INFINITE STABLE FIELDS ARE ARTIN-SCHREIER CLOSED

THOMAS SCANLON

ABSTRACT. We note that if K is an infinite stable field of characteristic p > 0, then the Artin-Schreier map $\wp : K \to K$ given by $x \mapsto x^p - x$ is surjective. Consequently, K has no finite Galois extensions of degree divisible by p.

An old theorem of Macintyre asserts that an ω -stable infinite field is algebraically closed [4]. Cherlin and Shelah generalized this theorem showing that an infinite superstable division algebra must be a commutative algebraically closed field [2]. As separably closed fields are stable [5], one might ask whether an infinite stable field must be separably closed. We note that at the very least if K is stable and infinite of characteristic p, then K has no finite Galois extensions of degree divisible by p.

I thank Anand Pillay for calling to my attention an error in an earlier version of this note.

Proposition 1. Let K be an infinite stable field of characteristic p > 0. Then the Artin-Schreier map $\wp : K \to K$ given by $x \mapsto x^p - x$ is surjective.

Proof: As the hypotheses and conclusion are properties of the theory of K, we may assume that K is \aleph_1 -saturated. Let $k := K^{p^{\infty}} := \bigcap_{n=1}^{\infty} K^{p^n}$. Let $\varphi(x, y) := (\exists z)y(z^p - z) = x$. Then, for any $a \in K$, $\varphi(K, a) = a\varphi(K)$. That is, $\{a\varphi(K) | a \in K^{\times}\}$ is family of uniformly definable subgroups of (K, +). As K is stable, the group $I := \bigcap_{a \in k^{\times}} a\varphi(K)$ is equal to a finite subintersection of the form $\bigcap_{j=1}^n a_j\varphi(K)$ for some $a_1, \ldots, a_n \in k^{\times}$. Let G be the algebraic subgroup of the $(n + 1)^{\text{st}}$ power of the additive group defined by $\bigwedge_{j=1}^n t = a_j(X_j^p - X_j)$. Note that the dimension of G is at least one. As k is perfect, the connected component of G is isomorphic to the additive group over k. In particular, G(k) is infinite. So, we can find some nonzero $t \in \bigcap_{j=1}^n a_j\varphi(k)$. However, $I \cap k$ is an ideal of the field k; so $I \supseteq k$. On the other hand, $\varphi(k) \ge I \cap k$. Thus, $\varphi(k) = k$.

By compactness, there is some n so that $\wp(K) \supseteq K^{p^n}$. Let $a \in K$, then $a^{p^n} \in \wp(K)$. Let $\alpha \in K$ so that $\alpha^{p^n} - \alpha = x^{p^n}$. Then, $\wp(\alpha^{p^{-n}}) = a$. Note that the extension $K(\alpha^{p^{-n}})/K$ is purely inseparable. However, the equation $X^p - X - a = 0$ is separable, so the extension $K(\alpha^{p^{-n}})/K$ is also separable. Therefore, $\alpha^{p^{-n}} \in K$ so that $K = \wp(K)$.

My original proof (which I have forgotten) of the main proposition exploited an algebraic lemma of Cherlin [1]. His calculation is hidden in the general fact on rationality of certain linear groups quoted in the above proof.

Corollary 2. If K is an infinite stable field of characteristic p > 0 and L/K is a finite separable extension, then p does not divide [L:K].

Date: 1 October 1999.

THOMAS SCANLON

Proof: Let M/L be the Galois closure of L over K. If p divided [L:K], then it also divides $[M:K] = \#\operatorname{Gal}(M/K)$. Let $G \leq \operatorname{Gal}(M/K)$ be a subgroup of order p and $K' := M^G$, the fixed field of G. The extension M/K' is Galois of degree p = charK'; so it is given by adjoining an Artin-Schreier root. In particular, $\wp(K') \neq \wp(K')$. However, stability is preserved by interpretations and K' is interpretable in K. This contradicts the proposition.

Corollary 3. If K is an infinite stable field of characteristic p > 0, then K contains $\mathbb{F}_p^{\text{alg}}$.

Proof: Let $k := K \cap \mathbb{F}_p^{\mathrm{alg}}$. By our proposition, K is closed under taking Artin-Schreier roots. Thus, k contains $\bigcup_{n=0}^{\infty} \mathbb{F}_{p^{p^n}}$ and is therefore infinite. By the Lang-Weil estimates, every infinite subfield of $\mathbb{F}_p^{\mathrm{alg}}$ is pseudo-algebraically closed (PAC). By a theorem of Duret [3], every relatively algebraically closed PAC subfield of a field without the independence property is algebraically closed. Hence, $k = \mathbb{F}_p^{\mathrm{alg}}$.

References

- G. CHERLIN, Undecidability of rational function fields in nonzero characteristic, Logic Colloquium '82 (Florence, 1982), 85 95.
- [2] G. CHERLIN and S. SHELAH, Superstable fields and groups, Annals of Mathematical Logic 18 (1980) no. 3, 227 - 270.
- [3] J.-L. DURET Les corps faiblement algébriquement clos non séparablement clos ont la propriété s'indépendendence, Model Theory of Algebra and Arithmetic (Proc. Conf., Karpacz, 1979), LNM 834, Springer, 136 – 162.
- [4] A. MACINTYRE, ω_1 -categorical fields, Fundamenta Mathematicae 70 (1971) no. 3, 253 270.
- [5] C. WOOD, Notes on the stability of separably closed fields, *Journal of Symbolic Logic* 44 (1979) no. 3, 337 - 352.

E-mail address: scanlon@math.berkeley.edu

UNIVERSITY OF CALIFORNIA, BERKELEY, DEPARTMENT OF MATHEMATICS, EVANS HALL, BERKELEY, CA 94720, USA