which $\left(A \circ h_{i+1} \circ B^{-1}, B \circ h_{i} \circ E\right)$ is one side of a basic Ritt identity. By [8, Lemma 3.37], there are Ritt polynomials g_{i+1} and g_{i} for which $\left(h_{i+1} \circ h_{i}=g_{i+1} \circ g_{i}\right)$ is a basic Ritt identity.

We finally show that setting $g_{\ell}:=h_{\ell}$ for all other indices ℓ produces a cleanup (g, L) of $t_{i} \star f$, which obviously has prewalls in exactly the same places as (h, L). The only part of the definition of "cleanup" that does not obviously hold is part (5b) at $(i-1)$: could it be that L_{i-1} is not a scaling, but $g_{i} \circ L_{i-1}$ is a Ritt polynomial? We noted in [8, Remark 3.33] that this is not possible.

Lemma 2.111. If a C-free long decomposition f has a prewall at i, then $\epsilon_{p} \star f$ and $\epsilon_{p}^{-1} \star f$ are not defined for any p.
Proof. The hypothesis on \tilde{f} in the definition of the action $\epsilon_{p}^{ \pm 1} \star f$ (Definition 2.19) produces a cleanup of f with only scaling linear factors. Hence, for $\epsilon_{p}^{ \pm} \star f$ to be defined, f can have no prewalls.

Proposition 2.112. Every C-free long decomposition f either has a wall, or admits a cleanup (h, L) where all L_{i} are scalings.

Proof. Since f is C-free, each f_{i} is of the form $A_{i} \circ h_{i} \circ B_{i}$ where h_{i} is a monic C-free Ritt polynomial and A_{i} and B_{i} are linear. Let $L_{i}:=B_{i+1} \circ A_{i}$. Then (h, L) is a precleanup of the preclustering \mathbb{Z} of f. To satisfy requirement (5b) of the definition of cleanup, just absorb the translation part of L_{i} into the Ritt polynomial h_{i+1} whenever possible, obtaining a cleanup (g, M) of f.

If all M_{i} are scalings, we are done. Otherwise, some M_{i} is not a scaling, and Lemmas 2.109, 2.110, and 2.111 show that f has a wall at i.

This completes the proof of Theorem 1.3 for polynomials admitting C-free long decompositions: the two cases identified in Proposition 2.112 are handled by Propositions 2.52 and 2.99
2.3.3. Clustering with type C. In this subsection, we analyze the relations between different cleanups of the same long decomposition with a C cluster since we already have a complete solution to the Mahler problem for C free long decompositions and the assumption that we have a C cluster permits us to to match our present definition of cleanup and what appears in 8].

We first work with different cleanups of the same preclustering and then analyze the effect of removing unnecessary boundaries.

The operation on cleanups in the following definition is the main way to obtain one cleanup from another.

Definition 2.113. Given a k-long decomposition f, its degree sequence $\operatorname{deg}(f)$ is the k-periodic \mathbb{Z}-indexed sequence $\left(\operatorname{deg}\left(f_{i}\right)\right)_{i \in \mathbb{Z}}$.

By a k-scalar we mean a k-skew-periodic \mathbb{Z}-indexed sequence $\lambda=\left(\lambda_{i}\right)_{i \in \mathbb{Z}}$.
For a k-long decomposition f and a k-scalar λ we define $\lambda * f$ to be the k-long decompositionwhose $i^{\text {th }}$ component is

$$
(\lambda * f)_{i}:=\lambda_{i}^{-\operatorname{deg} f_{i}} f_{i}\left(\lambda_{i} x\right)
$$

For a k-periodic \mathbb{Z}-indexed sequence $d=\left(d_{i}\right)_{i \in \mathbb{Z}}$ of positive integers and a k-scalar λ, we define the residue of λ at d to be the k-scalar μ whose $i^{\text {th }}$ component is given by

$$
\mu_{i}:=\lambda_{i+1}^{-1} \lambda_{i}^{d_{i}}
$$

Remark 2.114. An easy computation verifies that for any k-skew periodic sequence of linear polynomials-linear L, k-scalar λ, and k-long decomposition f with degree sequence $d=\operatorname{deg}(f)$,

$$
(\lambda *(h \circ L))=(\lambda * h) \circ(\lambda * L)
$$

and

$$
(\lambda *(L \circ h))=\left(\lambda^{d} * L\right) \circ(\lambda * h)
$$

Remark 2.115. If μ is the residue of the k-scalar λ at the degree sequence $d=\operatorname{deg}(f)$ of the k-long decomposition f, then $\mu \cdot(\lambda * f)$ is linearly equivalent to f via the k-skew periodic sequence of linear polynomials-linear L of scalings by λ (i.e., $L_{i}(x)=\lambda_{i} x$).

Remark 2.116. We may use these operations to get new (pre)cleanups of the same f. Indeed,

- for a translation L_{i}, the resulting $\lambda_{i} * L_{i}$ is also a translation;
- for a monic Ritt polynomial h_{i}, the resulting $\lambda_{i} * h_{i}$ is also a monic Ritt polynomial; and
- for a Chebyshev polynomial h_{i}, the resulting $\lambda_{i} * h_{i}$ is the same Chebyshev polynomial if and only if $\lambda_{i}= \pm 1$.

Our next Lemma 2.117 on the relation between (h, L) and $\lambda *(h, L)$ produces a cleanup from a precleanup. Corollary 2.118 then shows how this operation could connect two cleanups. Proposition 2.122 proves that any cleanup can be obtained (almost) from any other by this operation.

Lemma 2.117. Suppose that (h, L) is a precleanup of a preclustering A of $f:=$ $L \circ h$. We assume that (f, A) has a C cluster .

Fix a k-scalar λ and let μ be the residue of λ at the degree sequence d of h.
Let λ^{d} be the k-scalar defined by $\left(\lambda^{d}\right)_{i}:=\lambda_{i}^{d_{i}}$; let $g:=\lambda * h$; and let $M:=\mu \cdot\left(\lambda^{d} * L\right)$.
Then (g, M) is also a precleanup of f if and only if $\mu_{i}=1$ for $i \notin A$ and $\lambda_{i}= \pm 1$ for i inside C clusters (that is, when $f_{[b, a)}$ is a C cluster of (f, A), and $b \geq i>a$).

When (A, f) has a C cluster, then condition (5a) in the definition of cleanup is satisfied by (g, M) if and only if $L_{a}(x)=\mu_{a}^{-1} x+C$ whenever $f_{[b, a)}$ is a C-free cluster of (f, A).
In particular, $\mu_{a}=1$ for all such a if both (h, L) and (g, M) satisfy (5a).
Condition (5b) is satisfied by (h, L) if and only if that condition is satisfied by (g, M).

Proof. Let us work through the definition of a precleanup of $(L \circ h)$.
(1) Unwrapping definitions, we get

$$
M \circ g=\mu \cdot\left(\lambda^{d} * L\right) \circ(\lambda * h)=\mu \cdot \lambda *(L \circ h)
$$

which is linearly equivalent to $(L \circ h)$ by Remark 2.115 .
(2) For $i \notin A$, we know that L_{i} is identity, and we need $M_{i}=\mu_{i} \cdot\left(\lambda_{i}^{d_{i}}\right) * L_{i}$ to be identity. Since $\mu_{i} \cdot(\alpha * \mathrm{id})=\mu_{i} \cdot$ id for any α, we must have $\mu_{i}=1$.
(3) For i inside C-clusters, we know that h_{i} is a Chebyshev polynomial, and we need $g_{i}:=\lambda_{i} * h_{i}$ to be a Chebyshev polynomial. This forces $\lambda_{i}= \pm 1$.
(4) For i inside C-free clusters, we get no extra requirements since $\alpha * P$ is a monic Ritt polynomial whenever P is.
We up the stakes asking for (g, M) to be a cleanup, without requiring (h, L) to be one.
(5a) When a is the right boundary of a C-free cluster, we need $M_{a}=\mu_{a} \cdot\left(\lambda_{a} * L_{a}\right)$ to be a translation. If $L_{a}(x)=B x+C$, then $\left(\lambda_{a} * L_{a}\right)(x)=B x+C^{\prime}$, so we need $\mu_{a}=B^{-1}$. If (h, L) also satisfies (5a) so that L_{a} is a translation, this forces $\mu_{a}=1$.
(5b) Still at the right boundary a of a C-free cluster, suppose that $g_{a+1} \circ M_{a}$ is a Ritt polynomial. Unwrapping the defintions of g and M gives

$$
\begin{gathered}
g_{a+1} \circ M_{a}=\left(\lambda_{a+1} * h_{a+1}\right) \circ \mu_{a} \cdot\left(\lambda_{a}^{d_{a}} * L_{a}\right) \\
g_{a+1} \circ M_{a}=\left(\cdot \lambda_{a+1}^{-d_{a+1}}\right) \circ h_{a+1} \circ\left(\cdot \lambda_{a+1}\right) \circ\left(\cdot \mu_{a}\right) \circ\left(\cdot \lambda_{a}^{-d_{a}}\right) \circ L_{a} \circ\left(\cdot \lambda_{a}^{d_{a}}\right)
\end{gathered}
$$

By definition of residue, the whole middle scaling by $\left(\lambda_{a+1} \mu_{a} \lambda_{a}^{-d_{a}}\right)$ is identity, so

$$
\left(g_{a+1} \circ M_{a}\right)(x)=\lambda_{a+1}^{-d_{a+1}} \cdot\left(h_{a+1} \circ L_{a}\right)\left(\lambda_{a}^{d_{a}} x\right)
$$

Now $h_{a+1} \circ L_{a}$ is linearly-related via scalings to the Ritt polynomial $g_{a+1} \circ$ M_{a}, so $h_{a+1} \circ L_{a}$ is itself a Ritt polynomial.

On the other hand, in order to have $M_{a}=\mu_{a} \cdot\left(\lambda_{a}^{d_{a}} * L_{a}\right)$ be a scaling, we need L_{a} to be a scaling. So, if (h, L) is a cleanup, and (g, M) satisfies (5a), then (g, M) automatically satisfies (5b). And if (h, L) satisfies (5a) but not $(5 \mathrm{~b})$, and (g, M) satisfies $(5 \mathrm{a})$, then (g, M) cannot satisfy $(5 \mathrm{~b})$.

The following corollary is a precise version of [8, Remark 4.9]. When all clusters are C-free, Corollary 2.118 does not apply. This non-uniqueness is the price of working with skew-linear-equivalence rather than linear equivalence (in the sense of [8, Definitions 2.39 and 2.58]). This issue comes up informally in the proof of [8, Lemma 6.11(6)].

Corollary 2.118. With the setup in Lemma 2.117, suppose further that both (h, L) and (g, M) are cleanups of (A, f). Then, $\lambda_{i}= \pm 1$ for all i, and $\mu_{i}=1$ unless $f_{[j, i)}$ is a C cluster of (A, f) for some $j \in A$.

Proof. Suppose toward contradiction that $\lambda_{j+1} \neq \pm 1$. From condition (3) of the definition of preclustering, it follows that f_{j+1} is in a C-free cluster of (A, f). Take the largest $b \in A$ with $b<j$ such that $f_{[b, a)}$ is a C-cluster of (A, f) for some $a \in A$. Now, for every $i=b, b+1, \ldots j$, either $i \notin A$ or $i \in A$ is the right boundary of a C-free cluster; either way, $\mu_{i}=1$ for all these i. To show that $\lambda_{i}= \pm 1$ for $i=b, b+1, \ldots j+1$, induct on $i-b$. The base case $i=b$ follows from condition (3) because f_{b} is inside a C-cluster. For the induction step, assume that $\lambda_{i}= \pm 1$; recall
that $\lambda_{i+1}=\lambda_{i}^{d_{i}} \mu_{i}^{-1}$ by definition of "residue"; and that we have already showen that $\mu_{i}=1$ for $i=b, b+1, \ldots j$. So, $\lambda_{i+1}=(\pm 1)^{d_{i}}(1)^{-1}= \pm 1$. The last induction step we can carry out is from j to $j+1$, obtaining the desired contradiction.

Proposition 2.119. Every non-empty preclustering admits a cleanup.
The following proof translates the explanation from [8, Remark 4.4] and the details from the proofs of [8, Lemmas 4.6, 4.8, and 6.11(6)] to our new setting with long decompositions.

Proof. Fix a non-empty preclustering A of a k-long decomposition f. Start with a precleanup (h, L) of (A, f) obtained in Lemma 2.105. To satisfy requirement $(5 \mathrm{~b})$ from the definition of cleanup, just absorb the translation part of L_{a} into the Ritt polynomial h_{a+1} whenever possible.

Because the remaining requirement (5a) is relevant only when (A, f) has a Ccluster, for the rest of this proof, we now assume that it does. We will show how to use Lemma 2.117 to satisfy this requirement.

Here are all the conditions on μ and λ that we need.

- For $i \notin A$, we need $\mu_{i}=1$.
- For i inside C-clusters, we also need $\lambda_{i}= \pm 1$.
- When a is the right boundary of a C-free cluster and $L_{a}(x)=B x+C$, we need $\mu_{a}=B^{-1}$.
For each C-cluster $f_{[b, a)}$, we have very tight requirements on λ_{i} for $a<i \leq b$, but no requirements on μ_{a}. So we can let μ_{a} absorb the unwanted scalings coming from λ_{a}, set all those tightly controlled $\lambda_{i}:=1$, and restart the process at b. This is where the "non-empty" assumption is used.

Empty preclusterings are important as clusterings of long decompositions of certain polynomials. However, these polynomials do not require the clustering analysis for the solution of our Mahler problem. The following proposition shows such polynomials are either subject to Proposition 2.112 or essentially Chebyshev polynomials and thus exceptional.

Proposition 2.120. If the empty set is a preclustering of f, then one of the following alternatives holds.

- f is linearly equivalent to a k-long decompositionall of whose factors are Ritt polynomials or
- f is linearly equivalent to a k-long decompositionall of whose factors are plus or minus Chebyshev polynomials.

Proof. If the empty set is a preclustering of f, then so is $A:=k \mathbb{Z}$. Applying Proposition 2.119 to it produces h and L with no non-trivial linear factors except for $L_{k n}$. Since the empty set is a preclustering of f, the concatenation of two periods is also a cluster. For a C-free cluster, [8, Lemma 4.13] shows that L_{0} is a scaling, and we are done. For a C-cluster, [8, Lemma 4.14] shows that L_{0} is identity or the scaling by -1 .

Remark 2.121. According to Proposition 2.120 if (\varnothing, f) has a C cluster, then f is a long decomposition of an exceptional polynomial.

Proposition 2.122. Suppose that two pairs of sequences, (h, L) and (g, M), are both cleanups of the same non-empty preclustering A of the same k-long decompositionf. As is standard in this subsection, we assume that (A, f) has a Cluster. Then (h, L) may be obtained from (g, M) by first forming $\lambda *(g, M)$ for some k-scalar λ and then inserting translations to the right of type A Ritt polynomials in $\lambda *(g, M)$.

More precisely, there is a k-scalar λ such that (h, L) comes from $(\widetilde{g}, \widetilde{M}):=\lambda *$ (g, M) in the following way. For each $a \in A$ where \widetilde{g}_{a+1} is a type A Ritt polynomial (see Definition 3.8 in [?]) and \widetilde{M}_{a} is not a scaling, there is a translation T_{a} such that $h_{a+1}=\widetilde{g}_{a+1} \circ T_{a}$ and $L_{a}=T_{a}^{-1} \widetilde{M}_{a}$. Since both \widetilde{g}_{a+1} and h_{a+1} are Ritt polynomials, there are only finitely many such translations for each fixed a.

Furthermore, λ satisfies the conclusion of Corollary 2.118; $\lambda_{i}= \pm 1$ for all i and $\mu_{i}=1$ inside clusters of A and to the right of C-free clusters. Here, μ is the residue of λ at the degree sequence h.

Proof. Since f only appears in these definitions up to linear-equivalence, we may assume that $f=L \circ h$. Fix $b, a \in A$ such that $f_{[b, a)}$ is a C cluster of (A, f).

Since (g, M) is also a cleanup of $L \circ h$, some k-skew periodic sequence of linear polynomials-linear N witnesses that $M \circ g$ is linearly equivalent to $L \circ h$, and then

$$
\left(L_{a+k} \circ h_{a+k}, L_{a+k-1} \circ h_{a+k-1}, \ldots, L_{a+2} \circ h_{a+2}, L_{a+1} \circ h_{a+1}\right)
$$

and

$$
\left(N_{a+k+1}^{-1} \circ M_{a+k} \circ g_{a+k}, M_{a+k-1} \circ g_{a+k-1}, \ldots, M_{a+2} \circ g_{a+2}, M_{a+1} \circ g_{a+1} \circ N_{a+1}\right)
$$

are linearly equivalent in the sense of [8, Definition 2.49], and we have two almostcleanups of them, again in the sense of [8, Definition 4.3]:

$$
\left.\left(h_{a+k}, \ldots h_{a+1} ; L_{a+k}, \ldots, L_{a+1}, \mathrm{id}\right)\right)
$$

and

$$
\left(g_{a+k}, \ldots g_{a+1} ;\left(N_{a+k+1}^{-1} \circ M_{a+k}\right), M_{a+k-1}, \ldots, M_{a+2}, M_{a+1}, N_{a+1}\right)
$$

Since $f_{[b, a)}$ is a C cluster, there are no further requirements on the linear factors at k and at 0 in [8, Definition 4.3], so these are actual cleanups in the sense of [8, Definition 4.3]. By [8, Lemma 4.10], these can only differ by scalings of ± 1 and by translations to the right of C-free clusters. In particular, since N_{a+1} is not to the right of a C-free cluster, it must be a scaling by ± 1; and so $N_{a+k+1}=\sigma\left(N_{a+1}\right)$ is also a scaling by ± 1. So, the original long cleanups (h, L) and (g, M) can only differ by scalings of ± 1 and by translations to the right of C-free clusters, as required.

