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Berezin integration of functions of anticommuting Grassmann variables is usually seen as a formal operation, some-
times even defined via differentiation. Using the formalism of geometric algebra and geometric calculus in which the
Grassmann numbers are endowed with a second associative product coming from a Clifford algebra structure, we show
how Berezin integrals can be realized in the high dimensional limit as integrals in the sense of geometric calculus. We
then show how the concepts of spinors and superspace transform into this framework.

I. INTRODUCTION

Berezin integration of functions of noncommuting variables
is usually defined formally. The behavior of this operator is
determined by general properties one wishes it to have. For
example, it should be translation invariant


dθ f (θ +η) =


dθ f (θ) (1)

where f is a function of the anticommuting variable θ and η
is an anticommuting constant. This in particular implies


dθ(θ +η) =


dθθ (2)

and therefore


dθη = 0 (3)

which, in light of the fact that η is a constant, is conventionally
assumed to imply


dθ = 0 (4)

(although, if one is more careful, one would note that it only
implies that this integral is annihilated by η). Since θ ∧θ = 0
a general analytic function is f (θ) = a+ bθ so since the in-
tegral of a constant is zero, the only way to avoid all integrals
being zero is to make integral of θ non-zero. The standard
normalization convention is


dθθ = 1 . (5)
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It follows that the Berezin integral behaves like a differential
operator. In particular, for a Grassmann variable θ and com-
plex numbers a and b, one has


dθ(a+bθ) = b (6)

This implies a strange change of variables formula for in-
tegrals of exponentials. Since θ ∧ θ = 0, for any complex
number k we have the finite Taylor expansion

ekθ =
∞

∑
n=0

1
n!

knθ n = 1+ kθ (7)

so that


dθekθ = k (8)

rather than 1
k as one might expect.

The differential nature of the Berezin integral is sometimes
taken as its definition. For a function f (θ) of the anticommut-
ing variable θ we write ∂ f

∂θ for the right derivative defined by
the rule that

f (θ +η) = f (θ)+
∂ f
∂θ

η +o(|η |) (9)

where η is a small Grassmann-valued increment to θ . Then
the Berezin integral may be expressed as a derivative


dθ f (θ) =

d f
dθ

(10)

Berezin integration plays a central role in theories of path
integration in quantum field theory1 (Section 9.5), the theories
of supersymmetry2 (Part 2) and even statistical mechanics3,4,
but the warning appears throughout the literature that this op-
erator is merely formal and should not (even, cannot) be re-
garded as a genuine integral.



2

There have, however, been some attempts to relate Berezin
integrals to what we are familiar with in calculus. Many of
these are based on proving theorems within more familiar
contexts, and then extrapolating them to Berezin integrals5–8.
This may leave one wondering whether Berezin integrals can
be reduced to Riemann sum in an explicit way, without ap-
peals to extrapolation. One attempt to do so was carried out
by Jeffrey Rabin9. He proposed to model the Berezin inte-
gral as a contour integral. However, he ran into a few prob-
lems that he acknowledged in that paper. For one thing, the
product of anticommuting numbers, despite being commut-
ing, θ3(θ1θ2) = (θ1θ2)θ3 is not real: (θ1θ2)

2 = 0. So, in
order for the integral to be real, despite θdθ looking like a
product, he takes the Berezin integral and the corresponding
Riemann integral to be different: the former is some type of
projection of the latter. The other problem that he encountered
is the one with normalization, where he merely postulated that
the normalization is 1. In this paper we propose to make those
two steps more natural in the following way. We appeal to
the idea of geometric calculus (see10,11 for an introduction)
that combines two distinct products (Clifford product and the
exterior product) into a single space. In this framework, the
Clifford product allows us to do the kind of projection that
Rabin was looking for. In particular, the Clifford product is
used between “infinitesimal" and “finite" parts of the inte-
gral, while the wedge product is used within the finite part.
We then use the geometric calculus version of the divergence
theorem10,11 to prove the relation between the Berezin integral
and the derivative. As far as normalization, we do not view it
as convention but, instead, we view it as a consequence of
a specific domain of integration and its measure. In particu-
lar, the integrals hitherto assumed 1 will no longer be 1 over
rescaled domain. This, in particular, explains why the integral
of ekθ is k, despite the fact that scaling properties would seem
to suggest otherwise (see Eq 53). While the work of Rabin is
focused on contour integration, this paper is instead focused
on integrals over closed surfaces (Section III A) and directed
volume (Section III G). Nevertheless, as hinted earlier, the
concept can be applied to the contour integration as well and,
indeed, the second author of this paper wrote a separate paper
that is focused on the contour integrals12.

Our comparison between Berezin integrals and these inte-
grals of geometric calculus is made through the following the-
orem. We introduce the notation and conventions we require
in the body of this paper, but let us express the main theorem
here. Let e1,e2,e3, . . . be a standard sequence of generators
for the Grassmann numbers.

Our main theorem is as follows.

Theorem I.1. If f (θ1, . . . ,θn) is an analytic function of the
anticommuting variables θ1, . . . ,θn and for each natural num-
ber D, XD ⊆ (

D
i=1Rei)

n is a region of volume 1
D having a

smooth boundary ∂XD, then

 Ber
dθ1 · · ·dθn f (θ1, . . . ,θn) = lim

D→∞



∂XD

dθ1 ∗ · · ·∗dθn ∗ f

= lim
D→∞



∂XD

(dθ1 ∧ · · ·∧dθn)∗ f

= lim
D→∞


dµD θ1 ∗ · · ·∗dµD θn ∗ f

= lim
D→∞


(dµDθ1 ∧ · · ·∧dµD θn)∗ f

The integral on the left of the first line is the Berezin integral.
The other two integrals on the first line are the directed inte-
grals in the sense of geometric calculus (see Section III A). In
the integral on the middle of the first line the product between
differentials is Clifford and for the integral at the right of the
first line the product between differentials is anticommuting
wedge product. The integrals on the second line are volume
integrals where volume measure, µD, has a direction (see Sec-
tion III G) and, again, two different products are used in the
infinitesimal parts in those two integrals.

As one can see from the above theorem, we are trying to
compare and contrast different ways of introducing Riemann
sums, instead of focusing on just one approach. Our two main
approaches are surface integrals (Sections III A – III D) and
directed volume integral (Sec III G). In III E and III F we
consider other approaches. In Section III H the Grassmann
numbers are extended to include complex numbers as well as
spinors, and it is shown how the expected symmetries can be
accommodated in the context of our model. Then in Section
IV it is shown how superspace can be constructed within our
model.

One could separately use volume integrals (Sections III H
and IV B) and surface integrals (Sections III A – III D). As
it turns out, surface integration leads to the integration over a
higher dimensional torus-like shape, while volume integration
remains an integral over the full space. Of the two, volume
integration is the one that respects the symmetry transforma-
tions and, in this sense, it is preferable. On the other hand,
for volume integration we must attach a direction to volume
elements which is a bit unusual, and this is what motivated us
to introduce surface integrals since a directed area element is
somewhat more common. Due to the relative advantages of
each approach, we chose to consider both kinds of integrals.
In any case, the actual superspace is the full vector space –
not the torus, and its definition (sec IV A) remains the same
regardless of the integrals we choose. Our choice is whether
to integrate over the full superspace (volume case) or a subset
(surface case).

Finally, in Section V A we briefly describe how supermath-
ematics can be extended to include non-analytic functions
within the framework of the models we introduce and how
some of those non-analytic functions can be integrated. Then,
in Section V B we explore how non-analytic functions can be
used in some of the physics models appearing in some of the
second authors ongoing work.
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II. SOME BACKGROUND INFORMATION

A. Notation and conventions

In this section we establish our notation and conventions.
The reader may wish to consult13,14 for an introduction to the
theory of supermanifolds and10,11,15 for introductions to the
theory of geometric algebra. As the notation is not uniform in
the literature, we must make some choices.

For a natural number D, let

VD =
D

i=1

Rei (11)

where ei are orthonormal. We will work with variables θ
ranging over VD. Such variable may be decomposed with re-
spect to the standard basis of VD as

θ =
D

∑
i=1

xiei (12)

where the variables xi are real valued. Thus, if we have
a function f : VD → VD which we may see as a function of
the variable θ , we may also regard f as a function of the D
variables x1, . . . ,xD.

From VD we may form the Grassmann algebra GD as the
exterior algebra of VD:

GD = Λ∗(VD) (13)

There is a second associative product on GD coming from
the Clifford algebra C(VD,〈 , 〉) generated by VD with the stan-
dard inner product defined by

〈ei,e j〉= δi, j (14)

There is a standard isomorphism of vector spaces between
GD = Λ∗(VD) and C(VD,〈 , 〉) from which by transport of
structure we may regard GD as having the Clifford product,
∗, as well as the usual wedge product. These products are
related.

For a1, . . . ,an ∈VD, we have

a1 ∧ · · ·∧an =
1
n! ∑

σ∈Sym(n)
sgn(σ)aσ(1) ∗ · · ·∗aσ(n) (15)

Similarly, we can define a symmetric product as

〈a1 · · ·an〉=
1
n! ∑

σ∈Sym(n)
aσ(1) ∗ · · ·∗aσ(n) (16)

which, in particular, means

〈a,b〉= 1
2
(a∗b+b∗a) (17)

Combining these identities, we have

a∗b = a∧b+ 〈a,b〉 (18)

For D ≤ D′ there is a natural inclusion VD ↩→ VD′ which
induces an inclusion GD ↩→ GD′ which is compatible with the
Grassmann, Clifford and inner products. While we do not
specifically use it ourselves, the direct limit G := lim−→D→∞ GD
may be seen as the algebra of all Grassmann numbers.

B. Notational remarks regarding product signs

It is important to note that the notation of the Clifford prod-
uct is different in different papers, including the papers by
the second author12,16,17. This is due to the fact that, within
the conventional context of Berezin integration1,2,18, there is
only one type of product: the anticommuting exterior product,
which is written as θ1θ2 without wedge. On the other hand,
in the context of geometric calculus 10,11, the notation θ1θ2 is
reserved for the Clifford product. In some of the earlier arXiv
versions of the current paper (including, for example, version
5 – see19), the second author uses the dot-product, θ1 ·θ2, for
the Clifford product; but this notation is used for the commut-
ing inner product in geometric calculus 10,11 while said inner
product has been denoted by 〈θ1|θ2〉 in some of those earlier
versions of this paper (including19). In light of these obser-
vations, it seems most convenient to use θ1 ∗ θ2 for Clifford
product; unfortunately, in the second author’s earlier works
on the subject, including19, θ1 ∗θ2 appears as a notation for a
general product – which can be either Clifford or wedge. But
now that we are made aware of those other papers, we propose
to change notation and use θ1 ∗ θ2 strictly for Clifford prod-
uct. On the other hand, for the situation where a product can
be either the Clifford product or wedge we will write θ1θ2.
It should be acknowledged though that θ1θ2 has been used in
other ways, as described earlier.

