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Again?

Thomas Scanlon The Manin map, revisited (again) 14 November 2023 2 / 38



Yet again?
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Not again …
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And, again, and again

Manin’s construction has been revisited from many points of view over the
years.
⋄ Coleman 1990
⋄ Chai 1991
⋄ Buium 1990s
⋄ Hrushovski-Sokolović 1994
⋄ Marker 2000
⋄ Andreatta-Bertapelle 2011
⋄ Bertrand-Pillay 2016
⋄ André, Corvaja, and Zannier 2020
⋄ Bertrand 2020
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Manin’s construction for Jacobians
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Reading Manin’s construction
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Reading Manin’s construction

Thomas Scanlon The Manin map, revisited (again) 14 November 2023 8 / 38



Reading Manin’s 1963 paper on Mordell’s conjecture
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Manin’s 1963 paper on Mordell’s conjecture
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Manin’s Theorem of the Kernel
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The theory of differentially closed fields

The theory DCF0,m of differentially closed fields of characteristic zero with
m commuting derivations is the model completion of the theory of
differential fields of characteristic zero with m commuting derivations
expressed in the language L(+, ·,−, 0, 1, δ1, . . . , δm). Notationally, I will
often take m = 1 and write δ for δ1.

Sacks calls this theory (or, really, he is just considering DCF0,1) the “least
misleading totally transcendental theory”.
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Examples are always misleading
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Manin maps explaining why this theory is less misleading

⋄ Manin kernels of non-isoconstant abelian varieties give examples of
non-locally modular strongly minimal definable groups.

⋄ Manin kernels are used to explain the complexity of orthogonality of
order one types.

⋄ Constructions related to the Manin map are used to produce examples
of non-ℵ0-categorical geometrically trivial strongly minimal sets.

⋄ Manin kernels are used to construct examples where Lascar and
Morley ranks differ.
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What is the Manin map?

If K is a differential field and A is a g-dimensional abelian variety over K,
then the Manin map is a map of differential algebraic groups

A Gg
a

µA

having the properties that when K is differentially closed, µ is surjective,
A♯ := ker µA is the Kolchin closure of the torsion subgroup of A, and A♯ is
finite dimensional with g ≤ dimA♯ ≤ 2g.
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Improved Seidenberg embedding theorem

Theorem (Pavlov, Pogudin and Razmyslov)
Let ∆ = {δ1, . . . , δm} be a set of m commuting derivations. Let U ⊆ Cm

be a connected open domain in Cm and K ⊆ Mer(U) a countable sub
∆-field of (Mer(U), ∂

∂z1
, . . . , ∂

∂zm
). Given a finitely generated extension

K ⊆ L of ∆-fields, there is a connected open domain W ⊆ U and an
embedding of ∆-fields L ⊆ Mer(W) over the embedding K ↪→ Mer(U).

L Mer(W)

K Mer(U)

f7→f↾W
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How is the PPR theorem an improvement? Answer: It uses
a better known theorem on the solutions to PDEs

Seidenberg’s proof (sketch) for PDEs uses a theorem of Kolchin on the
zeros of algebraic PDEs which depends itself on a condition for the
integrability of PDEs due to Riquier.

The new proof is based on the Cauchy-Kovalaskaya theorem on the
existence and uniqueness of analytic solutions to PDEs with analytic
coefficients.
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How is the PPR theorem an improvement? Answer: Now
we may work over countably generated bases.

Seidenberg required K to be finitely generated.
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How is the PPR theorem an improvement? Answer: It is
complete

Seidenberg’s proof was complete only in the case of m = 1.

Thomas Scanlon The Manin map, revisited (again) 14 November 2023 19 / 38



Complex analytic construction of the Manin map:
logarithm
Let A be a complex abelian variety and let ω be an invariant holomorphic
1-form on A. Then, locally, integration of ω along paths starting at the
identity element defines a group homorphism

A(C) C

P
∫ P

0 ω

logA,ω

The ambiguity of the integral may arise from integrating over a nontrivial
homology class.
Fix a basis ω1, . . . , ωg of holomorphic invariant 1-forms on A and set

ΛA := {⟨
∫
γ
ω1, . . . ,

∫
γ
ωg⟩ ∈ Cg : γ ∈ H1(A)} .
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Complex analytic construction of the Manin map:
logarithmic derivartive

A(C) Cg Cg/ΛA

logA

∫
ω

P 7→〈
∫ P

0 ω1,...,
∫ P

0 ωg〉

πΛ

is an isomorphism of complex analytic groups.

If K ⊆ Mer(U) is a sub differential field of the meromorphic functions on
some connected domain U, then

∫
ω defines (locally) a map and because

the ambiguity Λ is contained in Cg, differentiating gives a well defined
logarithmic derivative.

A(K) Kg Kg

∂ logA

∫
ω δ
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Complex analytic construction of the Manin map: in
families
Let now A → S be an algebraic family of abelian varieties of relative
dimension g. Fix a basis ω1, . . . , ωg of Ω1

A/S and working locally in the
Euclidean topology we may fix a uniform basis γ1, . . . , γ2g of the first
homology of the fibers.