We now move on to comparing cleanups of different preclusterings. Lemma 2.123 builds on Remark 2.102 tracking what happens to cleanups when a preclustering is refined to have more, smaller clusters per period. The following two lemmas are partial converses of Lemma 2.123, used to recognize when a given preclustering is a refinement of another. Lemma 2.124 is essentially [8, Lemma 4.13] about fusing two adjacent C-free clusters. Lemma 2.125 is a better version of [8, Lemma 4.14] made possible by our Corollary 2.118 which is a better version of [8, Remark 4.9].
Lemma 2.123. Suppose that (h, L) is a precleanup of a preclustering A of a k-long decompositionf, and $B \supset A$ is also a preclustering of the same f. Then (h, L) is not a precleanup of (B, f) if and only if
(\dagger) there are some $b \geq i>a$ for which $f_{[b, a)}$ is a C cluster of (A, f), and f_{i} is quadratic, and both i and $(i-1)$ are in B.

If (h, L) is a cleanup of (A, f) and (\dagger) does not hold, then (h, L) is also a cleanup of (B, f).

Proof. Part (1) of the definition cleanup only depends on h, L, and f, not on B. Part (2) of that definition is strictly easier to satisfy for a bigger B. For parts (3) and (4), it is necessary and sufficient to have each factor f_{i} in the same type of cluster in (A, f) and (B, f). By part (2) of Remark 2.102, this fails if and only if B rips a single quadratic factor off a C cluster of A, which is exactly the situation that (\dagger) describes more precisely. Parts (5a) and (5b) of the definition of cleanup are again strictly easier: without (\dagger), every "cluster boundary of (B, f) to the right of a C-free cluster" is also a "cluster boundary of (A, f) to the right of a C-free cluster."

Lemma 2.124. Suppose that (h, L) is a cleanup of a non-empty preclustering A of $f:=L \circ h$ with $a C$ cluster. Suppose that $c>b>a$ are consecutive elements of A; that $f_{[c, b)}$ and $f_{[b, a)}$ are C-free clusters; and that their concatenation $f_{[c, a)}$ is also a cluster. Then L_{b} is identity, and $B:=A \backslash\{b+k n: n \in \mathbb{Z}\}$ is also a preclustering of $L \circ h$, and (h, L) is also a cleanup of $(B, L \circ h)$.

Proof. To show that L_{b} is identity, we apply [8, Lemma 4.13] to a suitable finite chunk of these infinite objects. One period is not a long enough chunk, as it might not contain all three of a, b, and c. Since A is k-periodic, $b \leq a+k$ and $c \leq b+k$, so $c \leq a+2 k$, so two periods is enough.

Let $A^{\prime}:=\{x-a: x \in A$ and $a \leq x \leq a+2 k\}$. Now $\left(\left(h_{a+2 k}, \ldots, h_{a+1}\right),\left(L_{a+2 k}, \ldots, L_{a}\right)\right)$ is a cleanup in the sense of [8, Definition 4.3] of the preclustering, again in the sense of [?], A^{\prime} of the decomposition $\left(f_{a+2 k}, \ldots, f_{a+1}\right)$.

Applying [8, Lemma 4.13] from to these shows that L_{b} is identity. Since A is k-periodic, it follows that $L_{b+k n}$ are all identity. The rest of the lemma now follows easily. Note that B is non-empty because (A, f) has both a C cluster and a C-free cluster. Writing out the definition verifies that it is a preclustering.

Lemma 2.125. Suppose that (h, L) is a cleanup of a non-empty preclustering A of $f:=L \circ h$. Suppose that $c>b>a$ are consecutive elements of A; that $f_{[c, b)}$ and $f_{[b, a)}$ are C clusters; and that their concatenation $f_{[c, a)}$ is also a cluster.

Then $L_{b}(x)= \pm x$ and $B:=A \backslash\{b+k n: n \in \mathbb{Z}\}$ is also a preclustering of $L \circ h$. Now (h, L) is also a cleanup of (B, f) if and only if L_{b} is identity.

In any case, any cleanup of (B, f) is also a cleanup of (A, f); and one can be obtained from (h, L) via Lemma 2.117 as long as (B, f) admits any cleanups.

Proof. Exactly as in the proof of the last lemma, we apply [8, Lemma 4.14] to two periods of (A, f) to see that $L_{b}(x)= \pm x$.

Case 1: Suppose that B is empty.
If L_{b} is identity, we have that all h_{i} are Chebyshevs with at least one of odd degree, and all L_{i} identity, so for any $e \geq d+k$, we have $f_{[e, d)}=h_{[e, d)}$ is a Chebyshev polynomial whose degree is not a power of two. So B is a preclustering and (h, L) is a cleanup of it.

If L_{b} is not identity and some f_{i} has degree 2 , let $d>b$ be the least such i. Let $\lambda_{i}:=-1$ for $i \equiv b, b+1, \ldots d(\bmod k)$ and $\lambda_{i}=1$ for other i. Use this λ to get a cleanup (g, M) of (A, f) via Lemma 2.117. with M_{b} identity, so all M_{i} identity. Again, B is a preclustering and (g, M) is a cleanup of it.

If L_{b} is not identity and all f_{i} have odd degree, it is easy to see that $f_{[e, d)}$ is linearly related to an odd-degree Chebyshev polynomial for any $e>d$, so B is a preclustering, but it is the exception in Lemma ?? admitting no cleanup.

Case 2: Suppose that B is not empty.
If L_{b} is identity, writing out definitions verifies that B is a preclustering and (h, L) is a cleanup of it.

Otherwise, Lemma 2.117 with an appropriate k-scalar λ will produce another cleanup (g, M) of (A, f) with M_{b} identity, reducing to the previous sentence.

More precisely, let d be the degree sequence of h and define λ by starting with $\lambda_{b}=-1$, proceeding inductively with $\lambda_{i+1}=\lambda_{i}^{d_{i}}$ until λ_{a+k} is defined, and filling the rest of the period with $\lambda_{i}=1$. This makes sense because $b<a+k$ because B is non-empty. The residue of this λ at the degree sequence of h is -1 at $b+n k$ and ± 1 at $a+k+n k$ and 1 everywhere else. The first assures that M_{b} is identity, and the second is ok because $a+n k$ are right boundaries of C clusters.
2.3.4. Gates and clusterings. Cluster boundaries give rise to the combinatorial invariants we use to solve the Mahler problem for polynomials all of whose factors are swappable but not all of whose factors are C-free. However, cluster boundaries of a preclustering are very far from an invariant, as we can introduce extra boundaries almost at will. In this subsection, we show that a preclustering with a minimal number of clusters, called a clustering, is almost an invariant of the long decompositions.

In Lemma 2.143 we show that two such clusterings only differ by assigning what we call "wandering quadratic" factors (see Definition 2.157) to different clusters. With that result, the boundary set (Definition 2.135 becomes the desired combinatorial invariant (Theorem 2.145).

The intuitive definition of clustering in terms of the minimal number of clusters turns out to be equivalent to two more useful but less intuitive definitions, one in terms of the linear factors in a cleanup and the other in terms of two particular ways to reduce the number of clusters. We take the first one as our definition (Definition 2.128), and obtain the second (Lemma 2.131) as a consequence. In Lemmas 2.133 and 2.134 , we describe the only way to obtain one clustering from another by moving a wandering quadratic; we then define the combinatorial invariant (Definition 2.135) that we use in our proofs. The rest of the section consists of the tedious verification that it is indeed invariant: that any two clusterings come from each other via the operations described in Lemmas 2.133 and 2.134

Much of the technical work of this section is closely related to [8, Section 4], but the overall approach is substantially improved. With long decompositions, we avoid the artificial cluster boundary at k that unnecessarily complicated 8]. With Definition 2.135, we explicitly identify the combinatorial invariant that remained implicit in [8.

Definition 2.126. Fix a cleanup (h, L) of a non-empty preclustering A of f, and fix consecutive elements $c>b>a$ of A. For the duration of this definition,

- the left cluster is $f_{[c, b)}$; and
- the right cluster is $f_{[b, a)}$; and
- the linear factor L is L_{b}.

We define " (h, L, A) has a \qquad gate at $b "$ exactly as in [8, Definition 4.15], where the blank \qquad is one of "left-to-right", "right-to-left", "one-way", or "two-way".

More formally, $\left(\left(h_{c}, \ldots, h_{a+1}\right)\right.$, (id, $\left.\left.L_{c-1}, \ldots, L_{a}\right)\right)$ is a cleanup in the sense of [8, Definition 4.2] of the preclustering $(c-a, b-a, a-a)$ in the sense of 8 of the decomposition $\left(h_{c} \circ L_{c-1}, \ldots, h_{a+1} \circ L_{a}\right)$. Whenever this has a left-to-right (respectively, right-to-left, one-way, two-way) gate at 1 in the sense of [8, Definition 4.15], we now say that (h, L, A) has a left-to-right (respectively, right-to-left, one-way, two-way) gate at b.

The next lemma justifies the terminology " (A, f) has a gate at b ", explains the purpose of gates, and notes that two-way gates are superfluous.

Lemma 2.127. Two cleanups of the same preclustering of the same decomposition have the same kinds of gates in the same places. (Compare with [8, Lemma 4.17(1)].)

The concatenation of a cluster $f_{[b, a)}$ of (A, f) and an adjacent quadratic factor f_{a} (respectively, f_{b+1}) is a cluster if and only if (A, f) has a right-to-left gate at a (respectively, left-to-right gate at b). The clusters $f_{[b, a)}$ and $f_{[b, a-1)}$ (respectively, $f_{[b, a)}$ and $f_{(b+1, a)}$) are of the same kind, C or C -free. (Compare with 8 , Remark 4.20].)

If $c>b>a$ are consecutive elements of A and (A, f) has a two-way gate at b, then the two clusters $f_{[c, b)}$ and $f_{[b, a)}$ are of the same kind (both C or both $\mathrm{C}-f r e e$), and their concatenation $f_{[c, a)}$ is also a cluster. (Compare with [8, Lemma 4.16].)

Proof. The first statement follows immediately from comparing [8, Remark 3.14] with Proposition 2.122 here. The second and third statements are immediate consequences of [8, Remark 3.14].

Beware that when the preclustering has only one cluster per period, the concatenations in the last lemma are not contained in one period, and so are not clusters of any nonempty preclustering of f.

With the following definition we introduce the notion a fake gate. Morally, these identify cluster boundaries which can be removed. Parts (2) and (3) below are closely related to the fake wandering quadratics from [8, Definition 4.19].
Definition 2.128. Fix a non-empty preclustering A of f, and fix consecutive elements $c>b>a$ of A. The gate of (A, f) at b is fake if one of the following holds:
(1) The gate is two-way.
(2) The gate is left-to-right, $c=b+1$, and f_{b+1} is quadratic.
(3) The gate is right-to-left, $b=a+1$, and f_{a+1} is quadratic.
(4) The gate is left-to-right, $c=b+2$, both f_{b+2} and f_{b+1} are quadratic, and (A, f) has a right-to-left gate at c.
(5) The gate is right-to-left, $b=a+2$, both f_{a+2} and f_{a+1} are quadratic and (A, f) has a left-to-right gate at a.
A clustering is a preclustering with no fake gates.
Fakeness of gates is defined entirely in terms of the degrees of the factors f_{i} and gates. The degrees of factors are a property of the k-long decompositionalone, independent of the preclustering A and cleanup. The gates are a property of the
k-long decompositionand the preclustering, still independent of cleanup, by the first part of Lemma 2.127. So the fakeness of gates again only depends on f and A and does not depend on the choice of cleanup; and so being a clustering is a property of (A, f), independent of cleanup.
Lemma 2.129. If a preclustering A of f has a fake gate, then f admits another preclustering B with fewer cluster boundaries per period, that is, with $|B \cap\{1,2, \ldots, k\}|<|A \cap\{1,2, \ldots, k\}|$.

Proof. Suppose $c>b>a$ are consecutive elements of A and (A, f) has a fake gate at b.

For (1), by the last part of Lemma 2.127 and one of Lemmas 2.124 or 2.125 $B:=A \backslash\{b+n k: n \in \mathbb{Z}\}$ is another preclustering of f.

For (2) and (3), by the second part of Lemma 2.127 , the same B obviously works as long as it is not empty. If B is empty, then $k=1$ and $A=\mathbb{Z}$ and all factors of f are quadratic. Then all clusters of (A, f) are C-free, so a gate between two of them must be a two-way gate, so f is linearly equivalent to h where every $h_{i}(x)=u_{i} x^{2}$ for some scalar u_{i}. The empty set is obviously a preclustering of h, and so also of f.

For (4), consider

$$
B:=(A \backslash[\{b+n k: n \in \mathbb{Z}\} \cup\{c+n k: n \in \mathbb{Z}\}]) \cup\{b+1+n k: n \in \mathbb{Z}\} .
$$

By the second part of Lemma 2.127, this B is another preclustering of f. As long as b and $c=b+2$ are not the same modulo k, this B has fewer cluster boundaries per period than A : two were removed and one added back. Otherwise, $k=2$ and each cluster of (A, f) consists of two quadriatic factors, so all clusters of (A, f) are C-free clusters, so the gate at b must be a two-way gate, and just as for (2) and (3) above, the empty set is a preclustering of f.

The proof for (5) is identical to the one for (4).
The next Corollary is the analogue of [8, Lemma 6.11(4)].
Corollary 2.130. If all factors of a k-long decompositionf are swappable, then f admits a clustering.

Proof. Start with the preclustering \mathbb{Z} of f from Remark 2.101, and induct on the number of cluster boundaries per period, using Lemma 2.129 to decrease it as long as there are fake gates.

We can now complete what we started with Lemmas 2.124 and 2.125
Lemma 2.131. The concatenation of two adjacent clusters of a clustering is never a cluster.

More precisely, fix consecutive elements $c>b>a$ of a preclustering A of f, and suppose that the concatenation $f_{[c, a)}$ of the two adjacent clusters $f_{[c, b)}$ and $f_{[b, a)}$ is itself a cluster. Then A has a gate at b, and this gate satisfies one of Conditions (1), (2), or (3) in Definition 2.128 of "fake gates".

Proof. If the clusters $f_{[c, b)}$ and $f_{[b, a)}$ are of the same kind (C or C-free), then Lemmas 2.124 and 2.125 show that A has a two-way gate at b.

Consider now the case that these clusters are of different kinds. Since one of $f_{[c, b)}$ and $f_{[b, a)}$ is a C cluster, one of the factors f_{i} is an odd-degree Chebyshev polynomial, so the whole $f_{[c, a)}$ must be a C cluster. By Remark 2.102, the other
cluster must consist of a single quadratic factor. The second part of Lemma 2.127 now verifies condition (2) or (3) in the definition of "fake gates".

We can now connect our clusterings with those in [8]. The following looks much like Remark 2.103, except that "pre" is gone from "preclusterings".
Remark 2.132. These observations are again related to parts of [8, Lemma 6.11].
(1) If A is a clustering of f, and $0 \in A$, then $A \cap\{0,1, \ldots k\}$ is a clustering of $\left(f_{k}, \ldots f_{1}\right)$ in the sense of [8, Definition 4.26]. Lemma 2.131 verifies the first part of the definition; and [8, Remark 4.27] connects the second part of the definition to parts (4) and (5) in our definition of "fake gates".
(2) More generally, for any $a \in A$, the tuple $A \cap\{a, a+1, \ldots a+k\}$ is a clustering of the decomposition $\left(f_{a+k}, \ldots f_{a+1}\right)$, in the sense of [8, Definition 4.26].
(3) Converses of these may fail: the cluster boundary at 0 and k required in [8, Definition 4.26] may not be right for the long decomposition.

So far in this section we have identified two ways of getting a new preclustering from an old one: fusing two clusters (in each period) and removing the boundary between them from A; and moving a quadratic factor from one cluster to the next, through a gate in the correct direction. The next two results examine this second operation. Each time, we have to separately consider the special case of one cluster boundary per period. Empty preclusterings are irrelevant to this story. The extreme case $k=1$ is also irrelevant to this story.

The next two results characterize the essential non-uniqueness of clusterings: a quadratic factor can cross through a gate from one cluster to another. The rest of this section is devoted to showing that this is all that can happen, and that this can only happen once at any particular gate.

Lemma 2.133. Fix a non-empty preclustering A of f and consecutive elements $c>b>a$ of A.

Part 1. Suppose that $b+1 \notin A$, and (A, f) has a one-way left-to-right gate at b, and f_{b+1} is quadratic. Let $\alpha: A \rightarrow \mathbb{Z}$ be defined by

$$
\alpha(i):= \begin{cases}i+1 & \text { if } i \equiv b \quad(\bmod k) \\ i & \text { otherwise } .\end{cases}
$$

Then $B:=$ range (α) is another preclustering of f.
Furthermore, for all adjacent $d>e$ in A, the cluster $f_{[d, e)}$ of (A, f) and the cluster $f_{[\alpha(d), \alpha(e))}$ of (B, f) are of the same kind (C or C-free).

Further yet, for all $e \in A$ with $e \not \equiv b(\bmod k)$, the gate of (A, f) at e and the gate of (B, f) at $\alpha(e)$ are of the same kind (none, one-way left-to-right, one-way right-to-left, or two-way).

Finally, the direction of the moved gate is changed: B has a one-way right-to-left gate at $b+1=\alpha(b)$.

Part 2. The reverse is also true: If $b-1 \notin A$, and (A, f) has a one-way right-to-left gate at b, and f_{b} is quadratic; then $\alpha: A \rightarrow \mathbb{Z}$ defined by

$$
\alpha(i):= \begin{cases}i-1 & \text { if } i \equiv b \quad(\bmod k) \\ i & \text { otherwise }\end{cases}
$$

produces another preclustering $B:=$ range (α) of f.