C. Notation for variables

In geometric calculus usually the letter x is used for a vari-
able; however, instead of using x we will use θ . The reason
for this is that we are proposing a model of the Berezin in-
tegral and θ is normally used as a variable in that integral.
Additionally, in physics x is used for something else: namely,
a commuting variable of dimension 4. In fact, in the case of
supersymmetry, both x and θ are used as separate variables.
Since we do include supersymmetry (see Section IV) this is
an additional reason against using x for the anticommuting
variable.

D. Complexification

We will work with complexifications of real vector spaces.
For us, if W is a real vector space, WC = C⊗RW denotes the
complexification of W .
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E. Flatness of space

Our work is based on Theorem III.1 which, in spirit, is a
divergence theorem. Even though the volume of the region
is 1/D where D → ∞, this volume is not infinitesimal when
D is finite. In light of the curvature of space, the divergence
theorem only works when volume is infinitesimal for fixed,
finite, D. Since this is not true, we have to, instead, assume
that the space over which θ ranges is flat. Indeed, the Proof of
Theorem III.1 is based on this assumption. For example, the
definition of I that is used in its proof would be ambiguous
if the space were curved. Therefore, everything else that we
write here, being based on this theorem, is also, by default,
based on the assumption that space over which θ ranges is
flat. This assumption is implicit from this point on.

F. Some subtle differences between variable vectors and
basis vectors

It is important to stress that, while θi are variables (in partic-
ular, general vectors), ei are constants (in particular, unit vec-
tors with pre-assigned directions). This, in particular, means
that we can only integrate with respect to θi-s, but not with
respect to ei-s. This is an important contrast to the conven-
tional superanalysis where θi were used both as variables and
as basis vectors at the same time. On the other hand, in mul-
tivariable calculus, there is a clear distinction between vec-
tor variables, v1,v2, · · · and basis vectors, ê1, ê2, · · · . One of
the main goals of this paper is to bring superanalysis closer
to multivariable calculus, and this includes drawing a funda-
mental distinction between θk and ek. In multivariable cal-
culus there is, indeed, such a thing as change of variables:
for example, one can change variables betweenv1,v2, · · · and
variables u1,u2, · · · ; but the letters e are never used for vari-
ables, since they have already been reserved for basis vec-
tors. Similarly, in our case, we can change variables from
θ1,θ2, · · · to θ ′

1,θ
′
2, · · · , or we can change them from η1,η2, · · ·

to ξ1,ξ2, · · · ; but we would never use ei to denote them since
this notation is reserved for constant unit vectors.

This difference between conventional superanalysis (where
θ -s and e-s are put on the same level) and our version of it
(where they are not) is connected to the other areas we are
proposing to reinterpret. In conventional superanalysis, θk is
not viewed as an element of a set but, instead, it is viewed as a
symbol (this, in turn, is connected to the fact that the Berezin
integral is viewed as a symbolic operation as opposed to as
a limit of a Riemann sum). Consequently, a homogeneous
polynomial is identified with an n-tuple,

(a1, · · · ,an) = a1θ1 + · · ·+anθn (19)

and, within this context, it logically follows that θ1, · · · ,θn
are basis vectors. On the other hand, in the approach we are
proposing, we would like to view θ as a literal element of a
set – namely, a vector – so that its values are distinguishable
from each other. Consequently,

fa1···an(θ1, · · · ,θn) = a1θ1 + · · ·+anθn (20)

is no longer an n-tuple but, instead, it is a literal function on a
literal set. Of course, we might say that the set of linear func-
tions could be generated by the basis functions { f1, f2, · · ·},

fi(θ1, · · · ,θn) = θi (21)

but fi is distinct from θi; in particular, f1 is a single function,
while θ1 is a variable that can take different values distinguish-
able from each other. In order to define the set of values θ1
can take, we need to define a space VD which, in turn, is gen-
erated by basis vectors e1, · · · ,eD; as any basis vectors, they
are not subject to change, in sharp contrast to θk.

Another source of this difference can be seen in the way we
treat the expression

θ = X1e1 + · · ·+XDeD (22)

where e1, · · · ,eD are anticommuting while X1, · · · ,XD are
commuting. Conventionally, one would be inclined to assume
that e1, · · · ,eD are variables while X1, · · · ,XD are constants;
we propose to do the opposite: we view X1, · · · ,XD as vari-
ables and e1, · · · ,eD as constants. This difference in views is
due to the fact that, if X1, · · · ,XD are to be variables, one would
expect to express the integral over anticommuting variable θ
in terms of the integrals over commuting variables X1, · · · ,XD
which, conventionally, is unthinkable. But, in the context of
this paper, our goal is to be able to do just that. In particular,
we define the directed volume dµ θ , as

dµ θ =
X1e1 + · · ·+XDeD

X2
1 + · · ·+X2

D

µ


X2
1 + · · ·+X2

D


dX1 · · ·dXD

(23)
and then express the Berezin integral as


f (θ)∗dµ θ=


f (x1e1+···+xDeD)∗

X1e1+···+XDeD√
X2

1 +···+X2
D

µ
√

X2
1 +···+X2

D


dX1···dXD

(24)
This allows for X1, · · · ,XD to take upon the role of vari-

ables, which would allow for e1, · · · ,eD to be unambiguously
constants. In particular, in contrast to conventional superanal-
ysis, we can integrate over X1, · · · ,XD, but we can not integrate
over e1, · · · ,eD.

As stated before, we do have such a thing as change in vari-
ables where both sets of variables are anticommuting. For
example, we can express the value of a Grassmann variable ξ ,
in terms of different bases, {e1, · · · ,eD} and {e′1, · · · ,e′D}

ξ =
D

∑
k=1

Xkek (25)

=
D

∑
k=1

X ′
ke′k , X ′

k (26)

=
D

∑
l=1

MklXl , e′k (27)

=
D

∑
l=1

(M−1)klel (28)
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or we can define a new variables, θ ′
1, · · · ,θ ′

n, as linear combi-
nations of the old ones, θ1, · · · ,θn:

θ ′
k =

n

∑
l=1

Aklθl ⇐⇒
D

∑
j=1

X ′
k je j (29)

=
n

∑
l=1


Akl

D

∑
j=1

Xl je j


⇐⇒ X ′

k j (30)

=
n

∑
l=1

AklXl j (31)

This, however, does not change what we said a bit earlier.
In the above expressions, {ek} and {e′k} are anticommuting
constants, {Xkl} and {X ′

kl} are commuting variables, while ξ ,
{θk} and {θ ′

k} are anticommuting variables. As a rule, the
letter e is reserved for anticommuting constants; letters θ , η
and ξ are reserved for anticommuting variables; the last letters
of the latin alphabet refer to commuting variables, and the first
letters in latin alphabet refer to commuting constants.

III. INTEGRATION

In this section we consider various integration theories and
then show how to interpret the Berezin integral as a genuine
geometric integral.

A. Single integrals over the closed surface

In the theory of directed integrals in the sense of geometric
calculus (see11 (Chapter 7) or15 (Chapter 4)), we may make
sense of integrals of G -valued functions on manifolds embed-
ded in VD. For us, the most important result in this theory is its
version of the divergence theorem (see15 (Equation 6.150)).

We take M ⊆VD to be an open region with smooth boundary
∂M and f : M →C(VD,〈,〉) a smooth function. We define

 · f =
D

∑
k=1

ek ∂ f
∂xk (32)

We then have the following theorem:

Theorem III.1. If we assume that the space is flat,


M
 · f |dX |=



∂M
n∗ f |dS| (33)

where n is a unit normal vector (where its norm, which hap-
pens to be 1, is defined with respect to the Clifford product)
that is normal to ∂M pointing outward and n f is the Clifford
product between that vector and f .

Proof. Following20, define I to be

I = e1 ∧ · · ·∧ ed (34)

and denote the dimensionality of a given element by the index
at the bottom. For example, an area, being d −1 dimensional

object, will be Sd−1. By using I we can establish a correspon-
dence of the type

Gk = (−1)∑d−1
j=d−k jI ∗Gd−k (35)

We also borrow the notation from10,11 that two matching dots
– one above the derivative and the other one above one of the
functions – indicates that the derivative is acting only on that
function and on nothing else (for example, �̇� ḟ g is equal to
g f and the product rule is ( f g) = �̇� ḟ g+ �̇� f ġ). With this
notation, we can perform the following calculation:



∂V
dS1 ∗ f1 = (−1)d−1



∂V
(dSd−1 ∗ I)∗ f1 (36)

= (−1)d−1


∂V
dSd−1 ∗ (I ∗ f1) (37)

=−


∂V
dSd−1 ∗ fd−1 (38)

=−


V
�̇�∗dVd ∗ ḟd−1 (39)

= (−1)d−1


V
�̇�∗dVd ∗ (I ∗ ḟ1) (40)

= (−1)d−1


V
�̇�(dVd ∗ I)∗ ḟ1 (41)

=


V
�̇�∗dV0 ∗ ḟ1 (42)

=


V
�̇�∗ ḟ1dV0 (43)

where on the fourth equal sign we used Eq 6.163 of20, in the
last equal sign we used the fact that dV0 is a scalar and, there-
fore, commutes with everything. By noticing that

dS1 = n|dS| , dV0 = |dV | (44)

the statement equating the left hand side with the right hand
side of the above calculation becomes



∂V
(n|dS|)∗ f1 =



V
�̇�∗ ḟ1|dV | (45)

Since |dS| is a scalar and, therefore, commutes with every-
thing, we can rewrite it as



∂V
(n∗ f1)|dS|=



V
�̇�∗ ḟ1|dV | (46)

which completes the proof.

Note: The statement of the above theorem is, roughly
speaking, an equivalent of Eq 6.163 of20. We have purposely
utilized that equation in our proof in order to emphasize the
connection between the two statements. Thus, a reader that
is used to the presentation given in20 can look at the above
proof as a type of bridge between the notation used in20 and
the notation we will be using.

While the statement of the above theorem is written in the
notation of geometric calculus, for our purposes, we would
like to denote the variables of integration by dθ . Notably, the
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integral on the left hand side is a volume integral while the
integral on the right hand side is a surface integral. Thus, dθ
changes its meaning depending on whether the integral is be-
ing taken over the surface or over the volume. In neither case
is dθ a scalar. If the integral is taken over the surface, then
dθ is an infinitesimal VD-valued element, and if it is being
taken over a volume, then it is infinitesimal V D

D -valued ele-
ment. However, |dθ | is an infinitesimal scalar: in one case
it is a scalar area element, in the other case it is a scalar vol-
ume element. With this new notation, we rewrite the above
equation as



M
 · f |dθ |=



∂M
n∗ f |dθ | (47)

For such a function f we define the average directional
derivative by


d f
dθ


=

1
D

D

∑
i=1

ei ∗ ∂ f
∂xk =

1
D

 · f (48)

From the definition we have


dθ
dθ


=

1
D

D

∑
i=1

ei ∗ ∂θ
∂xi =

1
D

D

∑
i=1

ei ∗ ei =
1
D

D = 1 (49)

Let us define


d f
dθ



M
=

1
vol(M)



M
|dθ |


d f
dθ


, (50)

where dθ is D-volume element with values in V D
D and |dθ |

is a real-valued volume element defined in terms of a norm of
dθ where norm is defined in terms of Clifford product. Then
we obtain



∂M
dθ ∗ f (θ) =



M
|dθ | · f =



M
|dθ |D


d f
dθ


= (51)

= Dvol(M)
1

vol(M)



M
|dθ |


d f
dθ


= Dvol(M)


d f
dθ



M

where dθ changes its meaning depending on the domain of
integration: in case of the surface integral over ∂M it refers to
a VD-valued area element ndS, whereas in case of integration
over M it refers to V D

D -valued volume element. If we take
vol(M) = 1

D , then Equation 51 reduces to



∂M
dθ ∗ f (θ) =


d f
dθ



M
(52)

For analytic functions f , the expression


d f
dθ



M
matches

the Berezin integral of f .

