The diameter of a Lascar strong type

Ludomir Newelski

Abstract

We prove that a type-definable Lascar strong type has finite diameter. We answer also some other questions from [1] on Lascar strong types. We give some applications on subgroups of type-definable groups.

In this paper T is a complete theory in language L and we work within a monster model \mathfrak{C} of T. For $a_0, a_1 \in \mathfrak{C}$ let $a_0\Theta a_1$ iff $\langle a_0, a_1 \rangle$ extends to an indiscernible sequence $\langle a_n, n < \omega \rangle$. We define a distance function d on \mathfrak{C} . Namely, d(a, b) is the minimal natural number n such that for some $a_0 = a, a_1, \ldots, a_{n-1}, a_n = b$ we have $a_0\Theta a_1\Theta \ldots a_{n-1}\Theta a_n$. If no such n exists, we set $d(a, b) = \infty$.

The transitive closure $\stackrel{Ls}{\equiv}$ of Θ (denoted also by E_L) is the finest bounded invariant equivalence relation on \mathfrak{C} , its classes are called Lascar strong types. So $a\stackrel{Ls}{\equiv}b\iff d(a,b)<\infty$. $\stackrel{bd}{\equiv}$ (denoted also by E_{KP}) is the finest bounded typedefinable equivalence relation on \mathfrak{C} . For details see e.g. [1]. So $\stackrel{bd}{\equiv}$ is coarser than $\stackrel{Ls}{\equiv}$ and each $\stackrel{bd}{\equiv}$ -class is a union of some number of Lascar strong types.

1

Assume $a \in \mathfrak{C}$ and let X be the Lascar strong type of a. We define the diameter diam(X) as the supremum of $d(a,b), b \in X$. In [1] the authors ask whether X being type-definable implies that X has finite diameter. (Strictly speaking, this is an equivalent version of the question from [1].) Also they ask how many Lascar strong types may be contained in a given $\stackrel{bd}{\equiv}$ -class. We answer both questions in Corollary 1.8. Before we approach them it is convenient to consider a more general problem. Namely, how many Lascar strong types are needed to make a type-definable set. We answer this question in the next theorem. For a type or formula s(x), s(x) denotes the set of types containing s(x).

Theorem 1.1 Assume that $p^* \in S(\emptyset)$ and $X \subseteq p^*(\mathfrak{C})$ is a type-definable set, which is a union of some number of Lascar strong types of infinite diameter. Then $|X/\stackrel{Ls}{\equiv}| \geq 2^{\aleph_0}$.

In the proof of Theorem 1.1 we will need a topological lemma related to the Baire category theorem. Assume K is a compact space and \mathcal{A} is a family of subsets of K covering K. We define an increasing sequence Z_{α} , $\alpha \in Ord \cup \{-1\}$, of open subsets of K. We let $Z_{-1} = \emptyset$, for limit α we put $Z_{\alpha} = \bigcup_{\beta < \alpha} Z_{\beta}$, and for $\alpha = \beta + 1$ we define

$$Z_{\alpha} = \bigcup_{A \in \mathcal{A}} int(Z_{\beta} \cup A).$$

We call $\langle Z_{\alpha} \rangle_{\alpha \in Ord \cup \{-1\}}$ the open analysis of K with respect to \mathcal{A} . There is a minimal β such that $Z_{\beta} = Z_{\beta+1}$. We call this β the height of K with respect to \mathcal{A} . If $Z_{\beta} = K$, we say that K is analyzable with respect to \mathcal{A} , or \mathcal{A} -analyzable. The closed set $K \setminus Z_{\beta}$ is called the core of K with respect to \mathcal{A} , or the \mathcal{A} -core of K.

The Cantor-Bendixson analysis of K is the open analysis with respect to $\mathcal{A} = \{\{x\} : x \in K\}$. Also Morley rank may be defined in terms of open analyses of some compact spaces.

If \mathcal{A}' is another covering of K, we say that \mathcal{A}' refines \mathcal{A} , if every member of \mathcal{A}' is contained in some member of \mathcal{A} .

Remark 1.2 (1) If K is A-analyzable and $Z_{\alpha} \neq K$, then $Z_{\alpha+1} \setminus Z_{\alpha}$ is relatively open and dense in $K \setminus Z_{\alpha}$ and the height of K with respect to A is a successor ordinal. (2) If A' refines A and K is A'-analyzable, then K is A-analyzable.

Lemma 1.3 Assume $f: K' \to K$ is a continuous surjection of compact spaces, \mathcal{A} is a covering of K and \mathcal{A}' is a covering of K'.

- (1) Assume $A = A_0 \cup A_1$, $\bigcup A_0 \cap \bigcup A_1 = \emptyset$ and $S = \bigcup A_0$. If K is A-analyzable, then the set $\bigcup_{A \in A_0} int_S(A)$ is relatively open and dense in S.
- (2) Assume $\mathcal{A}' = \{f^{-1}[A] : A \in \mathcal{A}\}$. Let C' be the \mathcal{A}' -core of K'. Then f[C'] is the \mathcal{A} -core of K. In particular, K' is \mathcal{A}' -analyzable iff K is \mathcal{A} -analyzable.
- (3) Assume $A = \{f[A'] : A' \in A'\}$. If K' is A'-analyzable, then K is A-analyzable.

If in Lemma 1.3(1) \mathcal{A}_0 is a countable family of closed sets, $S = \bigcup \mathcal{A}_0$ is a G_{δ} -set and $\mathcal{A}_1 = \{K \setminus S\}$, then K is \mathcal{A} -analyzable. In this way Lemma 1.3 is related to the Baire category theorem.