Again, the direction of the moved gate is changed: B has a one-way left-to-right gate at $b-1=\alpha(b)$.

Again, all other gates, and all cluster types are unchanged, exactly as in the two "furthermore"s in Part 1.

Our proof of this lemma is rather long, but routine.
Proof. We prove Part 1; the proof of Part 2 is identical and left to the reader.
Since $b+1 \notin A$, this α respects order and k-periodicity. Since $b \in A$ and $b+1 \notin A$ and A is k-periodic, it follows that $k \neq 1$. Setting

$$
C:=A \backslash(b+k \mathbb{Z})
$$

we get

$$
A=C \cup(b+k \mathbb{Z}) \text { and } B=C \cup(b+1+k \mathbb{Z})
$$

To show that B is a preclustering and that α respects cluster types, we only need to consider alleged clusters of B with the new boundary $b+1$.

Case 1. If A has more than one cluster boundary per period, these new clusters are $f_{[c, b+1)}$ and $f_{[b+1, a)}$, corresponding to the clusters $f_{[c, b)}$ and $f_{[b, a)}$ of A. Since $c \in A$ and $b+1 \notin A$, we know that $c \neq b+1$, so $f_{[c, b+1)}$ is not empty. By the second statement in Lemma 2.127, $f_{[b+1, a)}$ is a cluster. Now $f_{[c, b+1)}$ is the result of removing the quadratic factor f_{b+1} from the cluster $f_{[c, b)}$, so by part (3) of Remark 2.102 it is a cluster, of the same kind as $f_{[c, b)}$. By the same part (3) of Remark 2.102 , the cluster $f_{[b, a)}$ is of the same kind as $f_{[b+1, a)}$.

Case 2. If A has one cluster boundary per period, $A=b+k \mathbb{Z}$ and $a=b-k$ and $B=b+1+k \mathbb{Z}$. By the second statement in Lemma 2.127, $f_{[b+1, a)}$ is a cluster; by part (3) of Remark 2.102 applied at its left end b, it is of the same kind as $f_{[b, a)}$. By part (3) of Remark 2.102 applied at the right end a of $f_{[b+1, a)}$, we get that $f_{[b+1, a+1)}$ is a cluster of the same kind as $f_{[b+1, a)}$. So $f_{[b+1, a+1)}$, the only alleged cluster per period of B, is indeed a cluster, of the same kind as $f_{[b, a)}$, the only cluster per period of A.

It remains to show that α respects the gates as described. We fix a cleanup (h, L) of (A, f) and build a cleanup (g, M) of (B, f) with

$$
g_{i}=h_{i} \text { for } i \not \equiv b \quad(\bmod k) \text { and } M_{i}=L_{i} \text { for } i, i+1 \not \equiv b \quad(\bmod k) .
$$

We verify that the new gate at $(b+1)$ is one-way right-to-left as we build the cleanup. The types of all other gates remain the same: the linear factors $M_{i}=L_{i}$ in the cleanups are the same, and we already showed that the types of clusters are the same.

To lighten notation, we talk about adjusting L_{b+1} and L_{b} and h_{b+1}; corresponding entries in other periods are correspondingly adjusted. Since $k \neq 1$, the linear L_{b+1} and L_{b} are not corresponding factors from different periods, and can be adjusted independently. Since $b+1 \notin A$, the old linear factor L_{b+1} is identity. Since $b \notin B$, the new linear factor M_{b} must be identity.

Case 1. If both $f_{[c, b)}$ and $f_{[b, a)}$ are C-free clusters, the gate at b cannot be one-way, so the hypotheses of this Lemma cannot be satisfied.

Case 2. If both $f_{[c, b)}$ and $f_{[b, a)}$ are C clusters, then $h_{b+1}(x)=x^{2}-2$ and $L_{b}(x)=$ $\lambda^{-1} x$. We can keep h_{b+1}, but need a new linear M_{b+1} such that $M_{b+1} \circ h_{b+1}=$ $h_{b+1} \circ L_{b}$. This is exactly the defining property of $M_{b+1}=A_{\lambda}$ from [8, Remark 3.14] So get M from L by replacing $L_{b+1}=$ id by $M_{b+1}=A_{\lambda}$, and replacing $L_{b}(x)=\lambda^{-1} x$ by $M_{b}=\mathrm{id}$; and propagating through k-periodicity. Now (h, M)
is a cleanup of (B, f) with a right-to-left gate at $b+1$, as wanted. If this gate is two-way, $M_{b+1}=A_{\lambda}$ must also be a scaling, forcing $\lambda= \pm 1$, forcing the original gate of (A, f) at b to be two-way, which we assumed it is not.

Case 3. Suppose that $f_{[c, b)}$ is a C-free cluster, so $h_{b+1}(x)=x^{2}$, and $f_{[b, a)}$ is a C cluster. For (A, f) to have a left-to-right gate at b, we must have $L_{b}=\mathrm{id}$. For the new cleanup, we need $g_{b+1}(x)=x^{2}-2$. Let the new linear factor $M_{b+1}(x):=x+2$. Clearly, $M_{b+1} \circ g_{b+1}=h_{b+1} \circ L_{b}$. Now (g, M), obtained from (h, L) by replacing h_{b+1} by g_{b+1} and L_{b+1} by M_{b+1}, is a cleanup of (B, f). It has a right-to-left gate at $b+1$ as long as $h_{b+2} \circ M_{b+1} \circ(-2)$ is a Ritt polynomial; which it is, since $M_{b+1} \circ(-2)=\mathrm{id}$ and h_{b+2} is the rightmost of the non-empty C-free cluster $f_{[c, b+1)}$ of (B, f). Since this gate is between clusters of different kinds, it must be one-way by the third part of Lemma 2.127

Case 4. Suppose that $f_{[c, b)}$ is a C cluster, so $h_{b+1}(x)=x^{2}-2$, and $f_{[b, a)}$ is a C-free cluster. For (A, f) to have a left-to-right gate at b, we must have $L_{b}(x)=\lambda^{-1} x$. For the new cleanup, we need $g_{b+1}(x)=x^{2}$ and a new linear M_{b+1} such that $M_{b+1} \circ g_{b+1}=h_{b+1} \circ L_{b}$, which is exactly the defining property of $M_{b+1}=B_{\lambda}$. Now (g, M), obtained from (h, L) by replacing h_{b+1} by g_{b+1} and $L_{b+1}=\mathrm{id}$ by M_{b+1} and L_{b} by $M_{b}=\mathrm{id}$, is a cleanup of (B, f), with a right-to-left gate at $b+1$, as desired. Again, since this gate is between clusters of different kinds, it must be one-way by the third part of Lemma 2.127 .

We now verify that when a clustering is fed to Lemma 2.133, a clustering is produced.

Lemma 2.134. (Compare with [8, Lemma 4.32])
Fix a non-empty clustering A of f and consecutive elements $c>b>a$ of A. Suppose that (A, f) has a one-way left-to-right (respectively, right-to-left) gate at $b \in A$ and that f_{b+1} (resp., f_{b}) is quadratic. Let

$$
\begin{gathered}
B:=(A \backslash b+k \mathbb{Z}) \cup b+1+k \mathbb{Z} \\
(\text { respectively, } B:=(A \backslash b+k \mathbb{Z}) \cup\{b-1+n k: n \in \mathbb{Z}\})
\end{gathered}
$$

Then B is also a clustering of f.
Proof. Again, we leave the "respectively" part to the reader.
Since A is a clustering, the gate at b must fail parts (2) and (3) of Definition 2.128 of "fake gate", so $b+1$ is not in A. Now all hypotheses of Lemma 2.133 are satisfied, so we get its conclusions: B is another preclustering of f, with the same number of clusters per period as A, and with a one-way right-to-left gate at $b+1$. Corresponding clusters of B and A are of the same kind, C or C-free; and all the "other" cluster boundaries have gates in the same direction(s). As in that lemma, let

$$
C:=A \backslash b+k \mathbb{Z} \text { to get } A=C \cup b+k \mathbb{Z} \text { and } B=C \cup b+1+k \mathbb{Z}
$$

Let us verify that B has no fake gates.
(1) Since A is a clustering, it has no two-way gates. The new gate of B at $b+1$ is one way, and all other gates of B are in the same direction(s) as the corresponding gates of A. So B also has no two-way gates.
(2) Where could B have a left-to-right gate at d with a quadratic f_{d+1} and a cluster boundary at $d+1$? If $d, d+1 \in C$, then this contradicts A being a clustering. Since B has a one-way gate in the other direction at $b+1$, we cannot have $d \equiv b+1(\bmod k)$. So $d+1 \equiv b+1(\bmod k)$; without loss
of generality, $d+1=b+1$. But then $b=d$ is a cluster boundary of B, a contradiction.
(3) Where could B have a right-to-left gate at d with a quadratic f_{d} and a cluster boundary at $d-1$? Again, $d, d-1 \in C$ contradicts A being a clustering. Again, $(d-1, d) \equiv(b, b+1)(\bmod k)$ contradicts $b \notin B$. So we must have $d-1 \equiv b+1(\bmod k)$.

Then $d \equiv b+2(\bmod k)$ is in B; since $k \neq 1$, this means that $b+2 \in C$, and A also has a right-to-left gate at $b+2 \equiv d(\bmod k)$. Together with A's original left-to-right gate at b and quadratics f_{b+1} and $f_{d}=f_{b+2}$, this makes A 's gates at b and $b+2$ fake by parts (4) and (5) of Definition 2.128 ,
$(4,5)$ Finally, where could (B, f) have quadratic factors f_{d} and f_{d+1} with a right-to-left gate at $d+2$ and a left-to-right gate at d ? Again, $d, d+2 \in C$ immediately contradicts A being a clustering. Again, since B has a oneway right-to-left gate at $b+1$, we cannot have $d \equiv b+1(\bmod k)$. So we must have $d+2 \equiv b+1(\bmod k)$. Now $d \equiv b-1(\bmod k)$ is in C, so A also has a left-to-right gate at $d \equiv b-1(\bmod k)$. However, $b \equiv d+1(\bmod k)$ is also a cluster boundary of A, and f_{d+1} is a quadratic, making the A 's gate at d fake by part (2) of Definition 2.128 , contradicting A being a clustering.

We introduce the boundary set, a slight variant of a clustering, replacing each ambiguous boundary, at b or $b+1$, with the half-integer $b+\frac{1}{2}$ lying between the two options for the boundary.

Definition 2.135. For a clustering A of a k-long decomposition f, the boundary set is the subset B of $\frac{1}{2} \mathbb{Z}$ such that, for any integer i,
(1) $i-\frac{1}{2} \in B$ if and only if the factor f_{i} is quadratic, and Lemma 2.133 applies: either $i \in A$ and (A, f) has a right-to-left gate at i; or $i-1 \in A$ and (A, f) has a left-to-right gate at i.
(2) $i \in B$ if and only if $i \in A$ and Lemma 2.133 does not apply.

A boundary list α of a k-long decomposition f is an increasing bijection from \mathbb{Z} to a boundary set $B \subset \frac{1}{2} \mathbb{Z}$ of some clustering (A, f).

Remark 2.136. When a new clustering is obtained from another one by moving a quadratic factor from one cluster to another as in Lemma 2.133, the original clustering and the new one have the same boundary set. We will show with Theorem 2.145 that this only way to produce new clusterings from old so that ultimately the boundary set is an invariant of the long decomposition independent of a choice of clustering.

Remark 2.137. The boundary list will help us to keep track of how the gates move as ST_{k} acts on long decompositions. Annoyingly, this introduces a new nonuniqueness: the starting point $\alpha(0)$.

To prove our Theorem 2.145 that the boundary set is an invariant of a long decomposition we require several technical lemmas describing how clusters may overlap. These results are analogous to the work in [8, Lemmas 4.23, 4.24, and 4.25].

The next lemma says that is a cluster can bite off a factor from an adjacent cluster, either the two clusters can fuse (so this cannot happen in a clustering), or Lemma 2.133 applies.

Lemma 2.138. Fix consecutive elements $c>b>a$ of a preclustering A of $a k$-long decompositionf. Suppose that the concatenation $f_{[b+1, a)}$ of this cluster $f_{[b, a)}$ with an adjacent factor f_{b+1} is a cluster. Then exactly one of the following holds
(1) (A, f) has a two-way gate at b;
(2) $c=b+1$ and f_{b+1} is quadratic;
(3) $b+1 \notin A$ and f_{b+1} is quadratic and (A, f) has a one-way left-to-right gate at b.
The same is true on the other side: if $f_{[b, a-1)}$ is a cluster, (A, f) has a two-way gate at a; or f_{a} is a quadratic and a single cluster; or f_{a} is quadratic and $a-1 \notin A$ and (A, f) has a right-to-left gate at a.

Proof. Again, we only prove one side. Case 1. If f_{b+1} is not quadratic, then the two clusters $f_{[c, b)}$ and $f_{[b, a)}$ are of the same kind, C or C-free.

Case 1.1. If $f_{[c, b)}$ is a C-free cluster, then (by Lemma 2.123) $A^{\prime}:=A \cup(b+1+k \mathbb{Z})$ is also a preclustering of f, and any cleanup of (A, f) is also a cleanup of $\left(A^{\prime}, f\right)$. Now Lemma 2.124 applies to the concatenation $f_{[b+1, a)}$ of the clusters $f_{[b+1, b)}$ and $f_{[b, a)}$ of $\left(A^{\prime}, f\right)$. So $\left(A^{\prime}, f\right)$ has a two-way gate at b, and so (A, f) has a two-way gate at b.

Case 1.2. If $f_{[c, b)}$ is a C cluster, and (L, h) is a cleanup of (A, f), then all h_{i} with $c \geq i>a$ are Chebyshev polynomials. In order to have linear M and N for which

$$
\left(M \circ h_{c}, h_{c-1}, \ldots, h_{b+1}, L_{b} \circ h_{b} \circ N\right)
$$

is linearly equivalent to

$$
\left(h_{c}, h_{c-1}, \ldots, h_{b+1}, \circ h_{b}\right)
$$

we must have $L_{b}(x)= \pm x$, since Chebyshev polynomials are not otherwise linearly related to themselves (see [8, Section 3] for details of this well-known fact). So again, (A, f) has a two-way gate at b.

Case 2. If f_{b+1} is quadratic, by the second part of Lemma 2.127, (A, f) has a left-to-right gate at b. If this gate is two-way, we get conclusion (1) of the lemma. If $b+1 \in A$, we get conclusion (2) in the lemma. If neither of these holds, we get conclusion (3) of the lemma.

It follows that a cluster cannot bite off more than one factor from an adjacent cluster, unless the two clusters fuse. In particular, this cannot happen in a clustering.

Lemma 2.139. Fix consecutive elements $c>b>a$ of a preclustering A of $a k$-long decompositionf, and suppose that $c \geq b+2$. Suppose that the concatenation $f_{[b+2, a)}$ of this cluster $f_{[b, a)}$ with two adjacent factors f_{b+2} and f_{b+1} is a cluster. Then the whole $f_{[c, a)}$ is a cluster. Furthermore, (A, f) has a two-way gate at b, or $f_{[c, b)}$ is a C cluster and $b=a+1$ and f_{b} is quadratic.

The same is true on the other side: if $b-2 \geq a$ and $f_{[b, a-2)}$ is a cluster, and $d<a$ is the next element of A, then the concatenation $f_{[b, d)}$ of two clusters is a cluster; and (A, f) has a two-way gate at b, unless $f_{[a, d)}$ is a C cluster, and $b=a+1$ and f_{b} is quadratic.

Proof. Case 1. If $f_{[b+1, a)}$ is also a cluster, then Lemma 2.138 applies, and conclusion (2) cannot hold, and conclusion (1) is what we want. Suppose toward contradiction that conclusion (3) holds. Now Lemma 2.133 applies, providing us with a new preclustering B of f, with a cluster boundary at $(b+1)$ instead of b, with a oneway gate the wrong way at that gate. Since $f_{[b+2, a)}$ is a cluster, Lemma 2.138 also applies to this new preclustering B. But conclusion (1) needs a two-way gate where we have a one-way gate; and, by the second part of Lemma 2.127, conclusions (2) and (3) need a one-way gate in the other direction at $(b+1)$.

Case 2. If $f_{[b+1, a)}$ is not a cluster, then Remark 2.102 applies, since $f_{[b+1, a)}$ is contained in the cluster $f_{[b+2, a)}$, and contains the cluster $f_{[b, a)}$. This means that $f_{[b+2, a)}$ must be a C cluster, and all factors of $f_{[b+1, a)}$ must be quadratic, and $f_{[b, a)}$ must be a C-free cluster consisting of a single quadratic factor.

So we have: $b=a+1$, and f_{b} and f_{b+1} are quadratic, and f_{b+2} is linearly related to an odd-degree Chebyshev polynomial. In particular, $f_{[c, b)}$ is a C cluster. Fix a cleanup (h, L) of (A, f). Then h_{b+2} is an odd-degree Chebyshev polynomial, $h_{b+1}(x)=x^{2}-2$ is the Chebyshev polynomial of degree 2 , and $h_{b}(x)=x^{2}$. We are interested in the linear factor L_{b}. For $f_{[b+2, a)}$ to be a cluster, we must have linear M and N with

$$
\left(M \circ h_{b+2}, x^{2}-2, L_{b} \circ x^{2} \circ N\right)
$$

is linearly equivalent to

$$
\left(h_{b+2}, x^{2}-2, x^{2}-2\right)
$$

By [8, Remark 3.14] about the linear relations between x^{2} and $x^{2}-2$, this exactly corresponds to the definition of " (A, f) has a right-to-left gate at b ". Now the second part of Lemma 2.127 shows that the concatenation of the cluster $f[c, b)$ and the adjacent quadratic factor f_{b} is a cluster. Since the whole cluster $f_{[b, a)}$ consists of this one factor, we have shown that $f_{[c, a)}$ is a cluster.