With this we complete the proof of Theorem I.1 in the case
where n = 1 and f is analytic.

It is noteworthy that the condition vol(M) = 1
D is the reason

why the usual reparametrization properties do not apply: the
scaled region kM no longer meets that condition. Thus, we
get



∂M
ekθ ∗dθ =

1
kD−1



∂ (kM)
eθ ∗dθ =

1
kD−1 kD = k (53)

The coefficient 1
kD−1 is what we would expect for a surface

integral, but the coefficient kD is due to the fact that kM does
not meet the volume condition, so instead of 1 we have kD,
and as a result the region that does meet the volume condition
produce an integral of k, as expected.

B. Sign convention for multiple integrals

Before we proceed with multiple integrals, it is important
to make a note of the sign convention we will be using. Most
books, including1, use the sign convention


dθ1dθ2θ1θ2 =+1 (54)


dθ1dθ2θ2θ1 =−1 (55)

(where we have skipped ∗ and ∧ because the books in question
are not using it). On the other hand, the book18 (page 20) uses
a different convention; namely,


dθ1dθ2θ1θ2 =−1 (56)


dθ1dθ2θ2θ1 =+1 (57)

Even though the former convention is more commonly used,
we regard the latter convention as more logical:


dθ1dθ2θ2θ1 =

 
dθ1


dθ2θ2


θ1


(58)

=

(dθ11θ1) (59)

=


dθ1θ1 = 1 (60)

and, for that reason, in this paper we will stick with the latter
sign convention.

C. Equivalence between different types of multiple integrals
over the closed surface

As one sees in Equation 11 multiple integrals come in two
different forms, one in which the product between the differ-
entials is the Clifford product and a second in which the prod-
uct between the differentials is the usual wedge product. On
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the one hand, from the point of view of iterated integrals, the
Clifford product is more appealing and, on the other hand,
from the point of view of area elements the Grassmann prod-
uct is more appealing. The main result of this section is that
for analytic integrands, it is not necessary for us to choose
between these two forms since the integrals are equal.

As in Section III A, we take M ⊆ VD an open region with
finite volume and a smooth boundary ∂M.

Theorem III.2. Let f (θ1, . . . ,θn) be an analytic function of
the noncommuting variables θ1, . . . ,θn we have the equalities



∂ (M)n
(dθ1 ∧ . . .∧dθn)∗ f (θ1, . . . ,θn) = (61)



∂ (M)n
dθ1 ∗ . . .∗dθn ∗ f (θ1, . . . ,θn) = (62)


∂ (M)


dθ1∗


∂ (M)


dθ2∗


···∗


∂ (M) dθn∗ f (θ1,...,θn)


···


(63)

Proof. We start by computing the integrals with respect to
Clifford products of differentials.

Before doing so, we need to extend our notation for average
directional derivatives to the situation of functions of several
variables. If g(θ1, . . . ,θn) is a function of n noncommuting

variables and 1≤ k ≤ n, then we write


∂θk g


for the average

directional derivative of g regarded as a function of θk alone.
Consider the case of F(θ1,θ2) a function of two variables.
Note that



∂M×∂M
dθ1 ∗dθ2 ∗F(θ1,θ2 = (64)



∂M


dθ1 ∗



∂M
dθ2 ∗F(θ1,θ2)


= (65)

vol(M)D


∂θ1



∂M
dθ2 ∗F(θ1,θ2)



M
= (66)

(vol(M)D)2


∂θ1


∂θ2 F(θ1,θ2)



M



M
= (67)

(vol(M)D)2


∂θ1 ∂θ2 F(θ1,θ2)



M×M
(68)

By proceeding in the same way n times for F(θ1, . . . ,θn) a
function of n variables, we obtain


dθ1∗...∗dθn∗F(θ1,...,θn)=(vol(M)D)n〈∂θ1 ...∂θn F(θ1,...,θn)〉Mn (69)

We shall now compare this calculation the result of com-
puting the integral with respect to wedge products of the dif-
ferentials.

Recall our formula for computing wedge products from
Clifford products.

a1 ∧ . . .∧an =
1
n! ∑

σ
sgn(σ)aσ(1) ∗ . . .∗aσ(n) (70)

From this we obtain the following identity.

(dθ1 ∧ . . .∧dθn)∗F(θ1, . . . ,θn) = (71)

(vol(M)D)n
n! ∑σ


sgn(σ)


dθσ(1)∗...∗dθσ(n)∗F(θ1,...,θn)


= (72)

(vol(M)D)n

n! ∑
σ


sgn(σ)〈∂θσ(1) . . .∂θσ(n)

F〉Mn


(73)

Thus, from Equations 69 and 73, we see that to establish
this theorem, we need to show that the two kinds of derivative
expressions are equal. That is, we must prove the following
identity.

〈∂θ1 ...∂θn F(θ1,...,θn)〉Mn= 1
n! ∑σ sgn(σ)〈∂θσ(1)

...∂θσ(n)
F(θ1,...,θn)〉Mn

(74)
We proceed now to show that Equation 74 holds.
To do so we need to make use of the fact that F is analytic,

that is, it may be expressed as a power series in ∧-monomials
of the the variables θ1, . . . ,θn. Since these variables anticom-
mute, for each θk and integer p ≥ 2 we have θ p

k = 0 if the
power is defined in terms of wedge-product. Thus, to say that
F is analytic is to say we may write

F(θ1, . . . ,θn) =
n

∑
l=0

∑
1≤ j1<···< jℓ≤n

c j1,..., jℓθ j1 ∧ · · ·∧θ jℓ

for suitable constants c j1,..., jℓ .
Since the expressions on each side of Equation 74 are linear,

it suffices to consider the case that F is a basic monomial of
the form θ j1 ∧ · · ·∧θ jℓ with 1 ≤ j1 < · · ·< jℓ ≤ n. Note that if
ℓ< n, then for some k the variable θk does not appear in F but
on each side of Equation 74 we apply the operator ∂k. Thus,
in this case, Equation 74 reverts to the tautology 0 = 0.

Otherwise, F is fully antisymmetric in the sense that for any
permutation σ of {1, . . . ,n} we have

F(θσ(1), . . . ,θσ(n)) = sgn(σ)F(θ1, . . . ,θn) (75)

provided that F is a monomial. Since in Equation 74 we are
averaging on each side of the equality and because each of the
θk is averaged over the same region, we may freely permute
them. Thus, we obtain for any permutation σ of {1, . . . ,n} the
following equality.

〈∂θσ(1)
...∂θσ(n)

F(θ1,...,θn)〉Mn=〈∂θ1 ...∂θn F(θσ−1(1),...,θσ−1(n))〉Mn (76)

Therefore,

∑
σ

sgn(σ)〈∂θσ(1) . . .∂θσ(n)
F(θ1, . . . ,θn)〉Mn = (77)

∑
σ

sgn(σ)〈∂θ1 . . .∂θnF(θσ−1(1), . . . ,θσ−1(n))〉Mn = (78)

∑
σ

sgn(σ)2〈∂θ1 . . .∂θn F(θ1, . . . ,θn)〉Mn = (79)

n!〈∂θ1 . . .∂θn F(θ1, . . . ,θn)〉Mn (80)
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where we used the fact that sgn(σ) = sgn(σ−1) for the sec-
ond equality, we replaced σ−1 with σ for the fourth term since
summing over all σ is the same as summing over all σ−1, and
used the fact that F is fully antisymmetric for the fourth equal-
ity. With this case established, we have completed the proof
of Equation 74 and thereby the proof of this theorem.

D. Emergence of Berezin multiple integrals from surface
integrals as D → ∞

Now that we have shown the equivalence between the two
types of multiple integrals, let us use Equation 69 to evaluate
their common value. Once again, our only concern is with
analytic function, or, in other words, multilinear functions of
the noncommuting variables θ!, . . . ,θn. Using the multilinear-
ity and Equation 69, we see that it suffices to carry out the
calculation of


dθ1 ∗ · · ·∗dθn ∗ (θ1 ∧ · · ·∧θn).

We compute:


∂θ1 · · ·∂θn θ1∧ · · ·∧θn


=

1
Dn

D

∑
ℓ1=1,...,ℓn=1

eℓ1 ∗ · · ·∗eℓn ∗(eℓ1 ∧ · · ·∧eℓn)

=
1

Dn

D

∑
ℓ1=1,...,ℓn=1,ℓ j ∕=ℓk for j ∕= k

eℓ1 ∗ · · ·∗ eℓn ∗ (eℓ1 ∧ · · ·∧ℓn)

=
1

Dn ∑
σ∈Sn

∑
1≤ℓ1<···<ℓn≤D

sgn(σ)eℓ1 ∗ · · ·∗eℓn ∗(sgn(σ)eℓ1 ∧ · · ·∧eℓn)

=
n!
Dn ∑

1≤1≤ℓ1<···<ℓn≤D
eℓ1 ∗ · · ·∗ eℓn ∗ eℓ1 ∗ · · ·∗ eℓn

=
n!
Dn


D
n


(−1)n+1 = (−1)n+1 ∏n−1

j=0(D− j)

Dn

Using this calculation and specializing Equation 69 to the
case of F = θ1 ∧ · · ·∧θn, we conclude that for any choice of a
region of integration M ⊆VD we have the following.



∂Mn
dθ1 ∗ · · ·d ∗θn ∗ (θ1 ∧ · · ·∧θn) = (81)

(vol(M)D)n


∂θ1 · · ·∂θnθ1 ∧ · · ·∧θn



Mn
= (82)

(vol(M)D)n(−1)n+1 ∏n−1
j=0 (D− j)

Dn = (83)
(−1)n+1 vol(M)n ∏n−1

j=0(D− j) (84)

Thus, if we take M ⊆ VD to have vol(M) = 1
D , and let D

tend to infinity, we obtain the following.

lim
D→∞,vol(M)= 1

D



∂Mn
dθ1 ∗ · · ·∗dθn ∗ (θ1 ∧ · · ·∧θn) = (−1)n+1

(85)
With the sign conventions of18, this limit matches the for-

mal computations of iterated Berezin integrals.