Then the period map is given by

S Matg×2g(C)

t


∫
γ1
ω1 · · ·

∫
γ1
ωg

... . . . ...∫
γ2g

ω1 · · ·
∫
γ2g

ωg



ρ

and the lattice Λt ≤ Cg is generated by the rows of ρ(t).
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Complex analytic construction of the Manin map: in
families

Let us take K to be a differential subfield of Mer(U) for some small enough
open domain in S so that we may regard ρ(t) as an element of Ď(K).

It is no longer the case that differentiation annihilates Λt, but as a
subspace of Kg, Λt is contained in a C-subspace of dimension ≤ 2g, we
can find a linear differential operator L : Kg → Kg so that ker L = (Λ)C.

The Manin map is µ = L ◦ ⟨
∫
ω1, . . . ,

∫
ωg⟩.

A(K) Kg Kg

µ

∫
ω L
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Interlude on jets
For a complex analytic space or algebraic variety X we will write JℓX for
the geometers’ `th jet space of X, or what I usually call the `th arc space
representing germs of maps into X up to order `.

In general, if X is defined over the constants, then a differential regular
map f : X → Y of order ` is given by a regular (algebraic) map f̃ : JℓX → Y
so that the following diagram commutes

X Y

JℓX

f

∇ f̃

where in local coordinates ∇ is given by

x ⟨x, δx, . . . , δℓx⟩∇ .
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Universal families
Consider the case that A → S is a universal family of abelian varieties so
that this may be uniformized by π : D → Γ\D = S where τ ∈ D ⊆ Ď(C)
naturally parameterizes a lattice Λτ ≤ Cg and we may uniformize A by
Cg × D so that over each τ ∈ D, we have Aπ(τ) = Cg/Λτ .

Cg × D

A

D

S

ϖ

π

Given a g-dimensional abelian variety A over K we may abuse notion
somewhat to write A as Ab where A → S is a universal family and
b ∈ S(K).
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A diagram for the Manin maps

Cg × D J(Cg × D) Cg

A J(A)

D J(D)

S J(S)

ϖ J(ϖ)

L̃

π J(π)

Since the points τ ∈ D give the basis for Λτ , given an analytic map
τ : U → D, we can compute the linear differential operator L annihilating
(Λτ )C from τ and its derivatives up to order 2g.

An important subtlety is that when the dimension of (Λτ )C is smaller than
expected, we can use a map L defined on a jet space of lower order.
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A diagram for the Manin map, continued

Cg × D J(Cg × D) Cg

A J(A)

D J(D)

S J(S)

ϖ J(ϖ)

L̃

ϖ−1 J(ϖ−1)

µ̃

π J(π)

Thomas Scanlon The Manin map, revisited (again) 14 November 2023 27 / 38



O-minimality definability for algebraicity

Cg × D J(Cg × D) Cg

A J(A)

D J(D)

S J(S)

ϖ J(ϖ)

L̃

ϖ−1 J(ϖ−1)

µ̃

π J(π)

Branches of the maps $ and hence also J($) are definable in Ran,exp.
Therefore, the map µ̃ is a simultaneously o-minimally definable and
complex analytic function on a quasiprojective algebraic variety, and,
hence, is algebraic.
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The Manin map as a differential algebraic map which must
be differential algebraic

(Gg
a × Ď)(K) J(Gg

a × Ď)(K) Kg

A(K) J(A)(K)

Ď(K) J(Ď)(K)

S(K) J(S)(K)

ϖ

∇

L

J(ϖ)

L̃

ϖ−1
∇

µ

J(ϖ−1)

µ̃

π J(π)

Thomas Scanlon The Manin map, revisited (again) 14 November 2023 29 / 38



Analytic description of the Manin kernel

From the analytic description,

A♯
b(K) = A(K) ∩$(ker L) = A(K) ∩$(ΛC)

and
dimA♯

b = dimC ΛC
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Ax-Schanuel implies the Theorem of the Kernel

Ziyang Gao shows that for ∆ = {z ∈ C : |z| < 1} and f : ∆k → Cg × D an
analytic function, either

tr. degCC(f, $ ◦ f) ≥ g + dim S + rk(df)

or $ ◦ f(∆) ⊆ A is contained in a proper weakly special variety.

Applying this to a map f satisfying L ◦ f ≡ 0 and
dim Zariski = m = #{δ1, . . . , δm}, we recover Manin’s Theorem of the
kernel.

Likewise, Gao’s Ax-Schanuel theorem implies that if A is an abelian variety
with C-trace zero and X ⊆ A is an algebraic subvariety, then X ∩ A♯ is a
finite union of cosets. The full 1-basedness conclusion would follow from
Ax-Schanuel with derivatives (which is expected to hold).
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Buium’s theory of δ-moduli
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Parameter space for δ-rank

Fix a positive integer g ≥ 1 and an integer 0 ≤ r ≤ g. We abuse notation
writing Ag for some moduli space of g-dimensional abelian varieties.