With the next lemma we show that two overlapping C-clusters for which the intersection contains all the odd degree factors fuse into a single C-cluster. This result provides some necessary details for the proof of [8, Lemma 4.25].

Lemma 2.140. Fix a k-long decompositionf and integers $d>c>b>a$. Suppose that $f_{[d, b)}$ and $f_{[c, a)}$ are both C clusters, and all factors of both $f_{[d, c)}$ and $f_{[b, a)}$ are quadratic. Then the whole $f_{[d, a)}$ is a C cluster.

Proof. We first replace k by a sufficiently big multiple to ensure that $k \gg d-a$.
The proof proceeds by induction on $(b-a)$. In the base case $b-a=0$, the desired cluster $f_{[d, a)}$ in the conclusion is one of the clusters $f_{[d, b)}$ in the hypothesis.

We consider three preclusterings A, B, and D of f. All clusters of A, B, and D consist of one factor each, except for $f_{[c, a)}$ for $A, f_{[c, b)}$ for B, and $f_{[d, b)}$ for D.

We build two cleanups (h, L) and (g, M) of (B, f).
To build (h, L), we start with a cleanup (\hat{h}, \hat{L}) of (A, f). So, \hat{h}_{i} are Chebyshev polynomials when $c \geq i>a$; and $\hat{L}_{i}=$ id when $c>i>a$. Let $h_{i}(x):=x^{2}$ and $L_{i}(x):=x-2$ for i with $b \geq i>a$; and let $h_{i}=\hat{h}_{i}$ and $L_{i}=\hat{L}_{i}$ for other (modulo $k) i$.

Similarly, to build (g, M), start with a cleanup (\hat{g}, \hat{M}) of (D, f) and take $M_{i}(x)=$ $x-2$ and $g_{i}(x)=x^{2}$ for i where $d \geq i>c$, as in the previous case. Because we do not know anything about the factor f_{d+1}, it may be necessary to further adjust g_{d+1} and M_{d} to satisfy part (5b) of the definition of "cleanup".

We know (h, L) has a one-way right-to-left gate at b. By part (1) of Lemma 2.127 , it follows that so does (g, M). Since $M_{b}=\hat{M}_{b}$, it also follows that the cleanup (\hat{g}, \hat{M}) of the preclustering D of f has a one-way right-to-left gate at b. By part (2) of Lemma 2.127, we know that $f_{[d, b-1)}$ is a cluster. The induction step is now complete.

We come now to the main technical lemma explaining exactly under what conditions two clusters may overlap. We will use this result repeatedly to compare clusterings of the same k-long decompositionand then employ it later to understand the action of Ritt swaps.
Lemma 2.141. Fix a k-long decompositionf and integers $d>c>b>a$. Suppose that $f_{[d, b)}$ and $f_{[c, a)}$ are both clusters. Then either the whole $f_{[d, a)}$ is a cluster; or $c=b+1$ and f_{b+1} is quadratic and at least one of $f_{[d, b)}$ and $f_{[c, a)}$ is a C cluster.
Proof. The three small pieces $f_{[d, c)}$ and $f_{[c, b)}$ and $f_{[b, a)}$, are almost always clusters themselves. We first deal with this general case, and then use Remark 2.102 to analyze situations where some of the pieces are not clusters.

Case 1. All three $f_{[d, c)}$ and $f_{[c, b]}$ and $f_{[b, a)}$ are clusters.
To apply our previous Lemmas 2.138 and 2.139, we need a preclustering A of f for which these $d>c>b>a$ are consecutive elements of A. We can always do this, possibly at the expense of replacing k by a suitably big multiple: the conclusion of this lemma is completely local, so this is not a problem.

Now Lemma 2.131 applies at each of the two boundaries c and b. If both gates are two-way, the whole $f_{[d, a)}$ is a cluster. If the outer clusters are single quadratics that join the middle cluster via one-way gates, they can both join, again making the whole $f_{[d, a)}$ a cluster. The only other option is that the middle cluster is the single quadratic, and at least one of the gates is one-way. Since there are no one-way gates between C-free clusters, at least one of the clusters must be a C cluster.

Case 2. If the middle piece $f_{[c, b)}$ is not a cluster, then both $f_{[d, b)}$ and $f_{[c, a)}$ are C clusters and the overlap $f_{[c, b)}$ consists of quadratic factors, so the outer pieces $f_{[d, c)}$ and $f_{[b, a)}$ still have odd-degree factors, and so they are clusters. In fact, $f_{[d, i)}$ and $f_{[i, a)}$ are clusters for any i with $c \geq i \geq b$, since they are contained in a cluster and contain an odd-degree factor. If $c=b+1$, we are done. Otherwise, we can use Lemma 2.139, as soon as we have a preclustering A of f for which these $d>b>a$ are consecutive elements. As in Case 1, we can always find such A. We now have two adjacent clusters $f_{[d, b)}$ and $f_{[b, a)}$, and the $f_{[b+2, a)}$ is also a cluster. Since we know that $f_{[b, a)}$ contains an odd-degree factor, the whole $f_{[d, a)}$ must be a cluster by Lemma 2.139 .

Case 3. If one of the outer pieces, $f_{[d, c)}$ or $f_{[b, a)}$, is not a cluster, it means that the corresponding big cluster, $f_{[d, b)}$ or $f_{[c, a)}$, respectively, is a C cluster whose odd-degree factors are inside the middle piece $f_{[c, b]}$. Then both $f_{[d, b)}$ and $f_{[c, a)}$ are C clusters.

If $f_{[b, a)}$ is a cluster, we can apply the reasoning in Case 2 again: $f_{[d, b)}$ and $f_{[b, a)}$ are adjacent clusters, and $f_{[i, a)}$ is a cluster for any i with $b \geq i \geq a$. Applying Lemmas 2.138 and 2.139 again, and noting that the middle piece $f_{[c, b)}$ is not a single quadratic, we get that the whole $f_{[d, a)}$ must be a cluster. The same reasoning applies if $f_{[d, c)}$ is a cluster.

The last remaining possibility that both $f_{[d, c)}$ and $f_{[b, a)}$ consist of nothing but quadratics is handled by Lemma 2.140.

The following (surprisingly useful) technical lemma shows that a one-quadratic cluster of a clustering cannot be contained in a C cluster.

Lemma 2.142. If

- A is a preclustering of a k-long decompositionf ; and
- $a, a-1 \in A$ and f_{a} is quadratic; and
- $f_{[e, d)}$ is a C cluster for some e, d with $e \geq a$ and $a-1 \geq d$;
then A is not a clustering.
Proof. Let z be the index of an odd-degree factor f_{z} in the C cluster $f_{[e, d)}$, closest to a on the left or to $a-1$ on the right. We write out the details of the first case; the second is identical. Let $y>x$ be the boundaries of the cluster $f_{[y, x)}$ of (A, f) that contains the factor f_{z}. So now

$$
y \geq z>x \geq a \text { and } e \geq z \text { and } a-1 \geq d ; \text { implying that } x-1 \geq d
$$

Since we assumed that f_{z} is the closest odd-degree factor, all f_{i} with $x \geq i \geq a$ are quadratic. Remark 2.102 then forces every such i to be a cluster boundary of A.

We will show that the concatenation $f_{[y, x-1)}$ of adjacent clusters $f_{[y, x)}$ and $f_{[x, x-1)}$ of (A, f) is itself a cluster, contradicting Lemma 2.131. Since $f_{[y, x-1)}$ contains the odd-degree factor f_{z}, by Remark 2.102 it suffices to show that $f_{[y, x-1)}$ is contained in a cluster.

If $e \geq y$, then $f_{[y, x-1)}$ is contained in $f_{[e, d)}$. If $y>e$, then the clusters $f_{[y, x)}$ and $f_{[e, d)}$ overlap, and the overlap includes the odd-degree factor f_{z}. So by Lemma 2.141 , the whole $f_{[y, d)}$ is a cluster, again containing $f_{[y, x-1)}$.

We now return to proving Theorem 2.145 that the boundary set of a k-long decomposition(see Definition 2.135) is unique. It is easy to see that whenever the empty set is a preclustering of f, it is the unique clustering of f. So, we compare two a priori unrelated non-empty clusterings A and D of the same k-long decomposition f.

The first Lemma 2.143 in this series deals with one mismatched cluster boundary. Options (2) and (3) in its conclusion do not produce a mismatch of boundary sets; option (1) is sorted out in the following Lemma 2.144 .

Lemma 2.143. Suppose that A and D are non-empty clusterings of the same k long decompositionf and $b \in A \backslash D$. Then one of the following is true.
(1) Both f_{b} and f_{b+1} are quadratic; and $b+1$ and $b-1$ are both in D.
(2) A has a one-way left-to-right gate at b, and f_{b+1} is quadratic, and $b+1 \in D$, and Lemma 2.134 gives another clustering

$$
B=(A \backslash b+k \mathbb{Z}) \cup b+1+k \mathbb{Z}
$$

of f which shares the cluster boundary $b+1$ with D.
(3) A has a one-way right-to-left gate at b, and f_{b} is quadratic, $b-1 \in D$, so Lemma 2.134 gives another clustering $B=(A \backslash b+k \mathbb{Z}) \cup b-1+k \mathbb{Z}$ of f which shares the cluster boundary $b-1$ with D.
Proof. Fix consecutive elements $c>b>a$ of A.
Since $b \notin D$, there are consecutive elements $e>d$ of D with $e>b>d$.
Comparing e to c and d to a breaks this proof into four cases. In each case, we get a
contradiction (via Remark 2.102, Lemma 2.142, Lemma 2.141, and Lemma 2.131) or one of the desired conclusions (via Lemma 2.127 and Lemma 2.134).

Case 1. If $e \geq c$ and $a \geq d$, then the concatenation $f_{[c, a)}$ of two clusters of (A, f) is contained in the cluster $f_{[e, d)}$ of (D, f). By Lemma 2.131, this concatenation $f_{[c, a)}$ cannot be a cluster itself. Lemma ?? then shows that $c=b+1=a+2$, and f_{b} and f_{b+1} are quadratic, and $f_{[e, d)}$ is a C cluster, and Lemma 2.142 provides the contradiction.

Case 2. If $e \geq c$ and $b>d>a$, then Lemma 2.141]applies to the clusters $f_{[e, d)}$ and $f_{[b, a)}$.

If the whole $f_{[e, a)}$ is a cluster, then $f_{[c, a)}$ is contained in a cluster, and contains the cluster $f_{[b, a)}$ with at least two factors: $b>d>a$ implies that $b \geq a+2$. Remark 2.102 then shows that $f_{[c, a)}$ is a cluster, contradicting Lemma 2.131.

Thus $b=d+1$ and f_{b} is quadratic. We want to show that the concatenation $f_{[c, b-1)}$ of the cluster $f_{[c, b)}$ of (A, f) and the adjacent quadratic f_{b} is a cluster. This $f_{[c, b-1)}$ is contained in the cluster $f_{[e, d)}=f_{[e, b-1)}$, and contains the cluster $f_{[c, b)}$. Remark 2.102 gives what we want, unless $c=b+1$ and f_{c} is quadratic and $f_{[e, d)}$ is a C cluster. In that case, Lemma 2.142 provides the contradiction.

Case 3. The situation where $c>e$ but $a \geq d$ works exactly like Case 2.
Case 4. Finally, suppose that $c>e>b>d>a$. Lemma 2.141 now applies to $f_{[e, d)}$ with $f_{[b, a)}$, and to $f_{[c, b)}$ with $f_{[e, d)}$. Each of these two instances of Lemma 2.141 produces one of two conclusions, breaking this case into four subcases.

Subcase 4.1. Suppose that both concatenations $f_{[e, a)}$ and $f_{[c, d)}$ are clusters. Their overlap $f_{[e, d)}$ contains at least two factors, so another application of Lemma 2.141 shows that the whole $f_{[c, a)}$ is a cluster, contradicting Lemma 2.131,

Subcase 4.2. Suppose that $b=d+1$ and f_{b} is quadratic, but the overlap $f_{[e, b)}$ of $f_{[c, b)}$ with $f_{[e, d)}$ is not a single quadratic and $f_{[c, d)}$ is a cluster. Since the concatenation $f_{[c, d)}$ of the cluster $f_{[c, b)}$ and the adjacent quadratic f_{b} is a cluster, Lemma 2.127 shows that (A, f) has a right-to-left gate at b. As in Case 2 above, Lemma 2.134 now gives us another clustering $B=(A \backslash b+k \mathbb{Z}) \cup b-1+k \mathbb{Z}$ of f which shares the cluster boundary $d=b-1$ with D.

Subcase 4.3. The reasoning is exactly the same for the symmetric situation where $e=b+1$ and f_{b+1} is a quadratic, but the overlap $f_{[b, d)}$ of $f_{[e, d)}$ and $f_{[b, a)}$ is not a single quadratic.

Subcase 4.4. Finally, we arrive at the first option in the conclusion of this lemma: f_{b} and f_{b+1} are both quadratic, and $e=b+1$ and $d=b-1$.

The last lemma was the induction step for the proof of Theorem 2.145, and the next lemma is the base case, sorting out option (1) in the conclusion of the last lemma.

Lemma 2.144. Fix two clusterings A and D of the same k-long decompositionf. Suppose that for every $b \in A \backslash D$, both f_{b} and f_{b+1} are quadratic; and $b+1$ and $b-1$ are both in D. Suppose symmetrically that for every $b \in D \backslash A$, both f_{b} and f_{b+1} are quadratic; and $b+1$ and $b-1$ are both in A. Then $A=D$.

Proof. Fix cleanups (g, M) of (A, f), and (h, L) of (D, f).
Observe first that for every $b \in A \backslash D$, the cluster $f_{[b+1, b-1)}$ of D broken by b is a C-free cluster, since it has degree 4 . By Lemma 2.123 , this means that $A \cup D$ is another preclustering of f, and (g, M) is a cleanup of it. Symmetrically, (h, L) is also a cleanup of $(A \cup D, f)$.

For any $d \in D \backslash A$, the cleanup (g, M) of (A, f) must have $M_{d}=\mathrm{id}$. So the cleanup (g, M) of $(A \cup D, f)$ has a two-way gate at such d. So every cleanup of $(A \cup D, f)$, including (h, L), has a two-way gate at such d. So $L_{d}=\mathrm{id}$. So the cleanup (h, L) of (D, f) has a two-way gate at d. But this fake gate of (D, f) contradicts the definition of "clustering".

The same contradiction arises symmetrically from any $b \in A \backslash D$.
We come now to our Theorem 2.145 showing that the boundary set is an invariant of a long decomposition, as are the types of clusters and the gates appearing in a clustering. We prove the theorem by showing that any two clusterings may be converted one to the other through a finite sequence of applications of Lemma 2.134 ,

Theorem 2.145. Any two non-empty clusterings A and D of the same k-long decompositionf give rise to the same boundary set B for f.

Corresponding clusters of (A, f) and (D, f) are of the same kind (C or C-free).
For each $b \in A \cap D \supseteq B \cap \mathbb{Z}$, the gates of (A, f) at b and (D, f) at b are of the same kind (none, one-way left-to-right, one-way right-to-left).

For each half-integer $b-\frac{1}{2} \in B$ with $b \in A$ and $b-1 \in D$ or vice versa, A and D have one-way gates in opposite direction at this cluster boundary.

Proof. We build a finite sequence $\left(A_{i}, D_{i}\right)$ for $i=0,1,2, \ldots, n$ of pairs of clusterings of f such that $A_{0}=A$ and $D_{0}=D$ and $A_{n}=D_{n}$; and for each i, either A_{i+1} is obtained from A_{i} via Lemma 2.134 and $D_{i+1}=D_{i}$; or vice versa. All the conclusions of this theorem follow from the corresponding conclusions of Lemma 2.133 . For example, at each step, A_{i} and A_{i+1} will give rise to the same the boundary set; and D_{i} and D_{i+1} will also give rise to the same the boundary set. Thus, $A=A_{0}$ will have the same boundary set as $A_{n}=D_{n}$ which has the same boundary set as $D=D_{0}$.

To build the sequence, we induct on

$$
\left|\left(A_{i} \triangle D_{i}\right) \cap\{1,2, \ldots, k\}\right|
$$

the number of cluster boundary disputes between D_{i} and A_{i}, in one period.
When this number is zero, $A_{i}=D_{i}$ and we are done.
Otherwise, if some $b \in A_{i} \backslash D_{i}$ satisfies condition (2) or (3) in Lemma 2.143 with $A=A_{i}$ and $D=D_{i}$, that lemma provides $B=: A_{i+1}$ that has one fewer disputes with $D_{i+1}:=D_{i}$.

Otherwise, if some $b \in D_{i} \backslash A_{i}$ satisfies condition (2) or (3) in Lemma 2.143 with $A=D_{i}$ and $D=A_{i}$, that lemma provides $B=: D_{i+1}$ that has one fewer disputes with $A_{i+1}:=A_{i}$.

Finally, the case that every $b \in A_{i} \triangle D_{i}$ satisfies condition (1) in Lemma 2.143 , is ruled out by Lemma 2.144 .

The point of this theorem is that now the number of clusters per period and the kinds (C or C-free) of corresponding clusters are properties of the k-long decompositionalone, independent of the clustering. The existence of one-way gates between corresponding clusters is also a property of the k-long decomposition; and if we distinguish three kinds of such gates instead of two, separating out the gates occupied by quadratic that correspond to half-integers in the boundary set, the kinds of one-way gates are also a property of the k-long decomposition, independent of the clustering.
2.3.5. Clusterings and the action of ST_{k}. In this subsection we focus on the interaction between the action of ST_{k} and clusterings. Our key result will be that while clusterings themselves are not invariant under this partial group action, the number of clusters, the kind (i.e. type C or C-free), and the presence or absence (but not the direction) of one-way gates between the are all invariant under the action of ASym_{k}.