E. Minimalist (D = n) approach

In Section III D, we realized iterated Berezin integrals as
high dimensional limits of geometric integrals. Intuitively,
the purpose of moving to these high dimensional spaces was
to ensure that n randomly selected vectors be statistically or-
thogonal. If we were willing to simply enforce orthogonality
by suitably restricting the domain of integration, then we may
also see the Berezin integrals as geometric integrals.

For this to work, we still need D ≥ n, but the computation
may be completed with D = n. We constrain θk to the line
segment

Mk :=


rek :
−1
2

≤ r ≤ 1
2



so that now the boundary of Mk is the set

∂Mk =


−1
2

ek,
1
2

ek


.

We compute immediately that



∂Mk

dθk =−ek + ek = 0

and



∂Mk

dθk ∗θk = (−ek)∗
−ek

2
+ ek ∗

ek

2
= 1

Working with multiple integrals, we compute


∂M1

×...×∂Mn
(dθ1∧...∧dθn)∗(θ1∧...∧θn) = (86)

∑2,...,2
s1=1,...,sn=1(((−1)s1 e1)∧...∧((−1)sn en))∗((

(−1)s1
2 e1)∧...∧(

(−1)sn
2 en)) = (87)

∑2
s1=1...∑

2
sn=1

1
2n e1∗···∗en∗e1···∗en = (88)

2n 1
2n (−1)n+1 = (89)

(−1)n+1 (90)

More generally, for f (θ1, . . . ,θn) an analytic function of
the noncommuting variables θ1, . . . ,θn, using multilinearity
and the fact that our constraints enforce orthogonality so that
dθ1 · · ·dθn = dθ1 ∧ · · ·∧dθn, we see that



∂M1×···×∂Mn

dθ1 ∗ · · ·∗dθ1 ∗ f (θ1, . . . ,θn) =



∂M1×···×∂Mn

(dθ1 ∧ · · ·∧dθ1)∗ f (θ1, . . . ,θn) =

 Ber
dθ1 · · ·dθn f (θ1, . . . ,θn)
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F. Enforcing orthogonality with intermediate values of D > n

In the previous section we saw that, if we set a constraint
that the vectors are orthogonal, we no longer have to set D
to infinity and, in fact, D = n can suffice. However, if there
are other reasons for which we want D to be larger than n,
this is also allowed. For example, if we wish for θ to have
continuous spectrum, we would set D = 2n. That would re-
sult in any given variable θk being confinded to a curve Ck,
which would be “1-dimensional hypersurface". Its “area ele-
ment" would be the length, yet it would be perpendicular to
the direction of a curve. This, of course, is rather odd. A
situation that would have looked a lot more usual would of
been if instead of having one-dimensional hypersurface em-
bedded in 2-dimensional space we had 2-dimensional hyper-
surface embedded into 3 dimensional space. For that, we
would have to set D = 3n and confine θk to a closed sur-
face in (3k − 2,3k − 1,3k)-hyperplane that encloses the vol-
ume 1/3. And, finally, we for the sake of generality, we may
leave D≥ n, or D≥ 2n or D≥ 3n undefined via having greater
or equal signs rather than equal signs.

G. Directed volume measure

One problem that the above approaches have is the one
of rotational invariance. One can show that if θ1 and θ2
are both confined to D − 1 dimensional hypersurface then
(θ1 + θ2)/

√
2 would span a D-dimensional region, which

would put it into a different footing from θ1 and θ2. If we
take minimalist approach, then θ1 and θ2 would each take two
values, while (θ1 + θ2)/

√
2 would take four values, which

again puts it in a different footing. We propose to resolve
this issue by saying that each θ1 and θ2 spans D dimensional
space rather than D−1, which would put it on the same foot-
ing as θ1 + θ2. In case of area element, a crucial point was
that it is vector-valued. Thus, we need the volume element to
be vector-valued as well. In particular, we define a function
µ : VD → R and then define volume element to be

dµ θ =
θ
|θ |µ(θ)dV (91)

From this we obtain


dµ θ =
 θ

|θ |µ(θ)dV (92)

and


θ ∗dµ θ =
 θ ∗θ

|θ | µ(θ)dV (93)

=
 |θ |2

|θ | µ(θ)dV (94)

=


|θ |µ(θ)dV (95)

If, in particular, we make µ symmetric,

µ(θ) = µ(|θ |) (96)

then from rotational symmetry


dµ θ =
 θ

|θ |µ(|θ |)dV = 0 (97)

and, if we denote the area of the unit sphere in D dimensions
by aD, we get


θ ∗dµ θ =


|θ |µ(|θ |)dV = aD

 ∞

0
rDµ(r)dr (98)

The above can be made 1 by normalizing µ in the following
way:

µ(r) =
µ0(r)

aD
 ∞

0 rDµ0(r)dr
(99)

As it turns out, if ρ is symmetric, there is a relation between
volume integral and surface integral. First of all, we can split
volume integral into the surface integrals by confining each θk
to its own sphere of radius rk, evaluating the surface integral,
and then taking the integral of our answer over all possible
r1, · · · ,rn:


(dρ θ1 · · ·dρ θn)∗ f (θ1, · · · ,θn) = (100)

=
 

dr1 · · ·drnρ(r1) · · ·ρ(rn)


S(r1)×···×S(rn)
(dθ1 · · ·dθn)∗ f (θ1, · · · ,θn)



where we skipped product sings in dθ1 · · ·dθn to designate
that this reasoning will go through regardless of which product
sign is inserted. We then note that



S(r1)×···×S(rn)
(dθ1 · · ·dθn)∗ f (θ1, · · · ,θn)

= rD−1
1 · · ·rD−1

n



S(1)×···×S(1)
(dθ1 · · ·dθn)∗ f (r1θ1, · · · ,rnθn)

(101)
If we assume f is analytic with respect to ∧-product, then the
only term of f that would not drop out of the integral would
be the one proportional to θ1 ∧ · · ·∧ θn which would provide
an extra coefficient of r1 · · ·rn, leading to

(r1 · · ·rn)(rD−1
1 · · ·rD−1

n ) = rD
1 · · ·rD

n (102)

Thus,


S(r1)×···×S(rn)
(dθ1 · · ·dθn)∗ f (θ1, · · ·θn) =

rD
1 · · ·rD

n



S(1)×···×S(1)
(dθ1 · · ·dθn)∗ (θ1 ∧ · · ·∧θn) (103)

By substituting this into Equation 100, we obtain


(dρ θ1 · · ·dρ θn)∗ f (θ1, · · · ,θn) =


(dr1···drnρ(r1)···ρ(rn)rD

1 ···rD
n


S(1)×···×S(1)(dθ1···dθn)∗ f (θ1∧···∧θn)) =

(


dr1···drnρ(r1)···ρ(rn)rD
1 ···rD

n )(


S(1)∧···∧S(1)(dθ1∧···∧dθn) f (θ1,··· ,θn)) =

(


drρ(r)rD)n(


S(1)∧···∧S(1)(dθ1∧···∧θn))
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This result implies that the equations for surface integrals can
be carried over for volume integrals. For example, from Eq
81 for a surface integral, we obtain the volume integral ex-
pression


dµ θ1 ∗ . . .∗dµ θn ∗ (θ1 ∧ . . .∧θn) =


(dµ θ1 ∧ . . .∧dµ θn)∗ (θ1 ∧ . . .∧θn) =

(−1)n+1 ∏n−1
j=0(D− j)

Dn


dµ θ ∗θ

which also becomes 1, provided we normalize µ via Eq 99
and take limit of D → ∞.

Let us see which choices of µ would result in the rotational
invariance. Consider n variables θ1, . . . ,θn, each living in the
same space VD (thus, there are total of nD real coordinates).
Consider the change of variables

θ ′
i =

n

∑
j=1

Ai jθ j (104)

The criteria for rotational invariance can be stated as follows:

Rotational Invariance⇐⇒ dµ θ ′
1∧ . . .∧dµ θ ′

n =(detA)dµ θ1∧ . . .∧dµ θn
(105)

Now, the left and right hand side of the above evaluate to

LHS= dµ θ ′
1∧ . . .∧dµ θ ′

n =
n

∏
i=1

θ ′
i

|θ ′
i |

µ(|θ ′
i |)= (detA)

n

∏
i=1

θi

|θ ′
i |

µ(|θ ′
i |)

(106)

RHS = (detA)dµ θ1 ∧ . . .∧dµ θn = (detA)
n

∏
i=1

θi

|θi|
µ(|θi|)

(107)
From this, we have

Rotational Invariance ⇐⇒
n

∏
i=1

µ(|θ ′
i |)

|θ ′
i |

=
n

∏
i=1

µ(|θi|)
|θi|

(108)

That is being satisfied by

µ(|θ |)
|θ | = kDe−α|θ |2/2 (109)

which corresponds to

dµ θ = kDθe−α|θ |2/2dV (110)

where the product sign after θ was skipped in light of the fact
that e−α|θ |2/2 is a real number. To find coefficient kD, we com-
pute the integral of θ ∗dµ θ and then find the value of kD that

would set it to 1:


θ ∗dµ θ =

kD


|θ |2e−α|θ |2/2dV =

kD

D

∑
i=1


x2

i e−
α
2 (x

2
1+···+x2

D)dx1 · · ·dxD =

kD

D

∑
i=1


x2

i e−αx2
i /2dxi


∏
j ∕=i


e−αx2

j/2dx j


=

kD

α1+D
2

D

∑
i=1


y2

i e−y2
i /2dyi


∏
j ∕=i


e−y2

j/2dy j


=

kD

α1+D
2

D

∑
i=1

(
√

2π)(
√

2π)D−1 =

kD

α1+D
2

D

∑
i=1

(2π)D/2 =

kDD(2π)D/2

α1+D
2

If we set the above integral to 1, we get

kD =
α1+D

2

D(2π)D/2 (111)

It should be noted, however, that the above was done for the
measure dµ θ1 ∧ . . .∧ dµ θn, as opposed to dµ θ1 . . .dµ θn. In
the latter case, we simply point to the fact proven earlier that
integration with respect to either measure gives the same re-
sult due to the fact that the difference between two measures
integrates to zero.