Really, we should also fix a polarization type (say, principally polarized)
and some level structure.

Ag,r is the subspace of Ag parameterizing abelian varieties A of δ-rank r,
i.e. dimA♯ = g + r.

There are various ways to see that Ag,r is definable. Buium does this by
working with what he calls D-Hodge structures (of weight one).
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Intermediate δ-rank problem

Buium develops a nice theory for the generic case, ie for Ag,g showing that
it is Kolchin dense in Ag and that there is a differential rational map χ
defined on Ag,g so that the fibers of χ are finite dimensional and are the
Kolchin closures of isogeny classes.

The stratum Ag,0 consists of the constant points. What can we say about
the intermediate strata?
⋄ Is Ag,r nonempty?
⋄ Does it always contain a simple abelian variety?
⋄ Does it meet the Torelli locus? That is, are there always Jacobians of

intermediate rank?
⋄ Is there an analogue of χ on Ag,r?
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Some answers, some questions

⋄ Non-emptyness of Ag,r can be established by considering products
A × B where A ∈ Ar,r and B ∈ Ag−r,0.

⋄ The existence of simple abelian varieties in Ag,r follows from the
analytic description.

⋄ We do not know about the Torelli locus.
⋄ Yes, an analogue of Buium’s χ exists for Ag,r.

Thomas Scanlon The Manin map, revisited (again) 14 November 2023 35 / 38



Relevance to inequality of Morley and Lascar rank
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Relevance to inequality of Morley and Lascar rank

LASCAR AND MORLEY RANKS DIFFER IN DIFFERENTIALLY CLOSED FIELDS 1283 

COROLLARY 2.5. In DCFo, Morley rank is not downwards semi-definable. 

However, since DCFo does not have finite Morley rank, Lemma 1.1 does not 
directly apply. At this point we quote a theorem from [1]. 

THEOREM 2.6 (Buium [1]). Let {A, X) be any principally polarized abelian variety 
ofmaximal S-rank. There exists a definable family { (At,Xt) : t £ F\}, containing a 
definably isomorphic copy of every principally polarized abelian variety isogenous to 
A, and such that F\ has finite Morley rank. 

We leave the notion of 6-rank undefined here since we need only the facts that: 

• A generic elliptic curve has maximal <S-rank. 
• The property of having maximal <S-rank is isogeny invariant. 
• The product of two abelian varieties each of maximal <5-rank is also of maximal 

c>-rank. 

It seems likely that the <S-rank condition is unnecessary in Buium's theorem, but 
we leave this issue aside. 

COROLLARY 2.7. There exists a finite Morley rank definable subset Y, such that 
Morley rank is not downwards semi-definable. 

PROOF. Pick t, t' algebraically independent over k, the field of differential con
stants of U. Let Jt, Jt> be elliptic curves with /-invariants t, t'. Let A := J, x /,/, 
and let F\ be a family as guaranteed to exist by Theorem 2.6. Given n, pick 
c = c(n) € F\ with Ac isomorphic to E(t, t', i, n). Let F2 be the Kolchin closure of 
the set {c(l), c(2) , . . . }. Let b be a generic element of F2. By Lemma 2.4, Ab is a 
simple Abelian variety. If Ah were isogenous to an Abelian variety defined over k, 
this would be guaranteed by a certain formula true of b, and the same formula would 
hold of infinitely many c(n); hence A would also have this property, contradicting 
the choice of?, t'. Thus Ah is a simple, non-isotrivial Abelian variety. 

For t e F2> let M, be the Manin kernel of A,. M, is uniformly definable over 
t (cf. [2]). Then (cf. [3]) M, has Morley rank 1 for generic t € F' (when A, is a 
nonisotrivial simple Abelian variety). But it has Morley rank 2 for each / = c(n) 
(when At is isogenous to a product of elliptic curves). Thus Morley rank is not 
downward semi-definable in Y = {(a,t) : t e F#, a e M, }. H 

COROLLARY 2.8. Morley and Lascar rank do not agree on definable sets in DCFo. 

PROOF. Since Y has finite Morley rank, with the structure induced from the 
ambient differentially closed field, Lemma 1.1 applies. H 

QUESTION 2.9. Marker and Pillay have noted that on O-definable sets of differen
tial order 2, Lascar and Morley ranks are the same. Examples similar to the one 
produced above have order at least 5. Is there a theorem responsible for this gap? 
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New examples, new questions

⋄ We can produce new examples of types with trivial forking but
non-ℵ0-categorical induced structure from the Kolchin closures of
isogeny classes of intermediate rank. Likewise, from these we may
construct new examples of sets in which Lascar and Morley rank
differ.

⋄ Are there any others that are not essentially constructed from these?
What else about the geometric stability of DCF0,m may be recovered
or learned from the analytic point of view.
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