Proof. Let $\langle Z_{\alpha} \rangle$ be the open analysis of K with respect to \mathcal{A} .

- (1) Assume U is an open subset of K meeting S. We have that $Z_0 \cap U \cap S \subseteq \bigcup_{A \in \mathcal{A}_0} int_S(A)$. If $Z_0 \cap U \cap S = \emptyset$, then S is dense in $U \setminus Z_0$, $Z_1 \cap U \cap S \neq \emptyset$ and $Z_1 \cap U \cap S \subseteq \bigcup_{A \in \mathcal{A}_0} int_S(A)$.
- (2) Clearly the \mathcal{A} -core of K contains f[C']. We will show the reverse inclusion. So suppose $f[C'] \neq K$. Let $\langle Z'_{\alpha} \rangle$ be the open analysis of K' with respect to \mathcal{A}' . It is enough to show that $Z_0 \neq \emptyset$.

Suppose for a contradiction that $Z_0 = \emptyset$. This means, that the sets from \mathcal{A} have empty interior. We construct recursively non-empty open subsets U_l of K and numbers $\alpha_l \in Ord \cup \{-1\}, l < \omega$, such that the sequence $\langle \alpha_l \rangle_{l < \omega}$ is strictly decreasing (hence we will reach a contradiction) and

(*) α_l is minimal such that $f^{-1}[cl(U_l)] \subseteq Z'_{\alpha_l+1}$.

We define U_0 as a non-empty open subset of K with $cl(U_0) \cap f[C'] = \emptyset$. Then for some β we have $f^{-1}[cl(U_0)] \subseteq Z'_{\beta}$. Since $f^{-1}[cl(U_0)]$ is compact, we can choose α_0 as in (*).

Suppose we have defined U_l and α_l , we will define U_{l+1} and α_{l+1} . Since $f^{-1}[cl(U_l)]$ is compact, by (*) there are finitely many sets $A_0, \ldots, A_{k-1} \in \mathcal{A}$ (for some $k < \omega$) and open sets $V_i \subseteq K', i < k$, with $cl(V_i) \subseteq Z'_{\alpha_l} \cup A'_i$ (where $A'_i = f^{-1}[A_i]$), such that $f^{-1}[cl(U_l)] \subseteq \bigcup_{i < k} V_i$. Let $V = f[\bigcup_{i < k} cl(V_i) \setminus Z'_{\alpha_l}]$. So V is a closed subset of K. There are two cases.

Case 1. V has non-empty interior. In this case one of the sets $f[cl(V_i) \setminus Z'_{\alpha_l}]$ has non-empty interior, but $f[cl(V_i) \setminus Z'_{\alpha_l}] \subseteq A_i$, and A_i has empty interior, a contradiction.

Case 2. V has empty interior. In this case choose a non-empty open set $U_{l+1} \subseteq U_l$ with $cl(U_{l+1}) \cap V = \emptyset$. So $f^{-1}[cl(U_{l+1})] \subseteq Z'_{\alpha_l}$. Hence $\alpha_l \ge 0$ and we may choose α_{l+1} so that (*) holds.

In this way we have finished the construction and the proof (2).

(3) Let $\mathcal{A}'' = \{f^{-1}[A] : A \in \mathcal{A}\}$. Then \mathcal{A}' refines \mathcal{A}'' , hence by Remark 2, K' is \mathcal{A}'' -analyzable. By (2), K is \mathcal{A} -analyzable. \square

¿From now on until the end of the proof of Theorem 1.1 we assume that $X \subseteq p^*(\mathfrak{C})$ is a type-definable union of some number of Lascar strong types of infinite diameter and $\overline{a} = \langle a_{\alpha} \rangle_{\alpha < \mu}$ is a tuple of representatives of the Lascar strong types contained in X. So X is definable by a type $\Phi_0(x)$ over some $C \subseteq \mathfrak{C}$. It follows, that X is also type-definable over \overline{a} .

To see this, consider the restriction map $r: S(C\overline{a}) \to S(\overline{a})$. Since r is continuous, the image of the compact set $S(C\overline{a}) \cap [\Phi_0(x)]$ via r is closed in $S(\overline{a})$, hence $r[S(C\overline{a}) \cap [\Phi_0(x)]] = S(\overline{a}) \cap [\Phi(x,\overline{a})]$ for some type $\Phi(x,\overline{a})$ over \overline{a} . Since X is \overline{a} -invariant, $\Phi(\mathfrak{C},\overline{a}) = X$.

Let $Y = S(\overline{a}) \cap [\Phi(x, \overline{a})] = \{tp(b/\overline{a}) : b \in X\}$. So Y is a closed subset of $S(\overline{a})$. The main part of the proof of Theorem 1 is the following proposition.

Proposition 1.4 There is a type-definable over \overline{a} set $X' \subseteq X$ such that for every formula $\varphi(x)$ over \overline{a} , if $X' \cap \varphi(\mathfrak{C}) \neq \emptyset$, then $|(X' \cap \varphi(\mathfrak{C}))/\overset{Ls}{\equiv}| \geq 2$.

Proof. For $\alpha < \mu$ and $n < \omega$ let

$$Y_{\alpha} = \{tp(b/\overline{a}) : b \stackrel{Ls}{\equiv} a_{\alpha}\} \text{ and } Y_{\alpha}^{n} = \{tp(b/\overline{a}) : d(a_{\alpha}, b) \leq n\}.$$

So the sets Y_{α}^{n} are closed in $S(\overline{a})$, $Y_{\alpha} = \bigcup_{n} Y_{\alpha}^{n}$ and $Y = \bigcup_{\alpha,n} Y_{\alpha}^{n}$. Let $\langle Z_{\alpha} \rangle$ be the open analysis of Y with respect to $\mathcal{Y} = \{Y_{\alpha}^{n} : \alpha < \mu, n < \omega\}$ and let β^{+} be the corresponding height of Y. There are two cases.