H. Complex Grassmann numbers and spinors

One issue about complex Grassmann numbers that needs to
be addressed is that, if dθ were parallel to θ , then under the
transformation θ → iθ we would have dθ → idθ and, there-
fore, dθ ∗θ → −dθ ∗θ . If we were to integrate dθ ∗θ over
the whole complexified space then, from the above, we would
expect the integral to be equal to minus itself and, therefore,
zero. In order to avoid this, we say that dθ is parallel to θ ∗

rather than θ (where ∗ denotes complex conjugation), which
we will denote by writing dµ∗θ as opposed to dµ θ . Thus,

dµ∗θ = k2Dθ ∗e−α|θ |2/2dV (112)

which would allow for the integral over dµ∗θ ∗θ to produce a
non-zero result, and k2D is given by Eq 111, where D is being
replaced by 2D to signify that D complex dimensions is the
same as 2D real dimensions; thus,

k2D =
α1+D

2D(2π)D (113)

Going back to our discussion about conjugation, just as dµ θ
is parallel to θ ∗ rather than θ , similarly dµ∗θ ∗ will be parallel
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to θ rather than θ ∗,

dµ∗θ ∗ = kDθe−α|θ |2/2dV (114)

which is the reason why dµ∗θ ∗ ∗ θ would integrate to zero.
Sometimes, for the sake of brevity, we will skip µ or µ∗ below
d. In this case, it should be understood that

d(· · ·) = dµ∗(· · ·) (115)

In order to explain the symmetry properties of spinors, we
should define spinors as a linear combinations of tensor prod-
ucts between unit vectors |v〉 ∈ C4 and Grassmann variables
ψ ∈ VD:

ψ =
4

∑
k=1

ψk ⊗ |vk〉 (116)

which is to be contrasted with a commuting spinor, given by

|v〉=
4

∑
k=1

ck|vk〉 , c ∈ C (117)

We can define the Lorentz transformation to be

ψ ′
k =

4

∑
i=1

ψi(U†)ik (118)

|vk〉=
4

∑
j=1

Uk j|v j〉 (119)

and, therefore,

4

∑
k=1

ψ ′
k|v′k〉=

4

∑
i=1

4

∑
j=1

4

∑
k=1

ψi(U†)ikUk j|v j〉=
4

∑
i=1

ψi|vi〉 (120)

The measure on ψ = (ψ1,ψ2,ψ3,ψ4) is

dψ = k4ψ∗
1 ψ∗

2 ψ∗
3 ψ∗

4 e−α|ψ|2/2dV (121)

where

|ψ|2 = |ψ1|2 + |ψ2|2 + |ψ3|2 + |ψ4|2 (122)

In light of the fact that U is unitary, one can show that

ψ ′∗
1 ψ ′∗

2 ψ ′∗
3 ψ ′∗

4 = ψ∗
1 ψ∗

2 ψ∗
3 ψ∗

4 (123)

|ψ ′
1|2 + |ψ ′

2|2 + |ψ ′
3|2 + |ψ ′

4|2 = |ψ1|2 + |ψ2|2 + |ψ3|2 + |ψ4|2
(124)

which implies that the measure of integration on ψ is the same
as the measure of integration in ψ ′. Therefore, as long as
the domain of integration itself is symmetric under the spin
transformation, so are the integrals. We will end this section
by mentioning two ways in which it could have been written
differently:

1) Instead of using a volume integral we could have used a
surface integral. Then, as discussed earlier, we would have to

select a preferred reference frame. That is because under a co-
ordinate transformation the surface integral becomes the vol-
ume integral, thus breaking the symmetry; but if we start from
the volume integral as given above, it will retain its form, thus
symmetry would be respected. The violation of spin symme-
try has no consequence on actual physical results, as long as
the Lagrangian respects that symmetry. Therefore, it is really
an aesthetic question. The reason to use surface integrals is
that the concept of directed area element is standard while the
concept of directed volume is not; the reason to use volume
integral is that the spin symmetry is respected this way.

2) In20 it was suggested to interpret spinors themselves in
terms of geometric algebra. However, that approach is differ-
ent from ours since they identify anticommuting units with σk,
and there are three of them, in contrast to us having D → ∞
components. Apart from that, they define spinors to be even
rank objects, while we have to have odd rank in order to ex-
plain anticommutativity (more specifically, we define them to
be rank 1, although in principle we could have made them
more general odd rank, which we chose not to do). Both of
those observations point to the fact that they are focused on
re-interpreting |vk〉 as opposed to ek. If we substitute their
definition of |vk〉 into ek ⊗ |vk〉, we would get a tensor product
between our structure and theirs. Since this is isomorphic to
what we already wrote, it would neither help nor hinder us, so
we will leave this out. However, a direction of research that
might be worthwhile is to modify what they have in such a
way that tensor product would no longer be necessary and, in-
stead, we would obtain both σ -matrices and ek-s from a single
underlying framework. But, as of now, we are not sure how to
do that, so we leave it for a future research.

IV. GLIMPSE OF SUPERSYMMETRY

A. Orbit of R4 under supersymmetric transformations

It is not our intention to provide a full supersymmetric the-
ory (which deserves a separate paper); our only goal here is to
show that in principle its key aspects translate into our frame-
work. On the positive side, since we have reinterpreted Grass-
mann numbers as literal elements of a continuous space, su-
perspace should admit an interpretation as a continuous space
as well in the literal sense of the word. However, there are
some basic questions that we need to resolve. For exam-
ple, superspace transformation would add a rank 2 compo-
nent to space time points x ∈ R4. Thus, the spacetime would
no longer be R4 but, instead, it would have to be extended to
include rank-2 objects. What would this new space be? Also,
when we are taking integrals over a superpotential to get a
usual action, what subspace of that superspace are we inte-
grating over? In the section that follows, we will mainly focus
on those two questions, and we will restrict ourselves to only
a couple of the simplest examples. We hope to convince the
reader that one could proceed in similar fashion to “translate"
other aspects of supersymmetry into our framework as well,
but explicitly doing so is beyond the scope of this paper.

The supersymmetry transformation is generated through in-
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finitesimal transformation, of the form

θ α ′ = θ α − iεα

θ α̇ ′
= θ α̇

+ iε α̇

xµ ′ = xµ + εα σ µ
αβ̇

∧θ β̇ − ε α̇ ∧θ β σ µ
βα̇

where εα and ε α̇ are infinitesimal rank-1 objects with spinor
indexes, σ -matrices are given by

σ0 =


1 0
0 1


σ1 =


0 1
1 0


σ2 =


0 −i
i 0


σ3 =


1 0
0 −1



and Einstein summation convention is used; that is, repeated
indexes are summed over. The above transformations are gen-
erated by objects of the type εα ∧Qα and ε α̇ ∧Qα̇ , where εα

and ε α̇ are infinitesimal rank-1 objects while Qα and Qα̇ are
supercharges, defined as

Qα =−i(∂α + iσ µ
αβ̇

θ β̇ ∂µ) (125)

Qα̇ = i(∂ α̇ + iθ β σ µ
βα̇ ∂µ) (126)

In the above expressions, as well as in the future, it is under-
stood that the indexes from the beginning of the alphabet, such
as α , β , γ or δ refer to θ , while the indexes from the middle
of the alphabet, such as µ , ν , ρ and σ refer to x. Thus,

∂α =
∂

∂θ α (127)

∂ α̇ =
∂

∂θ α̇ (128)

∂µ =
∂

∂xµ (129)

In light of the fact that we have more than one product, we
define commutators and anticommutators for each product.
First, we define the products of operators. For an operator
A, define operators θ ∧A, θ ∗A, ∂θ ∧A and ∂θ ∗A as

(θ ∧A)F = θ ∧ (AF )

(θ ∗A)F = θ ∗ (AF )

(∂θ ∧A)F = (∂θ ∗A)F
= ∂θ (AF )

where F is some test superfield those operators are acting on.
We then define commutation and anticommutation relations
as

[A,B]∗ = A∗B−B∗A , [A,B]∧ = A∧B−B∧A (130)

{A,B}∗ = A∗B+B∗A , {A,B}∧ = A∧B+B∧A (131)

With this notation, the supercharges satisfy anticommutation
relations

{Qα ,Qβ}∧ = {Qα̇ ,Qβ̇}∧ = 0 (132)

{Qα ,Qβ̇}∧ = 2iσ µ
αβ̇

∂µ (133)

Inspection of the equations for Q and Q tells us four things.
On the one hand, commuting components can not be confined
to R4 since Q and Q produce elements of

2(VD)


C
⊗C

(TR4)C that would also be commuting, although not real.
On the other hand, commuting components do stay inside of
R4+

2(VD)


C
⊗C (TR4)C. Thirdly, the transformations do

not affect the rank-0 component, since those transformations
acting on rank 0 produce rank 1, while their action on rank 1
produces rank 2. And, finally, the transformations are inde-
pendent of the rank 0 component since they depend on rank 1
elements εα and ε α̇ . So our next question is: what subset of
R4 +

2(VD)


C
⊗C (TR4)C would be generated by Q and

Q? There is a related question: when we will be integrating
a Lagrangian to get an action, what set would we be taking
integral over and what would be its measure?

Theorem IV.1. The orbit of any given g ∈ R4 +

((VD)C)
4 +

2(VD)


C
⊗C (TR4)C is all of g+((VD)C)

4 +
2(VD)



C
⊗C (TR4)C.

Proof. We obtain from Eq 125, 125 and 126 that (g+(VD)C)
4

is contained in the orbit of g under the action of opera-
tors of the form ξ α ∧ Qα and η α̇ ∧ Qα̇ . We shall show
now that commutators of such operators generate the space
(
2(VD))C⊗C (TR)4)C. First note that the multiplication by

anticommuting elements turns commutator into an anticom-
mutator

[ξ α ∧Qα ,η β̇ ∧Qβ̇ ]∧ = ξ α ∧η β̇{Qα ,Qβ̇}∧ (134)

Therefore,

[ξ α ∧Qα ,η β̇ ∧Qβ̇ ]∧ = 2iσ µ
αβ̇

ξ α ∧η β̇ ∂µ (135)

By trying out different ways of substituting +ei, −ei, +iei and
−iei into ξ and η we obtain

[ei∧(Q1+Q2),e j∧(Q1̇+Q2̇)]∧=2iei∧e j(σ
µ
11̇
+σ µ

12̇
+σ µ

21̇
+σ µ

22̇
)∂µ=4iei∧e j(∂0+∂1)

(136)

[ei∧(Q1−Q2),e j∧(Q1̇−Q2̇)]∧=2iei∧e j(σ
µ
11̇
−σ µ

12̇
−σ µ

21̇
+σ µ

22̇
)∂µ=4iei∧e j(∂0−∂1)

(137)

[ei∧(Q1−iQ2),e j∧(Q1̇+iQ2̇)]∧=2iei∧e j(σ
µ
11̇
+iσ µ

12̇
−iσ µ

21̇
+σ µ

22̇
)∂µ=4iei∧e j(∂0+∂2)

(138)

[ei∧(Q1+iQ2),e j∧(Q1̇−iQ2̇)]∧=2iei∧e j(σ
µ
11̇
−iσ µ

12̇
+iσ µ

21̇
+σ µ

22̇
)∂µ=4iei∧e j(∂0−∂2)

(139)

[ei∧Q1,e j∧Q1̇]∧=2iei∧e jσ
µ
11̇

∂µ=2iei∧e j(∂0+∂3) (140)

[ei∧Q2,e j∧Q2̇]∧=2iei∧e jσ
µ
22̇

∂µ=2iei∧e j(∂0−∂3) (141)
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The linear combinations of the above equations give us

ei ∧ e j∂0 =−1
4
[(iei)∧Q1,e j ∧Q1̇]∧−

1
4
[iei ∧Q2,e j ∧Q2̇]∧

(142)

ei ∧ e j∂1 =−1
4
[(iei)∧Q1,e j ∧Q2̇]∧−

i
4
[iei ∧Q2,e j ∧Q1̇]∧

(143)

ei ∧e j∂2 =
1
4
[ei ∧Q1,e j ∧Q2̇]∧−

1
4
[ei ∧Q2,e j ∧Q1̇]∧ (144)

ei ∧ e j∂3 =−1
4
[(iei)∧Q1,e j ∧Q1̇]∧+

1
4
[(iei)∧Q2,e j ∧Q2̇]∧

(145)

iei∧e j∂0 =
1
4
[ei∧Q1,e j ∧Q1̇]∧+

1
4
[ei∧Q2,e j ∧Q2̇]∧ (146)

iei∧e j∂1 =
1
4
[ei∧Q1,e j ∧Q2̇]∧+

1
4
[ei∧Q2,e j ∧Q1̇]∧ (147)

iei ∧ e j∂2 =
1
4
[(iei)∧Q1,e j ∧Q2̇]∧−

1
4
[(iei)∧Q2,e j ∧Q1̇]∧

(148)

iei∧e j∂3 =
1
4
[ei∧Q1,e j ∧Q1̇]∧−

1
4
[ei∧Q2,e j ∧Q2̇]∧ (149)

The reason we have 8 equations is that for each eα and eα̇
we also considered ieα and ieα̇ since α is a spinor index and
spinors are complex valued. This generates the whole com-
plexified rank-2 component.