We now collect some easy results from [8] about the interactions between the partial functions $t_{i} \star$ and clusters, explaining how they fit with our new context of long decompositions.

Proposition 2.146. (Compare with [8, Remark 4.5(5), Proposition 4.11, Lemma $4.17(2)$, and Lemma 4.31]) Suppose that $t_{i} \star[f]=[g]$. That is, $t_{i} \star[f]$ is defined and $[f]$ and $[g]$ are Ritt-swap-related at i.
(1) Then $\left(f_{i+1}, f_{i}\right)$ is a cluster.
(2) Moreover, f admits a clustering A with $i \notin A$.
(3) Any (pre)clustering A of f with $i \notin A$ is also a (pre)clustering of g, with the same gates in the same places.

Proof. The first statement is an immediate consequence of the definitions.
For the second statement, fix a clustering A of f. If $i \notin A$, we are done; so suppose that $i \in A$, and let $b>i>a$ be consecutive elements of A. Since tautological Ritt swaps are not allowed, at least one of f_{i+1} and f_{i} is not quadratic; without loss of generality, suppose that f_{i} is not quadratic. Then by Lemma 2.141, $f_{[i+1, a)}$ is a cluster. By Lemma 2.127, it follows that f_{i+1} is quadratic and A has a left-to-right gate at i. By Lemma 2.134, $B:=(A \backslash i+k \mathbb{Z}) \cup i+1+k \mathbb{Z}$ is another clustering of f, and $i \notin B$.

To prove (3), we start by showing that a preclustering A of f with $i \notin A$ is also a preclustering of $t_{i} \star[f]$. Fix a cleanup (h, L) of (A, f). Since $i \notin A, f_{i}$ and f_{i+1} are in the same cluster.

If this is a C cluster, then h_{i} and h_{i+1} are Chebyshev polynomials and $h_{i} \circ h_{i+1}=$ $h_{i+1} \circ h_{i}$ is a basic Ritt swap. Let

$$
\tilde{h}_{i}:=h_{i+1} \text { and } \tilde{h}_{i+1}:=h_{i} \text { and } \tilde{h}_{j}:=h_{j} \text { for } j \not \equiv i, i+1 \quad(\bmod k) .
$$

It is straightforward to verify that (\tilde{h}, L) is a cleanup of $\tilde{g}:=L \circ \tilde{h}$. This \tilde{g} is clearly Ritt-swap-related to f at i, so it is linearly equivalent to g. Thus, (\tilde{h}, L) is also a cleanup of g, and A is also a preclustering of g. This argument works exactly the same way when both h_{i} and h_{i+1} are monomials inside a C-free cluster.

In general, inside a C-free cluster we need [8, Lemma 3.37] to conclude that there are polynomials \tilde{h}_{i} and \tilde{h}_{i+1} such that $h_{i} \circ h_{i+1}=\tilde{h}_{i+1} \circ \tilde{h}_{i}$ is a basic Ritt swap. It is now slightly less trivial to verify that (\tilde{h}, L) is also a cleanup of g : if $(i-1) \in A$ and \tilde{h}_{i} is not a monomial, one might worry about condition [5b] in the definition of cleanup. This is actually not an issue because the Ritt swap forces \tilde{h}_{i} to have non-trivial in-degree (see Definition 2.57. Thus, \tilde{h}_{i} cannot be a type A Ritt polynomial; so \tilde{h}_{i} and $\tilde{h}_{i} \circ L_{i-1}$ cannot both be Ritt polynomials for a non-trivial translation L_{i-1}.

Since the types of clusters and the linear factors did not change, the two cleanups have the same gates in the same places. Thus, one is a clustering if and only if the other is.

The next two lemmas are used in the proof of Theorem 2.149, an analogue of [8, Theorem 2.52], that the action of the generators t_{i} of ASym_{k} on linear equivalence classes of k-long decompositionssatisfy the braid relations.

Lemma 2.147. (Compare with [8, Lemma 4.38]) If $t_{i} \star[f]$ and $t_{i+1} \star[f]$ are both defined, then $\left(f_{i+2}, f_{i+1}, f_{i}\right)$ is a cluster or f_{i+1} is quadratic.
Proof. By Proposition 2.146 , $\left(f_{i+1}, f_{i}\right)$ and $\left(f_{i+2}, f_{i+1}\right)$ are both clusters. Lemma 2.141 with $d=i+2$ and $c=i+1$ and $b=i$ and $a=i-1$ finishes the proof.

Lemma 2.148. (Compare with [8, Lemma 4.39]) If one of $t_{i} \star\left(t_{i+1} \star\left(t_{i} \star[f]\right)\right)$ or $t_{i+1} \star\left(t_{i} \star\left(t_{i+1} \star[f]\right)\right)$ is defined, then $\left(f_{i+2}, f_{i+1}, f_{i}\right)$ is a cluster.

Proof. Suppose that $t_{i} \star\left(t_{i+1} \star\left(t_{i} \star[f]\right)\right)$ is defined; the other case is completely analogous. Let g be a representative of $t_{i} \star[f]$, and let h be a representative of $t_{i+1} \star\left(t_{i} \star[f]\right)$. Since $t_{i+1} \star[g]=[h]$ and tautological Ritt swaps are not permitted, at most one of g_{i+1} and h_{i+1} can be quadratic. Lemma 2.147 applies to both g and h, so at least one of $\left(g_{i+2}, g_{i+1}, g_{i}\right)$ and $\left(h_{i+2}, h_{i+1}, h_{i}\right)$ is a cluster. So

$$
A:=(\mathbb{Z} \backslash i+k \mathbb{Z}) \cup i+1+k \mathbb{Z}
$$

is a preclustering of g or h. Therefore, by Proposition ?? applied once or twice, A is also a preclustering of f, and, in particular, $\left(f_{i+2}, f_{i+1}, f_{i}\right)$ is a cluster.

This next theorem is the key step in proving Corollary 2.36 that our partial action of the generators of ASym_{k} on \mathscr{D}_{k} is actionable, thus giving a partial group action of ASym_{k} itself on \mathscr{D}_{k}.

Theorem 2.149. Suppose that $k \geq 3$ and f is a k-long decompositionand i is an integer. Then

$$
t_{i} \star\left(t_{i+1} \star\left(t_{i} \star[f]\right)\right)=t_{i+1} \star\left(t_{i} \star\left(t_{i+1} \star[f]\right)\right) .
$$

That is, they are equal when defined, and one is defined if and only if the other is.
Proof. By Lemma 2.148, $\left(f_{i+2}, f_{i+1}, f_{i}\right)$ is a cluster, so

$$
A:=(\mathbb{Z} \backslash i+k \mathbb{Z}) \cup i+1+k \mathbb{Z}
$$

is a preclustering of f. Let (h, L) be a cleanup of (f, A).
The rest of the proof is almost a repeat of the proof of Proposition ??.
If this is happening inside a C cluster, all three of h_{i+2}, h_{i+1}, and h_{i} are Chebyshev polynomials, which commute with each other. Setting

$$
\tilde{h}_{i}:=h_{i+2} \text { and } \tilde{h}_{i+2}:=h_{i} \text { and } \tilde{h}_{j}:=h_{j} \text { for } j \not \equiv i, i+2 \quad(\bmod k)
$$

gives a cleanup (\tilde{h}, L) of both $t_{i} \star\left(t_{i+1} \star\left(t_{i} \star[f]\right)\right)$ and $t_{i+1} \star\left(t_{i} \star\left(t_{i+1} \star[f]\right)\right)$. This argument works exactly the same way when all three of h_{i}, h_{i+1}, and h_{i+2} are monomials inside a C-free cluster.

Since each of the three factors h_{i}, h_{i+1}, and h_{i+2} swaps with each of the others in evaluating either $t_{i} \star\left(t_{i+1} \star\left(t_{i} \star[f]\right)\right)$ or $t_{i+1} \star\left(t_{i} \star\left(t_{i+1} \star[f]\right)\right)$, at most one of them can be non-monomial. Applying [8, Lemma 3.37] repeatedly, as in the proof of Proposition ??, finishes this proof.

Another consequence of Proposition ?? is an analogue of Theorem 2.145 the number of clusters per period, the kind of clusters, and the presence of gates at cluster boundaries are invariant under the partial action of ASym_{k}. The exact
location of the gate changes if and only if the direction of the gate changes. Action by powers of ϕ shifts the whole picture.
Proposition 2.150. Fix $f \in \mathscr{D}_{k}$ and $w \in \operatorname{ASym}_{k}$ with $w \star f=: g$ defined. Then there are boundary lists α and β for f and g, respectively, such that for all j,
(1) $\{\alpha(j), \beta(j)\} \subseteq\left\{i+1, i+\frac{1}{2}, i\right\}$ for some i;
(2) the $j^{\text {th }}$ clusters of f and g are of the same kind, C or C-free;
(3) f has a gate at $\alpha(j)$ if and only if g has a gate at $\beta(j)$;
(4) if $\alpha(j)=i+1$ and $\beta(j)=i$, then f has a right-to-left gate at $\alpha(j)$ and g has a right-to-left gate at $\beta(j)$; and vice versa.
If $h=\phi^{n} \star f$ for some $n \in \mathbb{Z}$, there are boundary lists α and β for f and h, respectively, such that $\beta(j)=\alpha(j+n)$ for all j; and corresponding clusters and cluster boundaries are exactly the same.
Proof. To prove the first part, we apply Theorem 2.145 and Proposition 2.146, and induct on the length of a word in the generators representing w. The way the direction of gates changes in Theorem 2.145 and Proposition 2.146 prevents the cluster boundaries from drifting by more than 1 .

The second part about $\phi^{n} \star f$ is immediate.
Definition 2.151. With the setup in Proposition 2.150 we say that the cluster boundary $\beta(j)$ comes from the cluster boundary $\alpha(j)$ via $w \star f$. When f and w are clear from context, we simply say that $\alpha(j)$ becomes $\beta(j)$, or that $\alpha(j)$ and $\beta(j)$ are corresponding boundaries.
Remark 2.152. It is possible for the same i to be a cluster boundary of both f and $g=w \star f$, but not correspond to itself: if f has a one-factor cluster f_{i} with gates in the same direction on both sides, after a quadratic passes through these gates, both boundaries $\alpha(j)=i$ and $\alpha(j+1)=i+1$ move one step to, say, $\beta(j)=i+1$ and $\beta(j+1)=i+2$; but $\alpha(j+1)=i+1$ and $\beta(j)=i+1$ are not corresponding boundaries!

Proposition 2.153. In a clustering, a cluster boundary without a gate is a wall.
Proof. Proposition 2.150 shows that if f has a cluster boundary at i with no gate, then for every $w \in \mathrm{ASym}_{k}$, if defined, $w \star f$ has a cluster boundary at i with no gate. By Lemma 2.127, $t_{i} \star(w \star f)$ is never defined.

To finish verifying that f has a wall at i, we must show that $\epsilon_{p} \star f$ and $\epsilon_{p}^{-1} \star f$ are not defined (see Definition 2.19).

Suppose toward contradiction that $\epsilon_{p} \star f$ (respectively, $\epsilon_{p}^{-1} \star f$) is defined, so, up to linear equivalence, we may assume that each f_{i} is a Ritt polynomial with in-degree (respectively, out-degree) at least p.

If none of the f_{i} are type C , this gives a cleanup of the empty (pre)clustering of f. In particular, f has no cluster boundaries.

Otherwise, p must be 2, because type C Ritt polynomials do not have other in-degrees or out-degrees. To build a cleanup for f, we must convert those f_{i} which are type C into actual Chebyshev polynomials. The linear factors used for this are exactly the ones giving one-way gates at cluster boundaries. For more details see [8, Remark 3.14 and Theorem 3.15].

It follows from Propositions 2.52 and 2.153 that Theorem 1.3 holds when there is gateless cluster boundary.

Corollary 2.154. Theorem 1.3 hold for any polynomial P whose long decomposition has a cluster boundary with no gate.
2.3.6. Wandering quadratics. We have already shown that if a long decomposition has no walls, then every cluster boundary has a one-way gate. In this subsection we will show that each of these one-way gates is "owned by" a unique "wandering quadratic". This precise characterization will give us enough control to prove Theorem 1.3 in the absence of walls.

We now return to a more detailed analysis of the interaction of the action of ASym_{k} with boundaries and gates. We begin by keeping track of corresponding factors of f and $w \star f$ the same way that Definition 2.151 keeps track of corresponding gates.
Definition 2.155. Suppose that $w \star f=g$ for some k-long decompositions f and g and some $w \in \mathrm{ASym}_{k}$. We say that a factor g_{b} comes from the factor f_{a} via $w \star f=g$ if the permutation $\pi(w)$ of Remark 2.33 takes the integer a to b. Alternatively, we say that the factor f_{a} becomes g_{b} via $w \star f$, or that f_{a} and g_{b} are corresponding factors.

A computationally useful equivalent to Definition 2.155 may be given inductively.
Remark 2.156. For k-long decompositions f and $g=t_{i} \star f$, a factor g_{b} comes from the factor f_{a} via $t_{i} \star f$ if $b=a \notin\{i, i+1\}$ or $\{a, b\}=\{i, i+1\}$.

For an element $w \in \mathrm{ASym}_{k}$ for which $w \star f=g$, a factor g_{b} come from the factor f_{a} via $w \star f=g$ if there are

- a sequences $\left(w_{i}\right)_{i=1}^{n}$ of generators, $\left\{t_{j}: 1 \leq j \leq k\right\}$,
- a sequence of k-long decompositions $(H(i))_{i=0}^{n}$, and
- a sequence of factors $(h(i))_{i=0}^{n}$
so that
- $w=w_{n} \cdots w_{2} w_{1}$,
- $H(0)=f$,
- $H(m+1)=w_{m+1} \star H(m)$,
- $h(0)=f_{a}$,
- $h(m+1)$ is the factor of $H(m+1)$ which comes from $h(m)$ via $w_{m+1} \star H(m)=$ $H(m+1)$, and
- $h(n)=g_{b}$.

With the next definition we introduce wandering and loitering quadratics, the key notions of this section. The word "wandering quadratic" is used in 8 for a related, though quite different, notion.

Definition 2.157. Fix a k-long decomposition f with a non-empty clustering, and let B be the boundary set of f. A quadratic factor f_{a} is a loitering quadratic of f if $a-\frac{1}{2} \in B$.

A quadratic factor f_{a} is a wandering quadratic of f if f_{a} becomes a loitering quadratic g_{b} via $w \star f=g$ for some $w \in \operatorname{ASym}_{k}$.

Let b^{\prime} be the boundary of f corresponding to the boundary $b-\frac{1}{2}$ of g via $w \star f$ in the sense of Definition 2.151. We say that the wandering quadratic f_{a} owns the gate that f has at b^{\prime}.
Lemma 2.158. Let f be a long decomposition with at least one quadratic factor and at least one type-C factor. If some some clustering of f has an unowned gate at a, then f has a wall at a.

Proof. Since f has a quadratic factor, $\epsilon_{2}^{ \pm 1} \star f$ is not defined. Likewise, because f has a type-C factor, $\epsilon_{p}^{ \pm 1} \star f$ is not defined for odd p. Because f has a cluster boundary with an unowned gate at $a, t_{a} \star f$ is not defined. (See the first paragraph of the proof of Proposition 2.153 for more details.) That is, f has a wall at a.

Remark 2.159. When f_{a} is a loitering quadratic of f, that cluster boundary of f is ambiguous: some clusterings of f have a one-way gate at a and others at $(a-1)$, so this quadratic could join either of the two clusters.

We shall soon vindicate the last notion by showing that each gate is owned by at most one wandering quadratic.

Lemma 2.160. Fix a k-long decompositionf and a word w in the affine permutation group such that $w \star f=g$ is defined. Suppose that g_{a} is a loitering quadratic of g, and that it comes from f_{b} via $w \star f$. Then f_{i} is not quadratic for any i between a and b, including a.

The intuitive idea of the proof is quite simple: one quadratic is near a gate, and the other is further. As the far quadratic moves to the gate, it will bump into the near quadratic and stop (since tautological Ritt swaps are not allowed). The only possible exception would be when the near quadratic crosses the gate and stops being between the gate and the far quadratic. However, in that case, when the far quadratic arrives at the gate, the gate will be one-way the wrong way and the quadratic will not be able to enter the gate.

Proof. What we need to show that if $b>a, f_{i}$ is not quadratic for $i=b-1, \ldots a+$ $1, a$; and if $b<a, f_{i}$ is not quadratic for $i=b+1, \ldots a-1, a$. The proofs of these two statements are identical; we prove the first.

Toward contradiction, let $(f, w, b>c \geq a)$ be a counterexample with w expressed as a product of generators $w=w_{r} \ldots w_{1}$ with the least possible r. That is, f_{b} and f_{c} are quadratic, and the loitering quadratic g_{a} of g comes from f_{b} via $w \star f$.

For $s=0,1, \ldots r$, let $B(s)$ and $C(s)$ be the places where f_{b} and f_{c} land via $w_{s} \ldots w_{1} \star f$. So $B(0)=b$ and $C(0)=c$ and $B(r)=a$. Two quadratic factors cannot Ritt-swap with each other and $B(0)>C(0)$, so $B(s)>C(s)$ for all s. In particular, $a=B(r)>C(r)$ while $C(0)=c \geq a$. Thus, $C(s)=a$ for some $s<r$.