Case 1. $Z_{\beta^+} \neq Y$. In this case the set $X' = \{b \in X : tp(b/\overline{a}) \in Y \setminus Z_{\beta^+}\}$ satisfies our demands.

Indeed, consider a formula $\varphi(x)$ over \overline{a} with $X' \cap \varphi(\mathfrak{C}) \neq \emptyset$. Suppose for a contradiction that $X' \cap \varphi(\mathfrak{C})$ is contained in a single Lascar strong type, say $a_{\gamma}/\stackrel{Ls}{\equiv}$. Then $(Y \setminus Z_{\beta^+}) \cap [\varphi(x)] \subseteq Y_{\gamma} = \bigcup_n Y_{\gamma}^n$, hence by the Baire category theorem one of

the sets Y_{γ}^{n} , $n < \omega$, has non-empty interior in $Y \setminus Z_{\beta^{+}}$. This means, that $Z_{\beta^{+}+1} \neq Z_{\beta^{+}}$, a contradiction.

So in the further proof of Proposition 2 we may assume that the following Case 2 holds.

Case 2. $Z_{\beta^+} = Y$ and Y is Y-analyzable. In this case we will eventually reach a contradiction.

For every $b \in X$ and $n < \omega$ let $U_b = \{tp(c/b) : c \in X\}$, $Y_b = \{tp(c/b) : c \stackrel{Ls}{\equiv} b\}$, $Y_b^n = \{tp(c/b) : d(c,b) \le n\}$ and

 $Z_b^0 = \{ r \in Y_b : \text{ for some } \varphi(x) \in r \text{ and } n < \omega \text{ we have } Y_b \cap [\varphi(x)] \subseteq Y_b^n \}.$

Claim 1.5 Z_b^0 is a relatively open and dense subset of Y_b . Moreover there is no bound on d(c,b) for $c \stackrel{Ls}{\equiv} b$ with $tp(c/b) \in Z_b^0$.

Proof. We could have chosen \overline{a} so that $a_0 = b$. So we may assume $b = a_0$. U_b is closed as a continuous image (via the restriction map) of the closed set Y. If μ is countable, then one can show that the set Y_b is a G_{δ} -subset of U_b , and then the claim follows directly from the Baire category theorem (which holds in a G_{δ} -subset of a compact space), since $Y_b = \bigcup_n Y_b^n$.

In general μ may be uncountable, so we have to argue differently. Let $f: Y \to U_b$ be the restriction map and $Y_0^{\omega} = Y \setminus \bigcup_n Y_0^n$. Then $\mathcal{A}' = \{Y_0^n : n \leq \omega\}$ is a covering of Y such that \mathcal{Y} is finer than \mathcal{A}' . Since Y is \mathcal{Y} -analyzable, by Remark 2 Y is also \mathcal{A}' -analyzable.

Let $\mathcal{A} = \{Y_b^n : n \leq \omega\}$, where $Y_b^\omega = U_b \setminus \bigcup_{n < \omega} Y_b^n$. By Lemma 1.3 (for K' := Y and $K := U_b$) we get that U_b is \mathcal{A} -analyzable and Z_b^0 is dense in Y_b . Let $\langle Z_\alpha^* \rangle$ be the open analysis of U_b with respect to \mathcal{A} .

For the last clause, suppose there is a bound k on d(c,b) for $c \stackrel{Ls}{\equiv} b$ with $tp(c/b) \in \mathbb{Z}_b^0$. We will prove that $Y_b = \mathbb{Z}_b^0$.

Suppose otherwise. Choose the first α such that Z_{α}^* meets $Y_b \setminus Z_b^0$. It follows that Z_{α}^* contains an open subset W of U_b such that $\emptyset \neq W \cap (Y_b \setminus Z_b^0) \subseteq Y_b^n$ for some $n < \omega$. But then for all c with $tp(c/b) \in (W \cap Y_b) \cup Z_b^0$ we have $d(c,b) \leq \max\{n,k\}$, hence $W \cap Y_b \subseteq Z_b^0$, a contradiction.

Now $Y_b = Z_b^0$ implies, that the diameter of the Lascar strong type of b is $\leq k$, contradicting the assumptions of Theorem 1.1. \square

For any $b \in X$ we define $\overline{d}(\overline{a}, b)$ as $d(a_{\alpha}, b)$ for the a_{α} with $a_{\alpha} \stackrel{Ls}{\equiv} b$. We carry out an inductive analysis of X. For $n < \omega$ let

$$X^n = \{b \in X : \overline{d}(\overline{a}, b) \le n\} \text{ and } Y^n = \{tp(b/\overline{a}) : b \in X^n\}.$$

We see that $X = \bigcup_n X^n$, $Y = \bigcup_n Y^n$ and $Y^n, n < \omega$, are unions of the closed sets $Y_\alpha^n, \alpha < \mu$. Let $\langle Z^\alpha \rangle$ be the open analysis of Y with respect to $\mathcal{Y}' = \{Y^n : n < \omega\}$. Since \mathcal{Y} refines \mathcal{Y}' and Y is \mathcal{Y} -analyzable, by Remark 1.2 we get that Y is also \mathcal{Y}' -analyzable. Let β^* be the height of Y with respect to \mathcal{Y}' . By Remark 1.2, β^* is a successor, say $\beta^* = \alpha^* + 1$ for some $\alpha^* \in Ord \cup \{-1\}$.