Now, if we denote by zαi and zα̇i the real components of θ
and θ ,

θ α = zαiei (150)

θ α̇
= zα̇iei (151)

we can then do the following calculation

ei∂α = ei ∧ (iQα − iσ µ
αβ̇

θ β̇ ∂µ)

= iei ∧Qα − iσ µ
αβ̇

zβ̇ jei ∧ e j∂µ

= iei∧Qα−iσ0
αβ̇

zβ̇ j


− i

4 [ei∧Q1,e j∧Q1̇]∧−
i
4 [ei∧Q2,e j∧Q2̇]∧



−iσ1
αβ̇

zβ̇ j


− i

4 [ei∧Q1,e j∧Q2̇]∧−
i
4 [ei∧Q2,e j∧Q1̇]∧



−iσ2
αβ̇

zβ̇ j


1
4 [ei∧Q1,e j∧Q2̇]∧−

1
4 [ei∧Q2,e j∧Q1̇]∧



−iσ3
αβ̇

zβ̇ j


− i

4 [ei∧Q1,e j∧Q1̇]∧+
i
4 [ei∧Q2,e j∧Q2̇]∧



ei∂ α̇ = ei∧(−iQα̇ −iσ µ
α̇β θ β ∂µ)= iei∧Qα̇ −iσ µ

α̇β zβ jei∧e j∂µ =

(152)

=−iei∧Qα̇ −iσ0
α̇β zβ j


− i

4
[ei∧Q1,e j∧Q1̇]∧−

i
4
[ei∧Q2,e j∧Q2̇]∧



−iσ1
α̇β zβ j


− i

4
[ei ∧Q1,e j ∧Q2̇]∧−

i
4
[ei ∧Q2,e j ∧Q1̇]∧



−iσ2
α̇β zβ j


1
4
[ei ∧Q1,e j ∧Q2̇]∧−

1
4
[ei ∧Q2,e j ∧Q1̇]∧



−iσ3
α̇β zβ j


− i

4
[ei ∧Q1,e j ∧Q1̇]∧+

i
4
[ei ∧Q2,e j ∧Q2̇]∧



Thus, all of g+((VD)C)
4 +

2(VD)


C
⊗C (TR4)C may be

reached.

Theorem IV.2. The general supersymmetric transformation

takes the form θ ′ = θ +ξ , θ ′
= θ +ξ , x′ = x+ηα ∧σ µ

αβ̇
θ β̇

+

θ β ∧σ µ
βα̇ η α̇ + c where c ∈

2(VD)


C
⊗C (TR4)C.

Proof. The set of transformations described in the statement
of the theorem is closed under Q and Q. This immediately im-
plies that the set generated by operators of the form ηα ∧Qα

and ξ
α̇ ∧Qα̇ is a subset of the full set. We shall now show

that this subset is in fact equal to the full set. We have al-
ready proven in the previous theorem that the translations
by c ∈ VD ∧VD are generated by those transformations. It

remains to show that the “rotation" terms ηα ∧ σ µ
αβ̇

θ β̇
and

θ β ∧ σ µ
βα̇ η α̇ are generated by them as well. We will show

this by the following calculation

ηα ∧σ µ
αβ̇

θ β̇ ∂µ =

ηα ∧Qα − iηα ∧∂α =

ηα ∧Qα − izα
i ei ∧∂α =

ηα∧Qα−izα
i


iei∧Qα−iσ0

αβ̇
zβ̇ j


− i

4 [ei∧Q1,e j∧Q1̇]∧−
i
4 [ei∧Q2,e j∧Q2̇]∧



−iσ1
αβ̇

zβ̇ j


− i

4 [ei∧Q1,e j∧Q2̇]∧−
i
4 [ei∧Q2,e j∧Q1̇]∧



−iσ2
αβ̇

zβ̇ j


1
4 [ei∧Q1,e j∧Q2̇]∧−

1
4 [ei∧Q2,e j∧Q1̇]∧



−iσ3
αβ̇

zβ̇ j


− i

4 [ei∧Q1,e j∧Q1̇]∧+
i
4 [ei∧Q2,e j∧Q2̇]∧



θ β ∧σ µ
βα̇ η α̇ ∂µ = iQα̇ − iη α̇ ∧∂ α̇ =

iQα̇−izα̇
i


−iei∧Qα−iσ0

αβ̇
zβ j


− i

4 [ei∧Q1,e j∧Q1̇]∧−
i
4 [ei∧Q2,e j∧Q2̇]∧



−iσ1
αβ̇

zβ j


− i

4 [ei∧Q1,e j∧Q2̇]∧−
i
4 [ei∧Q2,e j∧Q1̇]∧



−iσ2
αβ̇

zβ j


1
4 [ei∧Q1,e j∧Q2̇]∧−

1
4 [ei∧Q2,e j∧Q1̇]∧



−iσ3
αβ̇

zβ j


− i

4 [ei∧Q1,e j∧Q1̇]∧+
i
4 [ei∧Q2,e j∧Q2̇]∧
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where the long equations were produced by the substitutions
of Eq 152 and 152.

B. Integration over a superspace

Before we proceed, we have to agree on the product signs
we will be using. We know from Theorem III.2 that

(dθ1∧ . . .∧dθn)∗ f (θ1, . . . ,θn)=


dθ1∗ . . .∗dθn∗ f (θ1, . . . ,θn)

(153)
We recall from Section II B that we agreed to use θ1θ2 for the
cases when the product can be either ∧ or ∗. Therefore, we
can write the above integral as


(dθ1 . . .dθn)∗ f (θ1, . . . ,θn) (154)

However, despite the fact that

εαβ ξ α ∗ηβ = εαβ ξ α ∧ηβ (155)

we can not equate ξ ∗η with ξ ∧η since ξ ∗η is defined as
hαβ ξ α ∗ηβ as opposed to εαβ ξ α ∗ηβ :

ξ ∗η = hαβ ξ α ∗ηβ ∕= εαβ ξ α ∗ηβ = ξ ∧η (156)

where hαβ is a symmetric tensor as opposed to εαβ which is
antisymmetric:

h11 = h11 = h22 = h22 = 1 (157)

h1̇1̇ = h
1̇1̇

= h2̇2̇ = h
2̇2̇

= 1 (158)

h12 = h21 = h12 = h21 = 0 (159)

h1̇2̇ = h2̇1̇ = h
1̇2̇

= h
2̇1̇

= 0 (160)

ε12 =−ε21 = ε21 =−ε12 = 1 (161)

ε 1̇2̇ =−ε 2̇1̇ = ε 2̇1̇ =−ε 1̇2̇ = 1 (162)

ε11 = ε22 = ε11 = ε22 = 0 (163)

ε 1̇1̇ = ε 2̇2̇ = ε 1̇1̇ = ε 2̇2̇ = 0 (164)

Those definitions do not violate SU(2) symmetry since the σ -
matrices that generate it, σ µ

αβ̇
and σ µ

α̇β , include both dotted
and undotted indexes, whereas the ε-tensors and h-tensors in-
clude either only dotted indexes or only undotted ones. We
can streamline the notation by agreeing that when η2 is writ-
ten, εαβ is meant, in contrast to |η |2 that involves hαβ :

η2 = εαβ ηα ηβ , |η |2 = hαβ ηα ∗ηβ (165)

where the product sign is skipped at the left in light of Eq 155.
To define a superfield, we follow the usual steps and write

Φ(xL,θ) = φ(xL)+
√

2θ α ∧ψα(xL)+θ 2F(xL) (166)

where

xµ
L = xµ − iθ α ∧σ µ

αβ̇
θ β̇

, xµ
R = xµ + iθ α ∧σ µ

αβ̇
θ α̇

(167)

In the same way as it is done conventionally, we are assum-
ing that the functions in Eq 166 are analytic extensions from
usual space to superspace. This would dictate to us that, for
example,

φ(xL) = φ(x)− iθ α σ µ
αβ̇

θ β̇ ∂µ φ (168)

However, in light of more realistic model of Grassmann
numbers that we introduce here, the functions do not a priori
have to be analytic (see Chapter V). At the same time, we still
need to assume analyticity in the integration below, in order
to recover the non-supersymmetric Lagrangians. What this
means is that analyticity will become a constraint on the path
integral, as opposed to a mathematical fact. In other words,
we will not be integrating over all field trajectories over a su-
perspace; but, instead, we will only integrating over analytic
ones. However, this only requires analyticity over θ and θ ,
but it does not require analyticity over x. On the other hand,
this requires the derivative over x to be well defined, since the
above formulae includes it. This, in itself is a problem: in or-
der for our description of measure over Grassmann numbers
to be applicable, we need the fermionic fields at the nearby
spacetime points to be completely independent of each other,
which contradicts the assumption of analyticity.