Let $f^{\prime}:=w_{s} \ldots w_{1} \star f$, let $w^{\prime}:=w_{r} \ldots w_{s+1}$, and let $b^{\prime}:=B(s)$. Now $w^{\prime} \star$ $f^{\prime}=w \star f=g$ and the loitering quadratic g_{a} of g comes from $f_{b^{\prime}}^{\prime}$ via $w^{\prime} \star f^{\prime}$; and $b^{\prime}=B(s)>C(s)=a$. So $\left(f^{\prime}, w^{\prime}, a, b^{\prime}\right)$ is another counterexample. So the presentation of w^{\prime} in this counterexample cannot be shorter than that of w, so we must have $s=0$ and $w^{\prime}=w$ and $c=a$. Thus, we have

$$
b=B(0)>C(0)=a=B(r)>C(r) .
$$

Claim 2.160.1. The factors f_{d} are not quadratic for any $d=b-1, \ldots a+1$.
Proof of Claim: Suppose not, and let $D(s)$ be the place where f_{d} lands via $w_{s} \ldots w_{1} \star$ f. So $D(0)=d$, so $B(0)>D(0)>C(0)=a=B(r)>D(r)$. Thus, for some $s \neq 0, r$, we have $B(s)>D(s)=a$. Again, let $f^{\prime}:=w_{s} \ldots w_{1} \star f$, let $w^{\prime}:=$ $w_{r} \ldots w_{s+1}$, and let $b^{\prime}:=B(s)$. As before, $\left(f^{\prime}, w^{\prime}, b^{\prime}, a\right)$ is another counterexample. But since $s \neq 0$, the presentation of w^{\prime} is strictly shorter than that of w, which is a contradiction.

Claim 2.160.2. For all $s>0$, we have $a>C(s)$; for all $s<r$, we have $B(s)>a$.
Proof of Claim: Since $a>C(r)$, if $C(s) \geq a$ for some $s>0$, then $C\left(s^{\prime}\right)=a$ for some s^{\prime} with $s<s^{\prime}<r$. Again, $f^{\prime}:=w_{s^{\prime}} \ldots w_{1} \star f$ and $w^{\prime}:=w_{r} \ldots w_{s^{\prime}+1}$ and $b^{\prime}:=B\left(s^{\prime}\right)$ give a counterexample, with w^{\prime} having a shorter presentation than that of w, a contradiction.

Similarly, if $a \geq B(s)$ for some $s<r$, then $a=B\left(s^{\prime}\right)$ for some $s^{\prime}<s$ because $B(0)>a$. Now (f, u, b, a) is another counterexample, with $u=w_{s^{\prime}} \ldots w_{1}$ having a strictly shorter presentation than that of w, which is a contradiction.

Claim 2.160.2 implies that $w_{1}=t_{a-1}$ and $w_{r}=t_{a}$.
Claim 2.160.3. For all $s \neq 0, r$, the factor of h_{a} of $h:=w_{s} \ldots w_{1} \star f$ is not quadratic.

Proof of Claim: From Claim 2.160.2, we have $B(s)>a>C(s)$. Let f_{d} be the factor of f that becomes h_{a} via $w_{s} \ldots w_{1} \star f$. Then $B(0)>d>C(0)$, contradicting Claim 2.160.1.

Claim 2.160.4. For all s with $0<s<r$, the k-long decompositionh $:=w_{s} \ldots w_{1} \star$ $f=w_{s+1} \ldots w_{r} \star g$ admits a clustering with a left-to-right gate at $(a-1)$.

Proof of Claim: We induct backwards on s, from $r-1$ to 1 . For the base case $s=r-1$, we are looking at $t_{a} \star g$ and g_{a} is a loitering quadratic of g. There is a clustering of g with a cluster boundary at $(a-1)$ and a left-to-right gate at that boundary. For that clustering, $t_{a} \star g$ is an intra-cluster swap that does not change the locations and directions of gates.

For the inductive step, we are looking at $w_{s} \star h$ for $h=w_{s+1} \ldots w_{r} \star g$. By the inductive hypothesis, some clustering of h has a cluster boundary at $(a-1)$ and a left-to-right gate at that boundary. By Claim 2.160.3, h_{a} is not quadratic; so every clustering of h has a cluster boundary at $(a-1)$ and a left-to-right gate at that boundary. By Proposition ??, this means that $t_{a-1} \star h$ is not defined, so $w_{s}=t_{i}$ for some $i \neq a$. By the same Proposition ??, it follows that $w_{s} \star h$ also admits a clustering with a left-to-right gate at $(a-1)$.

Claim 2.160.4 is now proved.
So for $s=1$ we have that $h=t_{a-1} \star f$ has a left-to-right gate at $(a-1)$ and no quadratic at a. But then $t_{a-1} \star h$ is not defined, contradicting $t_{a-1} \star h=f$.

Corollary 2.161. Each gate is owned by at most one wandering quadratic.
Proof. Suppose that quadratic factors f_{a} and f_{b} of f both own the gate at c. So there is some $u \in \mathrm{ASym}_{k}$ and a gate at a^{\prime} of $g:=u \star f$ corresponding to the gate of f at c such that $g_{a^{\prime}}$ comes from f_{a} via $u \star f$. Similarly, there is some $v \in \operatorname{ASym}_{k}$ and a gate at $b^{\prime \prime}$ of $h:=v \star f$ corresponding to the gate of f at c such that $h_{b^{\prime \prime}}$ comes from f_{a} via $v \star f$.

Now for $w:=v u^{-1}$ we have $w \star g=h$ and the gate of h at $b^{\prime \prime}$ corresponds to the gate of g at a^{\prime} via $w \star g$. Both gates are occupied, so Proposition 2.150 tells us that $a^{\prime}=b^{\prime \prime}$.

Let b^{\prime} be the index for which $g_{b^{\prime}}$ comes from f_{b} via $u \star f$. Now $h_{b^{\prime \prime}}$ comes from $g_{b^{\prime}}$ via $w \star g$, but $g_{b^{\prime \prime}}=g_{a^{\prime}}$ is quadratic. This contradicts Lemma 2.160 unless $a^{\prime}=b^{\prime}$;
in which case $a=b$, and the two owners of the same gate turn out to be the same person as wanted.
Corollary 2.162. If a wandering quadratic f_{a} owns the gate at b, then $|b-a| \leq k$.
Proof. If $b>a+k$, the factor f_{a+k}, which is quadratic because of the k-periodicity of f, contradicts Lemma 2.160 .

We next show that a wandering quadratic can always move to a gate it owns as directly as possible, that is, via a single transit in the sense of Definition 2.38
Lemma 2.163. Suppose that a wandering quadratic f_{a} of a long decomposition f owns the gate at b. Then there is a transit u with g_{b} a loitering quadratic coming from f_{a} via $u \star f=g$.
Proof. We work out the case where $a<b$; the case where $a>b$ is identical; and the empty word u works for the case $a=b$.

Let w be a reduced word witnessing that f_{a} owns the gate at b, shortest among such words. That is, $w \star f=h$ is defined and h_{b} is a loitering quadratic of h that comes from f_{a} via $w \star f$; and whenever the same happens for some other w^{\prime} and h^{\prime} (with the same $b!$), w^{\prime} is no shorter than w.

We first show that t_{b} does not occur in w. Suppose toward contradiction that $w=v t_{b} w^{\prime}$ for some words v and w^{\prime} with w^{\prime} not containing t_{b}. Let $h^{\prime}:=w^{\prime} \star f$. Now $t_{b} \star h^{\prime}$ is defined, so h_{b}^{\prime} must be a quadratic. Since only one quadratic owns this gate at b, h_{b}^{\prime} corresponds to f_{a} via $w^{\prime} \star f=h^{\prime}$ contradicting minimality of the length of w.

The subgroup of $A \mathrm{Sym}_{k}$ generated by $\left\{t_{i}: i \neq b\right\}$ is an isomorphic copy of Sym_{k}. Thus, we may present w in second canonical form with respect to $b>a+1>$ $a>b-k$ (see Remark 2.39) as $w=u s w_{3} w_{2} w_{1}$ where

- w_{1} is a reduced word in t_{i} with $b-k<i<a-1$, permuting factors in the "right chunk" $f_{(a, b-k)}$;
- w_{2} is empty: it permutes factors in the one-factor middle chunk;
- w_{3} is a reduced word in t_{i} with $a<i<b$, permuting factors in the "left chunk" $f_{[b, a)}$;
- $s=t_{(c, a]}$ is the transit moving the wandering quadratic as we want; and
- u is the rest of the word v in the second canonical form, moving factors from the right chunk leftward.
Since u does not move the wandering quadratic, s must get it all the way to the gate at b where it ends up in $w \star f$; so we have $c=b$. Now $s w_{3} w_{2} w_{1}$ already moves the wandering quadratic f_{a} to the gate at b. Thus, by the minimality of the length of w, the word u is empty. So now we have $w=s w_{3} w_{1}$. Since $s w_{3}$ and w_{1} act on disjoint chunks of factors, they commute. So, $w=w_{1} s w_{3}$. By the minimality of the length of w, the word w_{1} is empty and $w=s w_{3}$. Using Lemma 2.43, we get $w=\widehat{w_{3}} s$, which, by the minimality of the length of w, gives $w=s$ as wanted.

We get the following immediate corollary.
Corollary 2.164. If a wandering quadratic f_{a} owns the gate at b, then all gates of f between a and b are are in the direction from a to b.
Lemma 2.165. Fix a reduced word u and long decompositions f and g with $u \star$ $f=g$. If both f_{b} and g_{b} are loitering quadratics, then h_{b} is a loitering quadratic whenever $u=u_{2} u_{1}$ as words, and $h=u_{1} \star f$.

Proof. We induct on the length of u. The base cases where the length of u is 0 or 1 are trivial. Assuming that the length of u is at least 2 , we may write $u=t_{y} v t_{x}$ for some $x, y \in \mathbb{Z}$ and some, possibly empty, word v.

Suppose that u is the shortest counterexample; then it is a counterexample in the strongest sense possible:
$(\boldsymbol{\uparrow})$ for every way of writing u as $u_{2} u_{1}$ with non-empty u_{1} and u_{2}, the b th factor of $u_{1} \star f$ is not a loitering quadratic.
Otherwise, one of u_{2} and u_{1} is a shorter counterexample. In particular, t_{x} must move the loitering quadratic f_{b}. We work out the case where $x=b$; the other case where $x=b-1$ is symmetric.

Claim 2.165.1. For any words v_{1}, v_{2} with $v=v_{2} v_{1}$, the long decomposition $v_{1} t_{x} \star f$ has a one-way, left-to-right, unoccupied gate at (b-1).

Proof of Claim: If the gate of $v_{1} t_{x} \star f$ corresponding to the gate of f at b is occupied, we contradict $(\boldsymbol{\phi})$. Before the gate can move or change direction, it must have been occupied.

So $v t_{x} \star f$ has a one-way, left-to-right, unoccupied gate at $(b-1)$; but $u \star f=$ $t_{y} \star\left(v t_{x} \star f\right)$ has a loitering quadratic at b. It follows that $y=b$, and $u=t_{b} v t_{b}$, and
($\boldsymbol{\&})$ the $(b+1)^{\text {st }}$ factor of $v t_{b} \star f$ is a wandering quadratic.
The Claim also implies that $t_{b-1} \star\left(v_{1} t_{x} \star f\right)$ is not defined for any such v_{1}, and so t_{b-1} does not occur in v.

Thus, v lies in a copy of Sym_{k}, so we may replace v by its first canonical form $v=s_{0} s_{Q} w$ where w is a word in t_{i} with $i \neq b-1, b, b+1$, permuting the factors in the big chunk on the left that consists of all the factors except the $b^{\text {th }}$ and the $(b+1)^{\text {st }}$; and s_{Q} is a right-to-left transit move the wandering quadratic from its starting $(b+1)^{\text {st }}$ spot; and s_{0} is a right-to-left transit moving the $b^{\text {th }}$ factor of $t_{b} \star f$ left. But we know from ($\boldsymbol{(}$) that the quadratic ends up back in the $(b+1)^{\text {st }}$ spot! So, there are only two possibilities for s_{0} and s_{Q}.

Case 1: If s_{Q} is empty, then s_{0} must also be empty. Since w commutes with t_{b}, we now have

$$
u=t_{b} v t_{b} \simeq t_{b} s_{0} s_{Q} w t_{b}=t_{b} w t_{b} \simeq w t_{b} t_{b}
$$

where \simeq means "reducible of each other" so same length. This contradicts u being reduced.

Case 2: If s_{Q} is non-empty, it still can only move the wandering quadratic one step, so $s_{Q}=t_{b+1}$. Now s_{0} must move its factor past the quadratic, so at least two steps: $s_{0}=s_{1} t_{b+1} t_{b}$. So now
$u=t_{b} v t_{b} \simeq t_{b} s_{0} s_{Q} w t_{b}=t_{b}\left(s_{1} t_{b+1} t_{b}\right) t_{b+1} w t_{b} \simeq t_{b} s_{1} \mathbf{t}_{\mathbf{b}} \mathbf{t}_{\mathbf{b}+\mathbf{1}} \mathbf{t}_{\mathbf{b}} w t_{b} \simeq t_{b} s_{1} t_{b} t_{b+1} \mathbf{w} \mathbf{t}_{\mathbf{b}} \mathbf{t}_{\mathbf{b}}$
again, contradicting u being reduced. (In the displayed equations, the two boldface expressions come from the braid relation $t_{b+1} t_{b} t_{b+1} \simeq t_{b} t_{b+1} t_{b}$ and the commutation of w with t_{b}.)

In both cases, we have obtained the desired contradiction.
From Lemma 2.165 we immediately obtain the following useful corollary.

Corollary 2.166. Fix a reduced word u and long decompositions f and g with $u \star f=g$. If both f_{b} and g_{b} are loitering quadratics, then t_{b} and t_{b-1} do not occur in u.

Definition 2.167. A long decomposition f is lazy is all wandering quadratics of f are loitering.
Lemma 2.168. If g and $u \star g$ are both lazy and the same gates are occupied by wandering quadratics in both, then $u=u_{r} \ldots u_{1}$ where u_{i} permutes factors in the $i^{\text {th }}$ cluster (with respect to some listing of the clusters) and does not move any wandering quadratic in that cluster.

Proof. Fix a reduced presentation w of u. By Corollary 2.166, whenever g has an occupied gate at b, neither t_{b} nor t_{b-1} occur in w. Furthermore, by Lemma 2.165 and Corollary 2.166 whenever g has an unoccupied gate at a, the gate remains unoccupied, so t_{a} does not occur in w. Intracluster swaps in different clusters commute with each other, and so they can be collected as described.
Proposition 2.169. Let f be a lazy long decomposition with r clusters and p wandering quadratics per period, and suppose that $w \star f$ is also lazy, for some $w \in \operatorname{ASym}_{k}$. Then $w \star f$ may be expressed as

$$
w \star f=s_{p} \ldots s_{2} s_{1} u_{r} \ldots u_{2} u_{1} \star f
$$

where

- u_{j} permutes factors in the j th cluster (with respect to some listing of the clusters) and
- s_{i} is a transit that moves the ith wandering quadratic (again with respect to some listing of the wandering quadratics) from one gate to another.
Proof. We are actually going to obtain a slightly different form $u_{r} \ldots u_{2} u_{1} s_{p} \ldots s_{2} s_{1}$ where transits happen first and intracluster swaps happen second. The stated result follows from Lemma 2.43, or by applying the proved result to w^{-1}.

We induct on the number of loitering quadratics of f moved to a different gate by $w \star f$. The base case where none are moved is Lemma 2.168, with all s_{j} empty.

Now suppose that a wandering quadratic f_{a} of f is moved to g_{b} via $w \star f=g$. Applying Lemma 2.163 produces a transit s, a word $w^{\prime}:=w s^{-1}$, and a decomposition $f^{\prime}:=s \star f$ with the factor f_{b}^{\prime} being a loitering quadratic of f^{\prime}, and all other loitering quadratics of f unmoved.

Now $w^{\prime} \star f^{\prime}=g$, both f^{\prime} and g are lazy, and one more loitering quadratic stays put in $w^{\prime} \star f^{\prime}=g$ as compared to $w \star f=g$. Thus, by inductive hypothesis, we may express w^{\prime} as desired; and then $w=s w^{\prime}$ is also of the requisite form.

Proposition 2.170. For a long decomposition f with r clusters and p wandering quadratics per period, and for any $w \in \mathrm{ASym}_{k}, w \star f$ may be expressed as

$$
w \star f=v_{\text {in }} s_{p} \ldots s_{2} s_{1} u_{r} \ldots u_{2} u_{1} v_{\text {out }} \star f
$$

where

- $v_{\text {out }}$ moves all wandering quadratics to a nearest owned gate, via transits, so that $v_{o u t} \star f$ is lazy,
- u_{j} permutes factors in the j th cluster (with respect to some listing of the clusters),
- s_{i} is a transit that moves the ith wandering quadratic (again with respect to some listing of the wandering quadratics) from one gate to another, and
- $v_{i n}$ moves some wandering quadratics from a gate into clusters, via transits.

Proof. Lemma 2.163 gives the transits making up $v_{i n}$ and $v_{\text {out }}$. Apply Proposition 2.169 to the long decomposition $v_{\text {out }} \star f$ and $v_{\text {in }}^{-1} w v_{o u t}^{-1} \in \mathrm{ASym}_{k}$ to obtain the u_{j} 's and s_{i} 's.
Remark 2.171. (1) s_{j} and u_{j} can be done in any order. See Lemma 2.43
(2) All intermediate decompositions between $s_{p} \ldots s_{2} s_{1} u_{r} \ldots u_{2} u_{1} v_{o u t} \star f$ and $v_{\text {out }} \star f$ are lazy.
(3) In constructing the transits in $v_{\text {out }}$ and $v_{i n}$, if a particular wandering quadratic f_{i} owns the gates at both sides of the cluster it is in, we are free to choose to move this f_{i} to either one of those gates.