Lemma 1.6 (1) If there is a finite bound on $\overline{d}(\overline{a}, b)$ for $b \in \varphi(\mathfrak{C}, \overline{a})$ with $tp(b/\overline{a}) \in Z^{\alpha+1} \setminus Z^{\alpha}$, then $Y \cap [\varphi(x, \overline{a})] \subseteq Z^{\alpha+1}$.

- (2) There is some k > 0 such that for all $b \in X$ with $tp(b/\overline{a}) \in Y \setminus Z^{\alpha^*}$, we have $\overline{d}(\overline{a}, b) \leq k$.
- (3) $\beta^* = 0$ iff there is a finite bound on the diameters of the Lascar strong types contained in X.
- *Proof.* (1) By Remark 1.2, $Z^{\alpha+2} \setminus Z^{\alpha+1}$ is dense in $Y \cap [\varphi(x, \overline{a})] \setminus Z^{\alpha+1}$. On the other hand our assumptions imply that $Z^{\alpha+2} \cap [\varphi(x, \overline{a})] \subseteq Z^{\alpha+1}$. So $Y \cap [\varphi(x, \overline{a})] \subseteq Z^{\alpha+1}$.
- (2) The set $Y \setminus Z^{\alpha^*}$ is covered by relatively open subsets of some $Y^n, n < \omega$. By compactness, a finite number of these sets covers $Y \setminus Z^{\alpha^*}$, hence the conclusion follows.
 - (3) Immediate. \square

Proof of Proposition 1.4 continued. We will define recursively elements $b_l \in X$, formulas $\varphi_l(x, \overline{a}), \psi_l(x, b_l)$ and numbers $\alpha_l, \beta_l \in Ord \cup \{-1\}$ for $l < \omega$ so that $\alpha_l < \beta_l$, the sequences $\langle \alpha_l \rangle_{l < \omega}, \langle \beta_l \rangle_{l < \omega}$ are strictly decreasing (hence we will reach a contradiction) and the following hold.

- (a) $tp(b_l/\overline{a}) \in Z^{\beta_l+1} \setminus Z^{\beta_l}$.
- (b) $\psi_l(x, b_l) \vdash \varphi_l(x, \overline{a}).$
- (c) $\emptyset \neq Y_{b_l} \cap [\psi_l(x, b_l)] \subseteq Y_{b_l}^m$ for some $m < \omega$.
- (d) $\alpha_l < \alpha^*$ is minimal such that $Y \cap [\varphi_l(x, \overline{a})] \subseteq Z^{\alpha_l} \cup Y^n$ for some $n < \omega$.

First we deal with the case l=0. Choose a $b_0 \in X$ with $tp(b_0/\overline{a}) \in Y \setminus Z^{\alpha^*}$ and let $\beta_0 = \alpha^*$. Let k > 0 be as in Lemma 1.6. So $\overline{d}(\overline{a}, b_0) \leq k$.

By Claim 1.5 choose $c \stackrel{Ls}{\equiv} b_0$ with $tp(c/b_0) \in Z_{b_0}^0$ and $d(b_0, c) \geq 3k$. By the triangle inequality it follows that $\overline{d}(\overline{a}, c) \geq 2k$, hence by the choice of k, $tp(c/\overline{a}) \in Z^{\alpha^*}$ and the same is true for any other $c' \models tp(c/b_0)$.

The set $Y \setminus Z^{\alpha^*}$ is closed in $S(\overline{a})$, so we can regard it as a type over \overline{a} . We have that the type $(Y \setminus Z^{\alpha^*})(x) \cup tp(c/b_0)(x)$ is inconsistent, hence there are formulas $\psi_0(x,b_0) \in tp(c/b_0)$ and $\varphi_0(x,\overline{a})$ satisfying (b),(c) and $Y \cap [\varphi_0(x,\overline{a})] \subseteq Z^{\alpha^*}$. Then we choose $\alpha_0 < \alpha^*$ satisfying (d) by the definition of Z^{α^*} .

Next suppose we have found $b_l, \varphi_l, \psi_l, \alpha_l$ and β_l satisfying (a)–(d) and we will define $b_{l+1}, \varphi_{l+1}, \psi_{l+1}, \alpha_{l+1}$ and β_{l+1} .

Choose a formula $\theta(y, \overline{a}) \in tp(b_l/\overline{a})$ with $\psi_l(x, y) \wedge \theta(y, \overline{a}) \vdash \varphi_l(x, \overline{a})$. Since $tp(b_l/\overline{a}) \in Z^{\beta_l+1} \setminus Z^{\beta_l}$, by Lemma 6 for every $\gamma < \beta_l$ there is no finite bound on $\overline{d}(\overline{a}, b')$ for $b' \in \theta(\mathfrak{C}, \overline{a})$ with $tp(b'/\overline{a}) \in Z^{\gamma+1} \setminus Z^{\gamma}$. If β_l is a successor, let β_{l+1} be the predecessor of β_l , while for limit β_l choose $\beta_{l+1} < \beta_l$ with $\alpha_l < \beta_{l+1}$. Then choose $b_{l+1} \in \theta(\mathfrak{C}, \overline{a})$ with $tp(b_{l+1}/\overline{a}) \in Z^{\beta_{l+1}+1} \setminus Z^{\beta_{l+1}}$ and such that $\overline{d}(\overline{a}, b_{l+1}) > n + m$.