One way to handle this is to perform a Fourier transform,
impose our Grassmann measure on a Fourier space, and im-
pose an upper bounds on frequency. Another option is to dis-
cretize space, in which case the derivatives over x would be
defined as differences. If we make the second choice, then
our superspace would consist of countably many parallel hy-
perplanes. Each hyperplane would project onto a single lat-
tice point in R4. Those hyperplanes would be continuous and,
therefore, the supersymmetry transformations (which do not
affect rank 0 components but only affect ranks 1 and 2) would
map each hyperplane onto itself. The function will be called
analytic if it obeys a discretized version of Eq 168: that is,
we replace all the derivatives in Eq 168 with corresponding
differences. The simplest way of doing so is to write

φ(xL) = φ(x)− iθ α
3

∑
µ=0

σ µ
αβ̇

θ β̇ φ(x+ ε x̂µ)−φ(x)
ε

(169)

where x̂µ is a unit vector in µ-direction and ε is some scaling
size. Since this clearly violates rotational invariance, there is
a more rotationally invariant alternative to this. In particular,
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we can perform the following calculation:
 ∞

−∞
(x′− x) f (x′)e−

α
2 (x

′−x)2
dx′ =

 ∞

−∞
(x′− x)2 f ′(x)e−

α
2 (x

′−x)2
d(x′− x) =

f ′(x)
 ∞

−∞
(x′− x)e−

α
2 (x

′−x)2
d
(x′− x)2

2
=

− f ′(x)
α

 ∞

−∞
(x′− x)de−

α
2 (x

′−x)2
=

f ′(x)
α

 ∞

−∞
e−

α
2 (x

′−x)2
dx =


2π
α

f ′(x)
α

This implies that

f ′(x) =
α3/2
√

2π

 ∞

−∞
(x′− x) f (x′)e−

α
2 (x

′−x)2
dx (170)

On the other hand, we can write

f (x) =


α
2π

 ∞

−∞
e−

α
2 (x−x′)2

dx (171)

Therefore,

∂µ f =
1

f 3(x)
(∂µ f ) ∏

ν ∕=µ
f

= 1
f 3(x)


α3/2√

2π
∞
−∞ f (x′)(x′µ−xµ )e−

α
2 (x′µ−xµ )2 dx


∏ν ∕=µ


√ α

2π
∞
−∞ e−

α
2 (x−x′)2 dx



=
1

f 3(x)
α3

4π2


f (x′)(x′µ − xµ)e−

α
2 |x

′−x|2d4x′

We can now replace integral with a sum and write

∂µ f =
1

f 3(x)
α3

4π2 ∑ f (x′)(x′µ − xµ)e−
α
2 |x

′−x|2 δv (172)

where δv is an element of four-volume taken up by a single
point. Thus, the constraint given in Eq 169 becomes

φ(xL)= φ(x)−iθ α σ µ
αβ̇

θ β̇ 1
f 3(x)

α3

4π2 ∑ f (x′)(x′µ −xµ)e−
α
2 |x

′−x|2 δv

(173)
This would still violate relativity. After all, the Lorentzian
ε-neighborhood is the vicinity of the light cone, given by its
“past" component,

−

|x|2 + ε2 ≤ t ≤−|x| (174)

and its “future" component,

|x|≤ t ≤

|x|2 + ε2 (175)

both of which can be shown to have infinite volume which
implies that each point would have infinitely many neighbors.
Therefore, any method of making the number of neighbors

finite would violate relativity by default. This, indeed, is a
widely acknowledged problem among people working with
discrete spacetimes (see21). However, for our purposes, we
are content with this.

In light of discreteness of spacetime, we replace the integral
over x with a sum over x in our supersymmetric action, while
the integrals over θ and θ will remain integrals (since θ and
θ remain continuous). Thus,

S = ∑
x
(δv)x


(d2θd2θ)∗ (Φ(x,θ ,θ)∧Φ(x,θ ,θ))

+∑
x
(δv)x


d2θ ∗(W (Φ))(x,θ)+∑

x
(δv)x


d2θ ∗(W (Φ))(x,θ)

(176)
where W (Φ) and W (Φ) are both expressed in terms of
wedge-products:

W (Φ) =
m
2

Φ∧Φ− λ
3

Φ∧Φ∧Φ (177)

W (Φ) =
m
2

Φ∧Φ− λ
3

Φ∧Φ∧Φ (178)

and the differentials are defined as

d2θ = εαβ dµ∗θ α dµ∗θ β , d2θ = ε α̇β̇ dµ∗θ α̇
dµ∗θ β̇

(179)

To make it even more explicit, we substitute Eq 110,

dµ θ = kDθe−α|θ |2/2dV (180)

to obtain

dµ θ 2 = εαβ dµ θ α dµ θ β = k2
Dεαβ θ α θ β e−α|θ |2/2dV (181)

where we have e−α|θ |2/2 instead of e−α|θ |2 and dV instead
of (dV )2 because we are combining D-dimensional θ1 with
D-dimensional θ2 into 2D-dimensional θ . To emphasize this
point, we will write d2DV . Similarly,

dµ θ 2
= k2

Dε α̇β̇ θ α̇ θ β̇ e−α|θ |2/2dV (182)

By substituting those, we obtain

S = k4
D ∑x(δv)x


d4DVe−α|θ |2/2−α|θ |2/2(εαβ εγ̇ δ̇ θ α θ β θ γ̇ θ δ̇

)∗(Φ(x,θ ,θ)∧Φ(x,θ ,θ))

+k2
D ∑x(δv)x


d2DVe−α|θ |2/2(εαβ θ α θ β )∗(W (Φ))(x,θ)

+k2
D ∑x(δv)x


d2DVe−α|θ |2/2(ε α̇β̇ θ α̇ θ β̇

)∗(W (Φ))(x,θ)

On the other hand, if we are to use the surface integral instead
of volume integral, then D gets replaced by D− 1, and, ac-
cordingly, 2D and 4D gets replaced by 2D− 2 and 4D− 4,
respectively, which represents the dimensionality of tori. The
coefficients kD along with the factors e−α|θ |2/2 get dropped.
So we obtain

S = 1
V 4 ∑x(δv)x


d4D−4V (εαβ ε γ̇ δ̇ θ α θ β θ γ̇ θ δ̇

)∗(Φ(x,θ ,θ)∧Φ(x,θ ,θ))

+ 1
V 2 ∑x(δv)x


d2D−2V (εαβ θ α θ β )∗(W (Φ))(x,θ)

+ 1
V 2 ∑x(δv)x


d2D−2V (ε α̇β̇ θ α̇ θ β̇

)∗(W (Φ))(x,θ)
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Thus, in case of the volume integral we have discrete copies
of hyperplanes and in case of the surface integral we have dis-
crete copies of tori. It is important to note that the torus does
not map onto itself under supersymmetry transformation. At
the same time, the statement that the Lagrangian “happens"
to be invariant under the supersymmetry transformation con-
tinues to be true: it is simply irrelevant to the integral we are
taking.

The other possibility that we briefly talked about is the min-
imalist model (section III E): namely that VD is viewed as
{1/2,−1/2}D. If we take this approach then the supersym-
metric will simply add either 1/2ek or −1/2ek to each rank-1
components and, therefore, the rank 1 will be half-inegers.
As far as rank-2 components, they would be changed by the
products of rank-1 components, which will be half-integers
and, therefore, they will be quarter-integers. Despite the fact
that rank-1 components will take all half-integer values, the
“integral" over the superspace will only sum their values of
+1/2 and −1/2. This is reminiscent to what we said for the
case of the surface integral where, despite the fact that suer-
symmetric transformation takes us away from the surface, we
are only integrating over the surface.

As far as the integral over x goes, the inspection of the equa-
tion


(d4xd2θd2θ)∗(Φ∧Φ)=


d4x(∂µ φ∂ µ φ+iψ α̇∧σ µ

α̇β ψβ+F∧F) (183)

tells us that since on the right hand side the integral over x
does not include rank 2 component, neither should the inte-
gral on the left hand side include a rank 2 component. The
way we interpret it is that – in the case we chose to do volume
integral – we are taking the above integral over the hyperplane
where the rank 2 component is equal to zero. In the case we
chose to do surface integral, we are integrating over a “hyper-
circle" within this hyperplane – instead of integrating over a
hypersphere inside the whole space; and then we produce the
torus as a product of these hypercircles. In terms of discretiza-
tion of x, this means that, instead of integrating over the hy-
perplanes (hyperspheres) given above, we will be integrating
over their subspaces (subsets), where rank-1 components can
alter but rank-2 components can not. The problem with do-
ing that is that it violates supersymmetry. In particular, since
supersymmetric transformations alter rank 2 components, the
hyperplane (hypercircle) defined by rank 2 components being
equal to zero would not map onto itself. But that is where our
analyticity constraint comes to the rescue. It can be shown
that as long as the function is analytic, its integral over the
above hyperplane (hypercircle) would be the same as its inte-
gral over its supersymmetric transformation. Thus, it does not
matter which of those hyperplanes (hypercircles) we would
select: we would get the same answer!

Indeed, one has to get used to the idea of selecting hyper-
planes (hypercircles) inside our space (sphere), since one has
to do it in order to make sense why the last two terms of Eq
183 have fewer differentials than the first term on the right
hand side. That feature might be bothersome in its own right.
What are we physically saying? Are we saying that there is
some special hyperplane (hypercircle) that plays some physi-
cal role? The answer is no. In light of the fact that we have

introduced the symmetries, the value of the integral is inde-
pendant of the choice of that hyperplane (hypercircle). This
implies that if we were to integrate it over the whole space
(sphere), we would have infinite overcounting over infinitely
many copies of the same integral, leading to an infinite an-
swer. In order to avoid the infinite overcounting, we are re-
stricting that integral to a choice of hyperplane (hypercircle) –
and it does not matter which choice we make.

As far as discretization of x, it makes one wonder why are
not we equally explicit with regards to discretizing θ . Af-
ter all, from a mathematically rigorous point of view, the dis-
cretization is a necessary component of a path integral. The
answer to this question is two-fold. First of all, the reason
for discretizing x is different than the one for discretizing θ .
In particular, we want x discretized so that the θ -s at the two
neighboring x-points can be, independently, integrated over
the whole sphere (if we choose the option of the surface in-
tegral) or that the non-trivial formula for measure of the in-
tegration at any point is not influenced by its neighbor (if we
choose the option of the volume integral). On the other hand,
discretizing θ has to do with discretizing either the sphere or
the volume we just mentioned. From this point of view, it
is perfectly reasonable to talk about the degree of approxi-
mation that overlooks discretization of θ without overlooking
discretization of x. Indeed, doing so is paedagogical since it
emphasizes the point we are making. The other answer to this
question is that – thanks to the constraints we talked about – θ
and θ do not have to be discretized at all! Even if the spheres
or hyperplanes on which θ and θ reside have uncountably
many points, we only need a very small number of param-
eters to completely characterize the function over any given
sphere. So if we take the integral over those parameters, that
integral will be well defined even in the case of the sphere
being continuous, by the virtue of the fact that the number
of those parameters remains finite. Of course, this statement
would nor apply to the non-analytic cases (such as discussed
in the next chapter). But the constraint we described earlier,
if left unmodified, implies analyticity. So – again if we leave
everything unmodified – we would be able to make the argu-
ment we just did in favor of continuous sphere (hyperplane).
If we do, however, choose to modify things and introduce non-
analytic functions, then the sphere (hyperplane) would have to
be discretized as well.