We proceed to complete the proof of Theorem 1.3 under the hypothesis that a long decomposition of the polynomial P admits a non-empty clustering. With the results we have already proven, this reduces to proving Theorem 1.3 under much stronger hypotheses on such a clustering.
Proposition 2.172. Let f be a long decomposition admitting a non-empty clustering with at least one C cluster and only one-way gates all of which are owned by some wandering quadratic. If for some $\gamma \in \mathrm{ST}_{k}^{+}$, we have $\gamma \star f=f^{\tau}$, then there are α and β in Sym_{k} such that $\beta \phi^{N} \alpha \star f=f^{\tau}$ encodes the same skew-invariant curve. Thus, that curve is a skew-twist.

Proof. Since we have at least on type C factor, $\epsilon_{p}^{ \pm 1} \star f$ is not defined for any odd p. Since gates are owns, f must have at least one quadratic factor; so, $\epsilon_{2}^{ \pm 1} \star f$ is also undefined. Thus, $\gamma \in \mathrm{ST}_{k}$ and may be expressed as $\gamma=\phi^{N} w$ for some $N \in \mathbb{Z}$ and $w \in \operatorname{ASym}_{k}$. We now have $\phi^{N} w \star f=f^{\tau}$

The following claim identifies the two cases we will consider.
Claim 2.172.1. One of the following holds
\& Applying Proposition 2.170 to $w \star f$, we may take $v_{o u t} \in \operatorname{Sym}_{k}$.
ค The long decomposition f does not have a cluster boundary at k and f_{k+1} and f_{k} are not loitering quadratics. The cluster $C_{b a d}$ of f containing f_{k+1} and f_{k} also contains a wandering quadratic f_{a} which owns exactly one of the gates on the sides of this cluster. If f_{a} owns the gate on the left of this cluster, $k \geq a$; and if f_{a} owns the gate on the right of this cluster, $a \geq k+1$.
Proof of Claim: The only reason that o would fail is that $v_{\text {out }}$ contains t_{k}. This cannot happen if either f_{k+1} or f_{k} is a loitering quadratic of f, because such a loitering quadratic is not moved by $v_{\text {out }}$.

Consider the situation were the transit s in $v_{\text {out }}$ containing t_{k} is left-to-right; the other one is analogous. At some stage, this transit s takes the wandering quadratic from the $(k+1)^{\text {st }}$ position to the $k^{\text {th }}$ one. If f had a cluster boundary at k, the wandering quadratic would already be loitering when it is in the $(k+1)^{\text {st }}$ spot, contradicting the fact that $v_{\text {out }}$ moves each wandering quadratic to a nearest gate.

Thus, "the cluster $C_{b a d}$ of f containing f_{k+1} and f_{k} " is well-defined. The wandering quadratic moved by the transit s must be inside this cluster when t_{k} moves it from the $(k+1)^{\text {st }}$ position to the $k^{\text {th }}$ position. So, it starts out in $C_{b a d}$. Since s contains t_{k}, it starts out at the $(k+1)^{\text {st }}$ spot or further left, and moves to the gate
on the right side of $C_{b a d}$. If it also owns the gate on the left side of $C_{b a d}$, it could have moved there instead, giving us a different $v_{o u t}$, with no t_{k}.

We consider now the two cases identified in the claim.
Case \&: Replacing f and f^{τ} by $v_{\text {out }} \star f$ and $v_{\text {out }} \star f^{\tau}$, it suffices to solve the Mahler problem for a lazy decomposition. Fix a representation of w as given by Proposition 2.169. We argue just like the case with walls: in

$$
\phi^{N} s_{p} \ldots s_{2} s_{1} u_{r} \ldots u_{2} u_{1}
$$

at most one s_{h} and at most one u_{j} contains t_{k}. We move those left via commutation to get $\phi^{N} u_{j} s_{h} v$ where $v \in \operatorname{Sym}_{k}$.

We consider the special case where $C_{b a d}^{\tau}$ corresponds to $C_{b a d}$ via $\phi^{N} w \star f=f^{\tau}$. Then for each b, if there is a gate of f^{τ} at b, it corresponds to a gate of f at b via $\phi^{n} w \star f=f^{\tau}$. This implies that w does not move any loitering quadratics, so that all s_{i} 's are empty. The following shows that the u_{i} s act trivially.

Claim 2.172.2. Fix a cluster $f_{(b, a]}$ of some clustering of a long decomposition f, and a word u in $\left\{t_{i}: b>i>a\right\}$. If the degree sequence of $u \star f$ is the same as the degree sequence of f and positions of the monomials are also preserved, then u represents the identity of ASym_{k}.

Proof of Claim: If $f_{(b, a]}$ is a C cluster, then the degrees completely determine the factors f_{j}. Because tautological swaps are not allowed, the order of factors of the same degree cannot change.

If $f_{(b, a]}$ is a C-free cluster, then the degrees completely determine the monomial factors and again because tautological swaps are not allowed, the order of monomial factors of the same degree cannot change. Since every swap in a C-free cluster must involve a monomial, the action of u is trivial.

From now on we may assume that $C_{b a d}^{\tau}$ does not correspond to $C_{b a d}$ via $\phi^{N} w \star f=$ f^{τ}.

Claim 2.172.3. The transit s_{j} which contains t_{k} does not contain t_{k-N}. Thus, \widehat{s} defined by $\phi^{N} s_{j}=\widehat{s} \phi^{N}$ does not contain t_{k}.

Proof of Claim: We work out the case that s_{j} is right-to-left. So, each gate it crosses starts right-to-left and ends left-to-right. Consider the gates on the sides of the cluster X of f containing f_{k}, and the cluster Y of f for which X^{τ} corresponds to Y via $\phi^{N} w \star f=f^{\tau}$. Since s_{j} contains t_{k}, it crosses X. Thus, X has right-to-left gates on both sides in f. So X^{τ} also has right-to-left gates on both sides in f^{τ}. If s_{j} also contains t_{k-N}, then it crosses Y. So, the corresponding clusters Z^{\prime} and Z in $s_{j} \star f$ and in $w \star f$, respectively, have left-to-right gates at both ends. But X^{τ} corresponds to Z via $\phi^{N} \star(w \star f)=f^{\tau}$, so it also must have left-to-right gates at both ends, contradicting that X^{τ} must have right-to-left gates at both ends.

We now have the ingredients to complete the proof in this case. Let s_{h} be the transit containing t_{k} and let u_{j} be the one acting on $C_{b a d}$, and let $\widehat{u_{j}}$ and $\widehat{s_{h}}$ be defined by $\phi^{N} u_{j} s_{h}=\widehat{u_{j}} \widehat{s_{h}} \phi^{N}$. Because s_{h} does not contain t_{k-N}, we know that $\widehat{s_{h}}$ does not contain t_{k}. Because $C_{b a d}$ gets moved to a different cluster by ϕ^{N}, we know that $\widehat{u_{j}}$ does not contain t_{k}. Thus, $\phi^{N} w=\widehat{u}_{j} \widehat{s}_{h} \phi^{N} v$ with $v \in \operatorname{Sym}_{k}$ and $\widehat{u}_{j} \widehat{s}_{h} \in \operatorname{Sym}_{k}$, and we are done with Case $\boldsymbol{\&}$.

Case : Throughout the proof in this case we shall refer to the wandering quadratic f_{a} and any factor it becomes via $v \star f$ for any $v \in \mathrm{ST}_{k}$ as $Q_{b a d}$.

As in Case \& , we may assume that all other wandering quadratics of f are loitering. Suppose that $Q_{\text {bad }}$ owns the gate on the left of $C_{\text {bad }}$, which then must be right-to-left. The other direction is symmetric. The gate on the right of $C_{b a d}$ is either occupied or right-to-left, because its owner is at a gate somewhere.

We first consider the special case where this gate is owned by f_{a-k}. Under this hypothesis, Corollary 2.164 gives that all gates in f are right-to-left and all gates in $w \star f$, and therefore in $f^{\tau}=\phi^{N} w \star f$ are left-to-right. This is a contradiction.

So, we may assume that this gate is owned by some wandering quadratic f_{b} with $a>b>a-k$. We shall refer to any wandering quadratic f_{b} may become as $Q_{o w n}$.

Gates on both sides of $C_{b a d}$ have right-to-left gates in f (one might be occupied). Consider the cluster Y of f corresponding to $C_{\text {bad }}^{\tau}$ via $\phi^{N} w \star f=f^{\tau}$, and the cluster Z of $w \star f$ corresponding to Y.

The wandering quadratic $Q_{o w n}$ in Z corresponding to $Q_{b a d}^{\tau}$ via $\phi^{N}(w \star f)=f^{\tau}$ does not correspond to $Q_{b a d}$ via $w \star f$: because $Q_{b a d}^{\tau}$ does not own the gate to the right of $C_{b a d}$, but the wandering quadratic in $w \star f$ corresponding to $Q_{b a d}$ via $w \star f$ owns the gate on its right, since s_{j} that brought $Q_{b a d}$ there is a right-to-left transit.

Furthermore, s_{j} cannot go all the way across Y, as that would leave no wandering quadratic there. So, moving s_{j} across ϕ^{N} gets rid of t_{k}. Moving u_{h} across ϕ^{N} also removes t_{k} because we have already ruled out the special case that $C_{b a d}$ corresponds to $C_{\text {bad }}^{\tau}$ via $\phi^{N} w \star f=f^{\tau}$. Thus, $\phi^{N} w=\widehat{u_{j} \widehat{s_{h}}} \phi^{N} v$ with $v \in \operatorname{Sym}_{k}$ and $\widehat{u_{j} \widehat{s_{h}}} \in \operatorname{Sym}_{k}$, concluding the proof of Case $\boldsymbol{\phi}$.

Corollary 2.173. Suppose that a polynomial P admits a long decomposition f having a non-empty clustering with at least one C cluster and only one-way gates all of which are owned by some wandering quadratic. Then every $\left(P, P^{\tau}\right)$-skew invariant curve is a skew-twist.

Proof. Consider a $\left(P, P^{\tau}\right)$-skew invariant curve \mathcal{C} encoded by $\gamma \star f=f^{\tau}$ for some $\gamma \in \mathrm{ST}_{k}^{+}$. By Proposition 2.172 \mathcal{C} is a skew-twist.
2.4. Completing the proof of Theorem 1.3. We now complete the proof of Theorem 1.3

Proof. We are given a non-exceptional polynomial P. We need to show that every skew-invariant curve for $\left(P, P^{\tau}\right)$ is a skew-twist.

We have shown with Proposition 2.22 that Theorem 1.3 holds when P is indecomposable. For the remainder of this proof we assume that P is decomposable.

Fix a long decomposition f of the polynomial P. We break into three cases.
Case 1: Unswappable factor If some factor f_{i} of f is not swappable in the sense of Definition 2.9, then by Lemma 2.48, the long decomposition f has a wall at i. Proposition 2.52 is Theorem 1.3 for this f.

Case 2: All factors swappable, C-free Suppose that all factors of f are swappable but no factor is of type C. Proposition 2.112 breaks this into two subcases. In one subcase, the long decomposition f has a wall and then Proposition 2.52 is Theorem 1.3 for this f. The other subcase is exactly Proposition 2.99 .

Case 3: All factors swappable with at least one type C factor Suppose now that all factors of f are swappable and at least one of them is type C .

By Remark 2.101, such decompositions always admit preclusterings. If the empty set is a preclustering of such a decomposition, Proposition 2.120 shows that P is an exceptional polynomial (Chebyshev or negative Chebyshev, up to skew-conjugation), which is explicitly excluded by the hypotheses of Theorem 1.3 . Otherwise, by Corollary 2.130, f admits a nonempty clustering A.

If some cluster boundary $a \in A$ has no gate, then f has a wall at a by Proposition 2.153 , and again Proposition 2.52 is Theorem 1.3 for this f. By Definition 2.128, no gates of (A, f) are two-way. Thus, we may assume that all cluster boundaries of (A, f) have one-way gates.

If some gate of (A, f) is not owned by any wandering quadratic and f has a quadratic factor, Lemma 2.158 shows that f has a wall, and again Proposition 2.52 is Theorem 1.3 for this f.

It remains to prove Theorem 1.3 for long decompositions f with all of the following properties:

- all factors of f are swappable;
- at least one factor of f is type C;
- f admits a non-empty clustering A;
- all cluster boundaries of (A, f) have one-way gates; and
- every gates of (A, f) is owned by some wandering quadratic.

This is done in Corollary 2.173

3. Independence for non-ExCEptional polynomial Type

In this section we complete the proof of Theorem 1.1. As we noted in the introduction, this is achieved by showing a much stronger algebraic independence result for Mahler functions of non-exceptional polynomial type to the effect that if f is a transcendental q-Mahler function of non-exceptional polynomial type, $p \in \mathbb{Q}_{+}$ is multiplicatively independent from q, and g_{1}, \ldots, g_{m} is a sequence of functions each satisfying some algebraic difference equation with respect to the substitution $t \mapsto t^{p}$, then f is algebraically independent from g_{1}, \ldots, g_{m} over $\mathbb{C}(t)$.

We prove this theorem as an instance of a general result about solutions to difference equations. With the following Convention we outline the conditions required for our general theorem.

Convention 3.1. Throughout the remainder of this section we work with a quintuple ($C, K, L, \sigma, \tau)$ satisfying the following.
(1) $C \subseteq K \subseteq L$ is a tower of algebraically closed fields of characteristic zero.
(2) σ and τ are commuting automorphisms of L.
(3) $\sigma(K)=K$ and $\tau(K)=K$.
(4) $C=\operatorname{Fix}(\sigma)=\operatorname{Fix}(\tau)$ is the common fixed field of σ and τ.
(5) σ and τ are independent in the sense that for $a \in L \backslash C$ and $(m, n) \in$ $\mathbb{Z}^{2} \backslash\{(0,0)\}$ one has $\sigma^{m} \tau^{n}(a) \neq a$.
(6) For ρ any element of the group generated by σ and τ and $c \in C \backslash\{0,1\}$ a nonzero constant distinct from one, there are no nonzero solutions to $\rho(y)=c y$.
(7) For ρ and μ independent elements of $\langle\sigma, \tau\rangle$, the group of automorphisms generated by σ and $\tau, M \in \mathbb{Z}_{+}$a positive integer, and $a \in L^{\times}$, if $\rho\left(\frac{\mu(a)}{a}\right)=$ $\left(\frac{\mu(a)}{a}\right)^{M}$, then $a \in K^{\times}$.

We note now that our intended structures fit Convention 3.1
Proposition 3.2. Let p and q be multiplicatively independent positive rational numbers. Let $C:=\mathbb{C}, K:=\mathbb{C}(t)^{\text {alg }}$, and $L:=\mathbb{C}((t))^{\text {alg }}$. Let $\sigma: L \rightarrow L$ be defined by $\sum a_{r} t^{r} \mapsto \sum a_{r} t^{r p}$ and $\tau: L \rightarrow L$ be defined by $\sum a_{r} t^{r} \mapsto \sum a_{r} t^{r q}$. Then (C, K, L, σ, τ) meets the conditions of Convention 3.1.

Proof. Conditions (1) and (2) are obvious. For condition (3), note that σ and τ preserve the subfield $\mathbb{C}\left(\left\{t^{r}: r \in \mathbb{Q}\right\}\right)$ of K, and hence, its algebraic closure, K, itself. For condition (4), we express $a \in L \backslash C$ as $a=\sum a_{r} t^{r}$ and let $s \neq 0$ be minimal such that $a_{s} \neq 0$. Then among the terms in $\sigma(a)$ with a non-zero coefficient, $t^{p s}$ is the non-constant term of minimal degree. Since $p s \neq s$, we have $\sigma(a) \neq a$. Applying the same reasoning to τ and $\sigma^{m} \tau^{n}$ gives conditions (4) and (5).

For condition (6), the automorphism ρ is given by the substitution $t \mapsto t^{a p+b q}$ for some $(a, b) \in \mathbb{Z}^{2}$. Suppose that $\rho(y)=c y$ and y is not zero. If $(a, b)=(0,0)$, then $\rho(y)=y$ which is not $c y$ unless $y=0$. So, we may assume that $(a, b) \neq(0,0)$. Express $y=y_{-}+y_{0}+y_{+}$where $y_{0} \in C, y_{-}$is a Puisseux series supported with only negative exponents, and y_{+}is a Puisseux series supported with only positive exponents. From the additivity of the equation and the preservation of the three cases (exponent zero, all exponents negative, or all exponents positive), we see that we must have $\rho\left(y_{*}\right)=c y_{*}$ for $* \in\{0,-,+\}$. Since ρ is the identity function on C and $c \neq 1$, we must have $y_{0}=0$. Since the order of $\rho\left(y_{*}\right)$ is $(a p+b q)$ times the order of y_{*} and $a p+b q \neq 1$, unless $y_{*}=0$ (for $*=+$ or -), the equality $\rho(y)=c y$ cannot hold.

For condition (7), notationally it suffices to consider $\mu=\sigma$ and $\rho=\tau$. Write our solution a as $a=c t^{r}(1+\epsilon)$ where $c \in \mathbb{C}^{\times}, r \in \mathbb{Q}$, and $\epsilon \in \mathbb{C}((t))^{\text {alg }}$ has strictly positive order. We have $\left.\tau\left(\frac{\sigma(a)}{a}\right)=t^{q(p-1) r} \tau\left(\frac{\sigma(1+\epsilon)}{1+\epsilon}\right)\right)$, while $\left(\frac{\sigma(a)}{a}\right)^{M}=$ $t^{(p-1) M r}\left(\frac{\sigma(1+\epsilon)}{1+\epsilon}\right)^{M}$. Thus, for a to be a solution we must have $q r=M r$ (so that $r=0$ or $q=M$) and $\tau\left(\frac{\sigma(1+\epsilon)}{1+\epsilon}\right)=\left(\frac{\sigma(1+\epsilon)}{1+\epsilon}\right)^{M}$. If $\epsilon=0$, then $a=c t^{r} \in K$, as required. If $\epsilon \neq 0$, then we may express $\epsilon=d t^{s}+\eta$ where $d \in \mathbb{C}^{\times}$and the order of η is strictly greater than s. Depending on whether $p<1$ or $p>1$, we have $\frac{\sigma(1+\epsilon)}{1+\epsilon}=1+d t^{s p}+$ higher order (or $1-d t^{s}+$ higher order, respectively). Thus, $\tau\left(\frac{\sigma(1+\epsilon)}{1+\epsilon}\right)=1+d t^{s p q}+$ higher order (or, $1-d t^{s q}+$ higher order, respectively) and $\left(\frac{\sigma(1+\epsilon)}{1+\epsilon}\right)^{M}=1+M d t^{s p}+$ higher order (or $1-M d t^{s}+$ higher order, respectively). In either case, because p and q are multiplicatively independent, we cannot have such identities. Thus, $\epsilon=0$ and $a \in K$.