Since $tp(b_l) = tp(b_{l+1})$, $\psi_l(\mathfrak{C}, b_l) \cap Y_{b_l}$ being non-empty implies that also $\psi_l(\mathfrak{C}, b_{l+1}) \cap Y_{b_{l+1}} \neq \emptyset$. There are two cases.

Case 1. There is some $c' \in \psi_l(\mathfrak{C}, b_{l+1})$ with $c' \stackrel{Ls}{\equiv} b_{l+1}$ and $tp(c'/\overline{a}) \notin Z^{\alpha_l}$. In this case for such a c' we have $\overline{d}(\overline{a}, c') \leq n, d(b_{l+1}, c') \leq m$ (by (c),(d)), while $\overline{d}(\overline{a}, b_{l+1}) > n + m$, which violates the triangle inequality.

This contradiction shows that $\alpha_l \geq 0$ and the following Case 2 holds.

- Case 2. For every $c' \in \psi_l(\mathfrak{C}, b_{l+1})$ with $c' \stackrel{Ls}{\equiv} b_{l+1}$ we have that $tp(c'/\overline{a}) \in Z^{\alpha_l}$. In this case choose such a c'. Again we see that the type $tp(c'/b_{l+1})(x) \cup (Y \setminus Z^{\alpha_l})(x)$ is inconsistent, hence for some $\psi_{l+1}(x, b_{l+1}) \in tp(c'/b_{l+1})$ implying $\psi_l(x, b_{l+1})$ and for some $\varphi_{l+1}(x, \overline{a})$ we have that
- (b') $\psi_{l+1}(x,b_{l+1}) \vdash \varphi_{l+1}(x,\overline{a})$ and
- (d') $Y \cap [\varphi_{l+1}(x, \overline{a})] \subseteq Z^{\alpha_{l+1}} \cup Y^n$ for some minimal $\alpha_{l+1} \in Ord \cup \{-1\}$ with $\alpha_{l+1} < \alpha_l$ and some $n < \omega$.

In this way we have completed the recursive construction and the proof of Proposition 1.4. \Box

Lemma 1.7 Assume X' is as in Proposition 1.4, $n < \omega$, $a, b \in X'$ and $d(a, b) = \infty$. Then there are formulas $\varphi(x) \in tp(a/\overline{a})$ and $\psi(x) \in tp(b/\overline{a})$ such that for all $a' \in X' \cap \varphi(\mathfrak{C})$ and $b' \in X' \cap \psi(\mathfrak{C})$ we have d(a', b') > n.

Proof. Let $p = tp(a/\overline{a})$ and $q = tp(b/\overline{a})$. The type

$$\{ \text{``}d(x,y) \le n\text{''}\} \cup p(x) \cup q(y)$$

is inconsistent. So there is a formula $\chi(x,y)$ such that " $d(x,y) \leq n$ " $\vdash \chi(x,y)$, and formulas $\varphi(x) \in p(x)$ and $\psi(y) \in q(y)$ such that the formula $\chi(x,y) \land \varphi(x) \land \psi(y)$ is contradictory. Clearly the formulas $\varphi(x)$ and $\psi(x)$ satisfy our demands. \square

Proof of Theorem 1.1. Choose X' as in Proposition 1.4. Using Lemma 1.7 we construct a tree $\varphi_{\eta}(x), \eta \in 2^{<\omega}$, of formulas over \overline{a} such that

- (a) $\varphi_{\eta}(\mathfrak{C}) \cap X' \neq \emptyset$,
- (b) $\varphi_{\eta ^{\frown}\langle i\rangle}(x) \vdash \varphi_{\eta}(x)$ for i = 0, 1, and
- (c) if $\eta \neq \nu \in 2^n$, then for all $a \in \varphi_{\eta}(\mathfrak{C}) \cap X'$ and $b \in \varphi_{\nu}(\mathfrak{C}) \cap X'$ we have $d(a, b) \geq n$.

Since X' is type-definable over \overline{a} , for $\eta \in 2^{\omega}$ we can choose $a_{\eta} \in X' \cap \bigcap_{n < \omega} \varphi_{\eta \upharpoonright n}(\mathfrak{C})$. We see that for $\eta \neq \nu \in 2^{\omega}$ we have $d(a_{\eta}, a_{\nu}) = \infty$. \square

Corollary 1.8 (1) A type-definable Lascar strong type has finite diameter.

(2) Assume X is a $\stackrel{bd}{\equiv}$ -class, which is not a Lascar strong type. Then $|X/\stackrel{Ls}{\equiv}| \geq 2^{\aleph_0}$.

Proof. (1) Let X be a type-definable Lascar strong type. If diam(X) is infinite, then we get a contradiction with Theorem 1.1. (2) is immediate. \square

Ziegler [1] has given an example of a theory, where $\stackrel{Ls}{\equiv}$ and $\stackrel{bd}{\equiv}$ differ. This example is constructed from a sequence of definable Lascar strong types with growing finite diameters. Using Theorem 1.1 we can see that this is not accidental.

Corollary 1.9 (1) Assume in T there is a sequence of type-definable Lascar strong types X_n , $n < \omega$, with growing finite diameters. Then in T there is a Lascar strong type, which is not type-definable. In particular, $\stackrel{Ls}{\equiv}$ and $\stackrel{bd}{\equiv}$ differ.