V. EXTENSION OF SUPERANALYSIS TO
NON-ANALYTIC FUNCTIONS

A. Examples of non-analytic functions

The Riemann sum definition of the Berezin integral implies
that it makes sense to integrate both analytic and non-analytic
functions. Since the specific choice of a set of measures (or
choice of set closed surfaces) was designed for analytic func-
tions, its not a big surprise that it might not work as nicely
for non-analytic ones. To be sure, if one describes a specific
surface, both analytic and non-analytic functions can be inte-
grated over it. But if, on the other hand, the only information
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that is given is that the surface encloses a volume of 1/D,
then it is possible that different surfaces that meet that de-
scription would result in vastly different values an integral of
non-analytic function can take. Nevertheless, there are some
types of non-analytic functions for which we can get well de-
fined integrals. Let us discuss some of them.

One example is if we use Clifford product, instead of wedge
product, in Taylor series. In this case, we can use Equation 51
to show that the integral would approach a linear coefficient
in the limit of D → ∞. However, the function does not have to
be analytic with respect to Clifford product either. A radically
different example of a function that can be integrated is

f


∑
k∈N

xkek


= ∑

k∈S
xkek (184)

for some S ⊂ N. In this case one can show that, provided the
limit on the right hand side below exists, the integral evaluates
to

lim
D→∞


dµD θ f (θ) = lim

D→∞


1
D
{k ∈ S,k < D}


(185)

where  stands for the number of elements. One could also
extend our definition of integral to include Lebesgue integrals,
and define f (θ) in such a way that f (x1e1 + · · ·+ xDeD) is 1
if all values of xk are rational and 0 otherwise. One can show
that the integral of this function is zero. Obviously, the list of
a few non-analytic functions we just provided is by no means
exclusive but, hopefully, it can convince the reader that one
can obtain well defined results with those functions.

B. Physics applications of non-analytic functions

The second author is undertaking companion projects
where non-analytic functions are applied to physics. One
application is the theory of quantum measurement. Accord-
ing to the deBroglie’s22 Bohm’s23,24 interpretation of quan-
tum mechanics, a particle and a wave exist at the same time
as a separate entities, and the wave guides a particle through
an expression of the form dx/dt = −S/m. If by ρ one
means the classical probability of finding the particle, and
ψ is a guiding wave, then ρ = |ψ|2 was shown to arize as
an equilibrium probability distribution. This approach was
then generalized to fields by replacing ψ(x) with ψ(φ) and
dx/dt with dψ/dt25–28 Since fermionic fields are Grassmann-
valued, most approaches evade them. For example, Bell29

modeled bosons as fields and fermions as particle numbers
at the lattice points. Struyve and Westmann25 on the other
hand proposed a model with bosons being the only observ-
ables (for example, we do not observe an electron hitting the
screen, we observe the photons it emits). Valentini, on the
other hand, attempted to include fermionic feables (see Sec
4.2 of28) and he has shown that both a guidance equation and a
continuity equation may be formally written down. However,
those equations lose their physical meaning since, for one
thing, Grassmann numbers can not take distinguishable val-
ues. Apart from that, the function ρ(ψ) would have to be lin-
ear, which would force us to say that ψ would take infinitely

large values with infinite probability, in contradiction to any-
thing we would expect. However, in light of the proposal pre-
sented in the current paper, there is a way to address those
issues. We now say that a fermionic field takes well defined
values that live in D-dimensional space we described. Further-
more, since we have a concept of non-analytic functions, we
no longer have to assume that probability distribution is lin-
ear and, instead, we can use a continuity equation (that now
regains its meaning) to investigate various non-linear proba-
bility distributions we might have. That might be especially
useful if we attempt to couple those fields to gravity30.

Another set of approaches to quantum measurement that
might also benefit from this paper are Ghirardi Rimini We-
ber (GRW) models31,32 and weighted path integrals33–36. The
quantum mechanics version of GRW model31,32 is that we
have a wave function that evolves according to Schrodinger
equation and that evolution is being interrupted by so-called
“hits" when the wave function is being multiplied by Gaus-
sians, and those Gaussians account for why classical objects
remain on well defined locations instead of diffusing due to
Schrodinger equation. This idea can be then extended to quan-
tum field theory by replacing ψ(x) with ψ(φ)37. On the other
hand, the concept of weighted path integral33–36 is that, in-
stead of having hits at random points in time, the measurement
takes place continuously. Its outcome is a classical trajectory
φ = φcl , and the probability of that trajectory is given by

ρ(φcl) =

[Dφ ]w(φ ,φcl)eiS(φ) (186)

where w(φ ,φcl) is a weight function, typically given as

w(φ ,φcl) = exp

− α

2


(φ −φcl)

2d4x


(187)

It has been shown that continuous measurement model can,
in fact, arise out of GRW in a limit of very large time or very
frequent hits37. Be it as it may, applying this to fermionic field
raises a lot of questions. Whether we use hits or a weight func-
tion, in both cases those are Gaussians. However, Gaussians
on anticommuting space are either constants or linear func-
tions and, therefore, they lose their purpose. Nevertheless,
within the context of our current paper, we have much bet-
ter version of Gaussians: the ones that are based on Clifford
product. This would, in turn, allow us to explore the fermionic
version of those models.

The other application is the causal set theory38–41. A causal
set is based on the observation that the metric of spacetime up
to scaling can be inferred from lightcone causal relations42,43.
Consequently, it was suggested to view spacetime as a par-
tially ordered set, or causal set, where the partial ordering is
identified with the lightcone causal structure. One appealing
feature of this is that partial ordering, as defined, is manifestly
Lorentz invariant – in sharp contrast with other discrete struc-
tures such as cubic lattices that have preferred directions. To
keep in line with this, it is assumed that points are distributed
randomly via Poisson process, which seems to be the most
relativistic version of discrete spacetime one can find. This,
however, creates locality problems. Lorentzian neighborhood
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is a vicinity of light cone. That, in turn, stretches arbitrarily far
coordinate-wise and has infinite volume. If there was a pre-
ferred frame (such as the case in a cubic lattice) one could ar-
gue that the edges of the light cone – despite small Lorentzian
distance – will not be connected to the origin. This can no
longer be said if we have a truly random distribution of points.
In44–47 it was suggested to use the actual field trajectory as
a means of violating relativity and restoring locality. Thus,
there is no afore-given preferred frame but, instead, preferred
frame is a function of a specific field trajectory and, if we take
path integral over all possible field trajectories, we would go
over all possible preferred frames. However, this statement
amounts to saying that the coefficients that are responsible for
coupling of fields between the neighboring points are, them-
selves, functions of the field trajectory. This implies that the
Lagrangian is no longer truly quadratic: the “coefficients" in
what “looks like" a quadratic function are, themselves, func-
tions! This, in turn, raises a question: how can a fermionic
field be modeled this way? The only fermionic model that
was proposed48 was a toy model where fermionic fields are
commuting. However, in light of the paper at hand, one no
longer needs to stick to a toy model and, instead, introduce
actual fermionic fields on a causal set. This paper allows us to
introduce a non-analytic function on anticommuting set and,
in particular, we could search for the type of non-analytic La-
grangian for fermions that would accomplish the above goals.

One should not become too optimistic, however. As far
as the Bohmian model goes, it does not propose any modifi-
cations to the wave function; it simply “adds" a beable that
the wave function carries. Its key idea is that wave function
naturally splits into branches by the sole merit of its unitary
evolution, and the particle will end up occupying one of those
branches. However, that statement about branches is clearly
not true when it comes to Grassmann variables, since analytic
functions are linear in them. Of course, we could still have
branches in other variables (such as bosonic field that inter-
acts with fermionic field) but then we would be able to do
“just as much" as before: there is no clear way in which the
interpretation of Grassmann variables really added anything.
As far as GRW model is concerned, its key idea is that there
is a modification to the unitary evolution of a wave function
that would add up to produce a large effect. This seems to be
harder to believe when it comes to Grassmann variables. Af-
ter all, we need to retain the measure, which includes the fact
that it is a function symmetric around the origin. On the other
hand, if through some accumulation of small effects it would
“collapse" around some point away from the origin, that sym-
metry would be violated. If we could find a way to alter the
direction of the measure as well, then we could make the mea-
sure symmetric around that new point – and then the integrals
would again coincide with Berezin since they would be shifted
by a constant that integrates to zero. But then we are back with
a question: how would that collapse be physically observed?
We could say it is observed through some indirect means such
as gravity, but then in what physical sense is it a fermionic
field as opposed to some other hidden variable coupled to it?
As far as the causal set idea is concerned, we were focusing
on how to make a function smooth in some discretized notion

of smoothness. But that would again contradict what we said
about Grassmann measure: the measure on the space describ-
ing ψ(x) would be concentrated around the average value of ψ
over neighboring points of x, and would no longer be centered
around the origin. Nevertheless, one might attempt to iden-
tify physically observable parameters with small alterations
to analyticity. This would probably amount to the fact that the
above ideas would need to be replaced with subtler versions
of themselves.

VI. CONCLUSION

In this paper we have shown that the Berezin integral can,
in fact, be represented as a limit of Riemann sums if we view
it as a geometric integral over a closed surface that encloses a
volume of 1/D, taken in the limit as D→∞. If D is finite, then
the deviation between the geometric integral and the Berezin
integral will be small if D is much larger than the number of
iterations of integral sign.

However, the closed surface interpretation of the integral
does not respect changes of variables. Thus, an alternative
model is proposed where, instead of a surface integral, we
have a volume integral, but the volume element carries a di-
rection. The direction of a volume element plays the same
role as a direction of a surface element which results in the
integral having expected properties, with an added bonus that
it respects change of variables. The price to pay for this, how-
ever, is that directed volume is not a usual occurrence in mul-
tivariable calculus the way directed area is.

One application is that the concept of supermanifolds can
be interpreted as a usual continuous manifold. In particular,
a supermanifold with m commuting dimensions and n anti-
commuting ones will be re-interpreted as an ordinary mani-
fold with m+ nD dimensions. The integration over all of the
coordinates of the manifold will be reinterpreted as an inte-
gral that has m+ n(D− 1) dimensional hypersurface. Even
though m+ n(D− 1) ∕= (m+ nD)− 1 for n ∕= 1, the normal
vector will be well defined: in particular, it would be a sum
of the normal vectors to D−1 dimensional hypersurfaces in-
side corresponding D dimensional submanifolds. This kind
of reinterpretation would be particularly helpful for students
trying to study supermanifolds since they would look more
geometrically similar to the manifolds they are used to.

Another application of what we have done is that the defini-
tion of the Berezin integral has been extended to non-analytic
functions. Since we have a coordinate system, we can write
down non-analytic functions for each D. If we also specify our
choice of a surface for each D, we can use geometric calculus
to evaluate the integral, ID, over that surface. If it happens that
ID approaches a specific value as D → ∞, we can think of that
as the ultimate value of the integral we are looking for.

As we noted above, the second author is presently inves-
tigating possible physical applications of such an integration
theory for non-analytic functions.

Last but not least, the representation of the Berezin inte-
gral as a limit of Riemann sums presents foundational interest,
akin to the definition of real numbers via Dedekind cuts.
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