Let us reformulate Theorem 1.2 in the language of Convention 3.1 .
Theorem 3.3. Let (C, K, L, σ, τ) be a quintuple satisfying Convention 3.1. Suppose that $f \in L, g_{1}, \ldots, g_{n} \in L$ is a sequence of elements of $L, P \in K[X]$ is a nonexceptional polynomial over K, and that f satisfies $\sigma(f)=P(f)$ while each g_{i} satisfies a nontrivial τ-algebraic difference equation over K. Then f is algebraically independent from g_{1}, \ldots, g_{n} over K.

We will deduce Theorem 3.3 from the following theorem about a single solution to a difference equation of non-exceptional polynomial type.

Theorem 3.4. Let (C, K, L, σ, τ) be a quintuple meeting Convention 3.1, $P \in$ $K[X]$ a non-exceptional polynomial, and $f \in L$ a solution to $\sigma(f)=P(f)$. Then f and $\tau(f)$ are algebraically independent over K.

Remark 3.5. It follows from the main theorem of 8 that Theorem 3.4 may be strengthened to the conclusion that $\left\{\tau^{j}(f): j \in \mathbb{Z}\right\}$ are algebraically independent over K. Indeed, in Theorem 3.3 we could strengthen the conclusion to the conclusion that $\left\{\tau^{j}(f): j \in \mathbb{Z}\right\}$ is algebraically independent over $K\left(\left\{\sigma^{i} \tau^{j}\left(g_{k}\right): i, j \in \mathbb{Z}, 1 \leq\right.\right.$ $k \leq n\}$).

Lemma 3.6. Theorem 3.4 implies Theorem 3.3.
Proof. Consider $(C, K, L, \sigma, \tau), f, P, g_{1}, \ldots, g_{n}$ as in the hypotheses of Theorem 3.3 . We may take $f \notin K$ as the the theorem holds trivially when $f \in K$. If f is algebraically dependent on g_{1}, \ldots, g_{n} over K, then $f \in K\left(g_{1}, \ldots, g_{m}\right)^{\text {alg }}$. Applying τ repeatedly, we see that for each $j \in \mathbb{N}$ that $\tau^{j}(f) \in K\left(\tau^{j}\left(g_{1}\right), \ldots, \tau^{j}\left(g_{m}\right)\right)^{\text {alg }}$. Thus, $K\langle f\rangle_{\tau}:=K\left(\left\{\tau^{j}(f): j \in \mathbb{N}\right\}\right) \subseteq K\left\langle g_{1}, \ldots, g_{m}\right\rangle_{\tau}^{\text {alg }}$. By our hypothesis on the g_{j} 's, $\operatorname{tr} . \operatorname{deg}_{K}\left(K\left\langle g_{1}, \ldots, g_{m}\right\rangle_{\tau}\right)<\infty$. Thus, there must be a nontrivial algebraic dependence over K amongst $\left\{\tau^{j}(f): j \in \mathbb{N}\right\}$. Take N so that $\left\{\tau^{j}(f): 0 \leq j \leq N\right\}$ are algebraically dependent over K. Because σ and τ commute, we see that $\sigma\left(\tau^{j}(f)\right)=\tau^{j}(\sigma(f))=\tau^{j}(P(f))=P^{\tau^{j}}\left(\tau^{j}(f)\right)$. That is, $\tau^{j}(f)$ satisfies the difference equation $\sigma(y)=P^{\tau^{j}}(y)$. Since P is non-exceptional, so is each ${ }^{\tau^{j}} P$. The variety V given as the locus of $\left(f, \tau(f), \ldots, \tau^{N}(f)\right)$ over K is then σ-skew-invariant variety for $\left(P, P^{\tau}, \ldots, P^{\tau^{N}}\right)$ which projects dominantly to each coordinate. By Proposition 2.21 of [8], for some pair $i<j$ the projection of V to $i^{\text {th }}$ and $j^{\text {th }}$ coordinates is a σ-skew-invariant curve for $\left(P^{\tau^{i}}, P^{\tau^{j}}\right)$. Applying τ^{-i}, we obtain a nontrivial algebraic dependence between f and $\tau^{j-i}(f)$. This contradicts Theorem 3.4 in the case of the quintuple $\left(C, K, L, \sigma, \tau^{j-i}\right), f$, and P.

The rest of this section is devoted to the proof of Theorem 3.4 .
By moving to another quintuple satisfying Convention 3.1, we may arrange that from a counterexample to Theorem 3.4 that we may produce one in which f and $\tau(f)$ are related by a linear relation.

Lemma 3.7. If Theorem 3.4 fails, then there is some quintuple (C, K, L, σ, τ) satisfying Convention 3.1, a non-exceptional $P \in K[X]$, a linear polynomial $\lambda \in$ $K[X]$, and $f \in L \backslash K$ satisfying $\sigma(f)=P(f)$ and $\tau(f)=\lambda(f)$.

Proof. Consider a possible counterexample to Theorem 3.4. So we have a quintuple (C, K, L, σ, τ) satisfying Convention 3.1, a non-exceptional polynomial $P \in K[X]$ and some $f \in L \backslash K$ with $\sigma(f)=\overline{P(f)}$ and f and $\tau(f)$ algebraically dependent over K. Throughout this proof, we will successively replace each part of these data until we arrive at a situation as described in the conclusion of the Lemma.

Let $Y=\operatorname{loc}(f, \tau(f) / K)$ be the locus of $(f, \tau(f))$ over K. Then Y is σ-skewinvariant for $\left(P, P^{\tau}\right)$. By Theorem 1.3, Y is a skew-twist. Thus, there are are α, β and n so that either $P=\beta \circ \alpha, P^{\tau}=\alpha^{\sigma^{n}} \circ \beta^{\sigma^{n}}$, and Y is defined by $y=\alpha^{\sigma^{n}} \circ P^{\sigma^{n-1}} \circ \cdots P^{\sigma} \circ P$ or $P^{\tau}=\beta \circ \alpha, P=\alpha^{\sigma^{n}} \circ \beta^{\sigma^{n}}$, and Y is defined by $x=\alpha^{\sigma^{n}} \circ P^{\tau \sigma^{n-1}} \circ \cdots P^{\tau \sigma} \circ P^{\tau}(y)$. In the former case, we make no changes yet. In the latter case, we replace τ by τ^{-1}, P by P^{τ}, and f by $\tau(f)$. In so doing, we may assume that $\sigma(f)=P(f)$ and that we are in the first case.

Let $\pi:=\alpha^{\sigma^{n}} \circ P^{\sigma^{n-1}} \circ \cdots \circ P^{\sigma} \circ P$. That is, Y is defined by $y=\pi(x)$ and we have the compositional identity $\pi^{\sigma} \circ P=P^{\tau} \circ \pi$. Note, in particular, this means that $\pi(f)=\tau(f)$.

Let k be the number of indecomposable factors in a complete docomposition of P. The curve Z defined by $y=\pi^{\tau^{k-1}} \circ \cdots \pi^{\tau} \circ \pi(x)$ is σ-skew-invariant for $\left(P, P^{\tau^{k-1}}\right)$. Hence, by Theorem 1.3 there is some polynomial λ which is a proper initial compositional factor of P and a natural number m so that $\pi^{\tau^{k-1}} \circ \cdots \pi^{\tau} \circ$ $\pi=\lambda^{\sigma^{m}} \circ P^{\sigma^{m-1}} \circ \cdots \circ P^{\sigma} \circ P$. The number of indecomposable compositional factors of the lefthand side of this equation is k times the number of compositional factors of π while on the righthand side it is $k m$ plus the number of factors of λ. As λ is a proper initial factor of P, it has fewer than k indecomposable factors. As k divides the lefthand side, and thus also the righthand side, namely, $k m+$ number of indecomposable factors of λ, it must be that λ has no indecomposable factors. That is, λ is linear.

We compute that $\lambda\left(\sigma^{m}(f)\right)=\lambda\left(P^{\sigma^{m-1}} \circ \cdots \circ P^{\sigma} \circ P(f)\right)=\pi^{\tau^{k-1}} \circ \cdots \circ \pi^{\tau} \circ \pi(f)=$ $\pi^{\tau^{k-1}} \circ \cdots \circ \pi^{\tau}(\tau(f))=\cdots=\tau^{k}(f)=\sigma^{-m} \tau^{k}\left(\sigma^{m}(f)\right)$. Thus, if we replace τ with $\sigma^{-m} \tau^{k}, f$ with $\sigma^{m}(f)$ and P with $\sigma^{m}(P)$, then we have our desired solution.

With the next lemma we show that the situation described in the conclusion of Lemma 3.7 cannot occur.

Lemma 3.8. If (C, K, L, σ, τ) satisfies Convention 3.1, $f \in L \backslash K, P \in K[X]$ is non-exceptional, $\lambda \in K[X]$ is linear, then it is not possible to have $\sigma(f)=P(f)$ and $\tau(f)=\lambda(f)$.
Proof. Using the fact that τ and σ commute, we have $P^{\tau} \circ \lambda(f)=\tau(P(f))=$ $\tau(\sigma(f))=\sigma(\tau(f))=\sigma(\lambda(f))=\lambda^{\sigma} \circ P(f)$. Since $f \in L \backslash K$, we have the functional identity

$$
\begin{equation*}
\lambda^{\sigma} \circ P=P^{\tau} \circ \lambda \tag{33}
\end{equation*}
$$

We make two reductions before completing this proof.
Write $P(X)=\sum_{i=0}^{d} p_{i} X^{i}$ where $d=\operatorname{deg}(P)$.
Claim 3.8.1. We may assume that $p_{d-1}=0$.
Proof of Claim: Let $\mu(X):=X-\frac{p_{d-1}}{d p_{d}}$. Set $\widetilde{f}:=\mu(f), \widetilde{P}:=\left(\mu^{\sigma}\right) \circ P \circ \mu^{-1}$, and $\widetilde{\lambda}:=\mu^{\tau} \circ \lambda \circ \mu^{-1}$. Then $\sigma(\widetilde{f})=\widetilde{P}(\widetilde{f}), \tau(\widetilde{f})=\widetilde{\lambda}(\widetilde{f}), \widetilde{f} \in L \backslash K$, and the coefficient of X^{d-1} in \widetilde{P} is zero. Replacing f by \widetilde{f}, P by \widetilde{P}, and λ by $\widetilde{\lambda}$, the claim is established.区

We continue with the reductions.
Claim 3.8.2. We may assume that $p_{d} \in C^{\times}$.
Proof of Claim: From Equation 33 and Claim 3.8.1 we see that there is some $A \in K^{\times}$with $\lambda(X)=A X$. Thus, reading Equation 33 degree-by-degree for any index i, we have

$$
\begin{equation*}
A^{\sigma} p_{i}=A^{i} p_{i}^{\tau} \tag{34}
\end{equation*}
$$

Since $d=\operatorname{deg}(P), p_{d} \neq 0$. Since P is not conjugate to a monomial, there is some positive m with $p_{d-m} \neq 0$. Dividing the instances of Equation 34 for $i=d$ and $i=d-m$, we obtain

$$
\begin{equation*}
p_{d} / p_{d-m}=A^{m} \tau\left(p_{d} / p_{d-m}\right) \tag{35}
\end{equation*}
$$

Take $q \in L$ with q^{m}, then from Equation 35, we see that

$$
\begin{equation*}
A=\zeta q / \tau(q) \tag{36}
\end{equation*}
$$

for some $m^{\text {th }}$ root of unity ζ. Combining Equation 34 in the case of $i=d$ and Equation 36 , we obtain

$$
\begin{equation*}
p_{d}^{\tau} \zeta^{d} q^{d} / \tau\left(q^{d}\right)=\zeta \sigma(q) p_{d} / \sigma \tau(q) \tag{37}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\tau\left(\frac{p_{d} \sigma(q)}{q^{d}}\right)=\zeta^{1-d} \frac{p_{d} \sigma(q)}{q^{d}} \tag{38}
\end{equation*}
$$

Since ($C, K, L, \sigma, \tau)$ satisfies Convwntion 3.1 the only solutions to the difference equation $\tau(y)=\zeta^{1-d} y$ are constant. Thus, there is some $c \in C$ with $p_{d}=c \frac{q^{d}}{\sigma(q)}$. Let $\mu(X)=\frac{1}{q} X$, then replacing P with $\mu^{\sigma} \circ P \circ \mu^{-1}, f$ with $\mu(f)$, and λ with $\mu^{\tau} \circ \lambda \circ \mu^{-1}$, we arrange that the leading coefficient of P may be taken to be c 。

With our reductions, because $p_{d}^{\tau}=p_{d}$, from Equation 34 in the case of $i=d$, we conclude that $A^{\sigma}=A^{d}$. Because $\tau(f)=A f$, we see that $\sigma\left(\frac{\tau(f)}{f}\right)=\left(\frac{\tau(f)}{f}\right)^{d}$, which implies that $f \in K$ by Convention 3.1 contrary to our hypotheses.

References

[1] B. Adamczewski and J. P. Bell, A problem about Mahler functions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 17 (2017), pp. 1301-1355.
[2] B. Adamczewski, T. Dreyfus, C. Hardouin, and M. Wibmer, Algebraic independence and linear difference equations. 2021.
[3] R. V. Book and F. Оtto, String-rewriting systems, Texts and Monographs in Computer Science, Springer-Verlag, New York, 1993.
[4] K. S. Brown, Buildings, Springer Monographs in Mathematics, Springer-Verlag, New York, 1998. Reprint of the 1989 original.
[5] R. Exel, Partial actions of groups and actions of inverse semigroups, Proc. Amer. Math. Soc., 126 (1998), pp. 3481-3494.
[6] K. Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, Math. Ann., 101 (1929), pp. 342-366.
[7] H. Matsumoto, Générateurs et relations des groupes de Weyl généralisés, C. R. Acad. Sci. Paris, 258 (1964), pp. 3419-3422.
[8] A. Medvedev and T. Scanlon, Invariant varieties for polynomial dynamical systems, Ann. of Math. (2), 179 (2014), pp. 81-177.
[9] K. Nishioka, Mahler functions and transcendence, vol. 1631 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1996.
[10] F. Pakovich, Polynomial semiconjugacies, decompositions of iterations, and invariant curves, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 17 (2017), pp. 1417-1446.
[11] _, Invariant curves for endomorphisms of $\mathbb{P}^{1} \times \mathbb{P}^{1} . \operatorname{arXiv}: 1904.109522019$.
[12] J. F. Ritt, Prime and composite polynomials, Trans. Amer. Math. Soc., 23 (1922), pp. 51-66.
[13] R. Schäfke and M. Singer, Consistent systems of linear differential and difference equations, J. Eur. Math. Soc. (JEMS), 21 (2019), pp. 2751-2792.
[14] U. Zannier, On a functional equation relating a Laurent series $f(x)$ to $f\left(x^{m}\right)$, Aequationes Math., 55 (1998), pp. 15-43.
Email address: medvedev.math.ccny@gmail.com
Signal Fox, 175 Varick St., 2nd Floor, New York, NY 10014, USA
Email address: dangkhoa@ucalgary.ca
University of Calgary. MS 542, 2500 University Drive NW, Calgary, AB T2N 4T4, Canada

Email address: scanlon@math.berkeley.edu
University of California, Berkeley, Department of Mathematics, Evans Hall, BerkeLEY, CA 94720-3840, USA

[^0]: ${ }^{1}$ Mahler usually considers the case that q is the reciprocal of a positive integer. The greater generality adds no complexity to our arguments and permits us to make suitable reductions throughout the course of our proof. Functions satisfying other functional equations appear in the literature under the name of Mahler functions. Notably, often, as in $9, Q$ is allowed to be a rational function in which case we might say that f is q-Mahler of rational type. In other works (see, for instance [1] 13) q-Mahler functions are those f for which $f\left(t^{q^{j}}\right)($ for $j \in \mathbb{N}$) are linearly dependent over $\mathbb{C}(t)$. In this case, we might say that f is q-Mahler of linear type.

[^1]: ${ }^{2}$ For each positive integer N there is a unique monic polynomial C_{N} which satisfies the functional equation $C_{N}\left(X+\frac{1}{X}\right)=X^{N}+\frac{1}{X^{N}}$. For us, a Chebyshev polynomial is a polynomial of the form C_{N} for some $N \geq 2$.
 ${ }^{3}$ Usually, for two polynomials P and Q we say that P and Q are conjugate if there is a linear polynomial L with $P \circ L=L \circ Q$. For the questions treated in this paper we require the notion of skew-conjugacy relative to a field automorphism σ. The polynomials P and Q are skew-conjugate if there is a linear polynomial L for which $P \circ L=L^{\sigma} \circ Q$ where if $L(x)=a x+b$, then $L^{\sigma}=\sigma(a) x+\sigma(b)$. If σ acts trivially, then the usual notion of conjugacy agrees with skew-conjugacy. See Definition 2.4 for details.
 ${ }^{4}$ In 8 the non-exceptional polynomials are called "disintegrated".