 $(2) \stackrel{Ls}{\equiv} and \stackrel{bd}{\equiv} agree iff there is a finite bound on the diameters of Lascar strong types.$

Proof. (1) Let $a_n \in X_n$, $a = \langle a_n \rangle_{n < \omega}$ and let X be the Lascar strong type of a. X projects onto each X_n and for $a' = \langle a'_n \rangle_{n < \omega} \in X$, $d(a, a') \geq d(a_n, a'_n)$. So X has infinite diameter and is not type-definable.

(2) follows from (1). \square

Related to $\stackrel{Ls}{\equiv}$ and $\stackrel{bd}{\equiv}$ are the groups $Autf_L(\mathfrak{C})$ and $Autf_{KP}(\mathfrak{C})$. Namely, $Autf_L(\mathfrak{C}) = \{f \in Aut(\mathfrak{C}) : f \text{ preserves each } \stackrel{Ls}{\equiv} \text{-class} \}$ and $Autf_{KP}(\mathfrak{C}) = \{f \in Aut(\mathfrak{C}) : f \text{ preserves each } \stackrel{bd}{\equiv} \text{-class} \}$. Moreover, as a subgroup of $Aut(\mathfrak{C})$, $Autf_L(\mathfrak{C})$ is generated by $\bigcup \{Aut(\mathfrak{C}/M) : M \prec \mathfrak{C} \}$ (see [1]).

Corollary 1.10 $Autf_L(\mathfrak{C}) = Autf_{KP}(\mathfrak{C}) \iff Autf_L(\mathfrak{C}) \text{ is generated by } \bigcup \{Aut(\mathfrak{C}/M) : M \prec \mathfrak{C}\} \text{ in finitely many steps.}$

The fact, that $\stackrel{Ls}{\equiv}$ and $\stackrel{bd}{\equiv}$ differ is equivalent to $Autf_L(\mathfrak{C}) \neq Autf_{KP}(\mathfrak{C})$. Hence we get the following corollary.

Corollary 1.11 Assume $Autf_L(\mathfrak{C}) \neq Autf_{KP}(\mathfrak{C})$. Then $|Autf_{KP}(\mathfrak{C})/Autf_L(\mathfrak{C})| \geq 2^{\aleph_0}$.

Corollary 1.11 answers another question from [1]. When T is countable, then in the above results we can replace $\geq 2^{\aleph_0}$ by $= 2^{\aleph_0}$. This is because then the objects in question are Borel in nature. For example, as explained in [1], when X is a $\stackrel{bd}{\equiv}$ -class, then we can interpret $X/\stackrel{Ls}{\equiv}$ as the set of equivalence classes of some Borel equivalence relation on a Polish space.

More generally, in the above results $\stackrel{Ls}{\equiv}$ may be replaced by any equivalence relation E defined as the reflexive and transitive closure of some 0-type-definable symmetric binary relation R(x,y) implying tp(x)=tp(y). The corresponding distance function d_E on an E-class is given by:

 $d_E(a,b)$ = the minimal number of steps needed to go from a to b via R.

Let S be a 0-type-definable set (possibly of infinite tuples). Let R(x,y) be the conjunction of all formulas $\varphi(x,y)$ such that on S, $x \stackrel{Ls}{\equiv} y$ implies φ . In other words, R is the closure of $\stackrel{Ls}{\equiv}$ in the Stone topology on $S \times S$. Let E be the transitive closure of R. [1, Corollary 2.6] proves that on S E equals $\stackrel{bd}{\equiv}$ and the d_E -diameter of each E-class is ≤ 2 . This is a nice illustration of the extended version of Corollary 1.8.

Let us consider an even more general situation. We say that an equivalence relation E is $\bigvee \bigwedge$ -definable if $E = \bigcup_{n < \omega} \Phi_n$, where each Φ_n is type-definable. We can and will assume additionally, that each Φ_n is reflexive, symmetric and $\Phi_n(x,y) \land \Phi_n(y,z)$ implies $\Phi_{n+1}(x,z)$. In this case we say that $\bigvee_{n < \omega} \Phi_n$ is a normal form of E.

Corollary 1.12 Assume E(x,y) is an $\bigvee \bigwedge$ -definable equivalence relation implying tp(x) = tp(y), with normal form $\bigvee_{n < \omega} \Phi_n$. Assume $p \in S(\emptyset)$ and $X \subseteq p(\mathfrak{C})$ is a type-definable set, which is a union of some E-classes. Then either E is equivalent on X to some $\Phi_n(x,y)$ (and is type-definable on X) or $|X/E| \ge 2^{\aleph_0}$.

Proof. For $a, b \in X$ let $d_E(a, b)$ be the minimal n such that $a\Phi_n b$. d_E satisfies the triangle inequality, hence we can repeat the proof of Theorem 1.1. \square

2

Thus far we have not used the fact, that $\stackrel{Ls}{\equiv}$ is bounded. We shall do so in the proofs of the next results.

Assume X is a Lascar strong type and $\overline{a} = \langle a_i \rangle_{i < k}$ is a non-empty (possibly infinite) tuple of elements of \mathfrak{C} with $a_0 \in X$. For $a \in X$ let $X_a^n = \{b \in X : d(a,b) \le n\}$.

We define recursively relatively \bigvee -definable over \overline{a} subsets $Z_{\overline{a}}^{\alpha}$ of X, $\alpha \in Ord \cup \{-1\}$. We put $Z_{\overline{a}}^{-1} = \emptyset$, for limit α , $Z_{\overline{a}}^{\alpha} = \bigcup_{\beta < \alpha} Z_{\overline{a}}^{\beta}$ and for $\alpha = \beta + 1$ we define

 $Z^{\alpha}_{\overline{a}} = \{b \in X: \text{ for some } \varphi(x) \in tp(b/\overline{a}) \text{ and } n < \omega \text{ we have } X \cap \varphi(\mathfrak{C}) \subseteq Z^{\beta}_{\overline{a}} \cup X^{n}_{a_{0}}\}.$

The minimal α such that $Z_{\overline{a}}^{\alpha}=Z_{\overline{a}}^{\alpha+1}$ is called the height of X over \overline{a} . We say that X is analyzable (over \overline{a}) if $X=Z_{\overline{a}}^{\alpha}$ for some α . By Lemma 1.3 we have that X is analyzable over \overline{a} iff X is analyzable over a_0 iff X is analyzable over any \overline{b} with $b_0 \in X$.

Lemma 2.1 Assume X is an analyzable Lascar strong type. Then for some $\overline{a} = \langle a_i \rangle_{i < k}$, the height of X over \overline{a} is a successor $\gamma + 1$ for some $\gamma \in Ord \cup \{-1\}$ and there is a finite bound on $d(a_0, b)$, $b \in X \setminus Z_{\overline{a}}^{\gamma}$.

Proof. For $\overline{a} = \langle a_i \rangle_{i < k}$ with $a_0 \in X$ choose the minimal β such that $X_{a_0}^1 \subseteq Z_{\overline{a}}^{\beta}$. Choose \overline{a} so that β is minimal possible. Since $X_{a_0}^1$ is type-definable, β is a successor, say $\beta = \gamma + 1$. Let $\Phi(x, \overline{a})$ be the disjunction of formulas with $\Phi(\mathfrak{C}, \overline{a}) \cap X = Z_{\overline{a}}^{\gamma}$. Choose $\varphi(x, \overline{a})$ such that $X_{a_0}^1 \setminus Z_{\overline{a}}^{\gamma} \subseteq \varphi(\mathfrak{C}, \overline{a}) \cap X \subseteq Z_{\overline{a}}^{\beta}$. Using the definition of $Z_{\overline{a}}^{\alpha}$ we get a bound $m < \omega$ on $d(a_0, b)$ for $b \in X \cap \varphi(\mathfrak{C}, \overline{a}) \setminus Z_{\overline{a}}^{\gamma}$. We prove that

(*) there are finitely many tuples $\overline{a}^j = \langle a_i^j \rangle_{i < k}, j < n$, (for some n), realizing $tp(\overline{a})$ and such that $X \subseteq \bigcup_{j < n} \left(Z_{\overline{a}^j}^{\gamma} \cup \varphi(\mathfrak{C}, \overline{a}^j) \right)$.

Suppose not. Then we find \overline{a}^j , $j < \omega$, such that $a_0^j \in X$, $tp(\overline{a}^j) = tp(\overline{a})$ and $a_0^j \notin \bigcup_{i < j} \left(\Phi(\mathfrak{C}, \overline{a}^i) \cup \varphi(\mathfrak{C}, \overline{a}^i) \right)$. By the Ramsey theorem we may assume that the sequence $\langle \overline{a}^j \rangle_{j < \omega}$ is indiscernible. But then $d(a_0^0, a_0^1) = 1$, hence $a_0^1 \in \Phi(\mathfrak{C}, \overline{a}^0) \cup \varphi(\mathfrak{C}, \overline{a}^0)$, a contradiction.

Choose $\overline{a}^0, \ldots, \overline{a}^{n-1}$ as in (*) and let $\overline{a}' = \langle a_i' \rangle_{i < kn}$ be the concatenation of $\overline{a}^0, \ldots, \overline{a}^{n-1}$. We see that $X \subseteq Z_{\overline{a}'}^{\beta}$. By the choice of \overline{a} , $X_{a_0'}^1 \not\subseteq Z_{\overline{a}'}^{\gamma}$, hence β is the height of X over \overline{a}' . Also, $\bigcup_{j < n} Z_{\overline{a}^j}^{\gamma} \subseteq Z_{\overline{a}'}^{\gamma}$, hence $X \setminus Z_{\overline{a}'}^{\gamma} \subseteq \bigcup_{j < n} \varphi(\mathfrak{C}, \overline{a}^j)$.

Let $l = \max\{d(a_0^0, a_0^j): j < n\}$. By the triangle inequality, m + l is a bound on $d(a_0', b), b \in X \setminus Z_{\overline{a}'}^{\gamma}$. \square

Clearly any Lascar strong type of finite diameter is analyzable and has height 0.

Theorem 2.2 No Lascar strong type of infinite diameter is analyzable.

Proof. Suppose for a contradiction, that X is an analyzable Lascar strong type of infinite diameter. By Lemma 2.1 choose \overline{a} such that the height of X over \overline{a} is a successor ordinal $\beta^* = \alpha^* + 1$ and there is a bound on $d(a_0, b)$ for $b \in X \setminus Z_{\overline{a}}^{\alpha^*}$.

Now essentially we may repeat the proof of Proposition 1.4, reaching a contradiction. For example, for $b \in X$ let $Y_b = \{tp(c/b) : c \in X\}$. By analyzability, the set

$$Z_b^0 = \{r \in Y_b : \text{ for some } \varphi(x) \in r \text{ and } n < \omega, \text{ we have } \varphi(\mathfrak{C}) \cap X \subseteq X_b^n\}$$

is open and dense in Y_b . We leave the details to the reader. \square

We say that a countable theory T is small, if S(A) is countable for every finite $A \subseteq \mathfrak{C}$.

Corollary 2.3 Assume T is small. Then $\stackrel{Ls}{\equiv}$ and $\stackrel{bd}{\equiv}$ agree on finite tuples and $Autf_L(\mathfrak{C})$ is dense in $Autf_{KP}(\mathfrak{C})$.

Proof. The first clause is equivalent to the second one. Choose a Lascar strong type X of a finite tuple a. Let $Y = \{tp(b/a) : b \in X\}$ and $Y^n = \{tp(b/a) : b \in X_a^n\}$. Then $Y = \bigcup_n Y^n$ is an F_{σ} -subset of S(a). But since S(a) is countable, every subset of S(a) is also a G_{δ} -set. Hence as noticed after Lemma 1.3, S(a) is analyzable with respect to $\{Y^n : n \leq \omega\}$, where $Y^\omega = U \setminus Y$. It follows that X is analyzable, hence has finite diameter and is the Ξ -class of a. \square

In [1] there is an example of a small theory, where $\stackrel{Ls}{\equiv}$ and $\stackrel{bd}{\equiv}$ differ (on infinite tuples, we mentioned it before Corollary 1.9), so Corollary 2.3 is sharp. In this example the height of the Lascar strong type with infinite diameter equals -1. Corollary 2.3 should be compared with a result of Kim [2], who proves that in a small theory $\stackrel{bd}{\equiv}$ equals \equiv (the equality of types, another proof is given in [3]). Still no \aleph_0 -categorical theory is known, where $\stackrel{Ls}{\equiv}$ and $\stackrel{bd}{\equiv}$ differ.

In [1] the authors conjecture that if $\stackrel{bd}{\equiv}$ and $\stackrel{Ls}{\equiv}$ differ, then $\stackrel{Ls}{\equiv}$ should be complicated from the Borel point of view. Theorem 2.2 supports this conjecture. For example, assume X is a Lascar strong type with infinite diameter. Then by the proof of Corollary 15, S(a) is not analyzable with respect to $\{Y^n : n \leq \omega\}$, where $a \in X$. In particular, Y is not a G_{δ} -subset of S(a).

More generally, let M be any model of T and let $g: \mathfrak{C} \to S(M)$ be the function defined by g(a) = tp(a/M). If tp(a/M) = tp(b/M), then $d(a,b) \leq 1$, hence each Lascar strong type is type-definable over M. For $p,q \in S(M)$ let $d(p,q) = \inf\{d(a,b): a \models p,b \models q\}$. Define $\stackrel{Ls}{\equiv}$ on S(M) by $p \stackrel{Ls}{\equiv} q \iff d(p,q) < \infty$. For

each $p \in S(M)$, the set $Y_p^n = \{q \in S(M) : d(p,q) \le n\}$ is closed (and equals $g(X_a^n)$ for every $a \models p$), hence $\stackrel{Ls}{\equiv}$ is an F_{σ} -equivalence relation on S(M) and for every $a, b \in \mathfrak{C}, \ a \stackrel{Ls}{\equiv} b \iff tp(a/M) \stackrel{Ls}{\equiv} tp(b/M)$.

Let $Y = \{tp(a/M) : a \in X\}$ and let $p \in Y$. Then by Lemma 1.3 (using g), S(M) is not analyzable with respect to $\{Y_p^n : n \leq \omega\}$, where $Y_p^{\omega} = S(M) \setminus \bigcup_{n < \omega} Y_p^n$. In particular, Y is not a G_{δ} -subset of S(M).

The last results may be generalized to an arbitrary bounded $\bigvee \land$ -definable equivalence relation E refining \equiv , however the assumption of boundedness is essential. For example in an algebraically closed field K consider the relation $x \sim y \iff x$ and y are interalgebraic. The equivalence classes of \sim are analyzable and of infinite diameter.

3

The methods developed in this paper apply to yet another context. Assume $G \subseteq \mathfrak{C}$ is a 0-type-definable group and H is a subgroup of G, generated (as a group) by countably many 0-type-definable sets $V_n, n < \omega$. For $x, y \in G$ let $x \equiv_H y \iff xH = yH$. So \equiv_H is an equivalence relation on G, whose classes are the right cosets of H.

When G is definable, our methods apply to \equiv_H almost directly. Namely, let G^* be an auxiliary copy of G, on which G acts by right translation, denoted by *. Consider the 2-sorted structure $\mathfrak{C}^* = (G, G^*, *)$, where G is equipped with the structure induced from \mathfrak{C} and there is no structure on G^* , except for the action *. Then in \mathfrak{C}^* , G^* is the set of realizations of a complete isolated type p^* , and the orbit relation on G^* defined by $x E y \iff (\exists g \in H)x * g = y$ is an $\bigvee \bigwedge$ -relation. So our previous results apply.

In general we can not associate with G its affine copy so smoothly. Still G acts transitively on itself by right translation, and this makes it similar to the set of realizations of a complete type (on which $Aut(\mathfrak{C})$ acts transitively). So we have the following result.

Theorem 3.1 Assume G is a 0-type-definable group and H is a subgroup of G, generated by countably many 0-type-definable sets V_n , $n < \omega$.

- (1) If H is type-definable, then H is generated by finitely many of the sets V_n , in finitely many steps.
- (2) If H is not type-definable, then $[G:H] \geq 2^{\aleph_0}$. If moreover T is small and G consists of finite tuples, then [G:H] is unbounded.

Proof. Let $W_n, n < \omega$, be an increasing sequence of 0-type-definable subsets of G such that $H = \bigcup_n W_n$, $W_0 = \{e\}$, $W_n = W_n^{-1}$ and $W_n \cdot W_n \subseteq W_{n+1}$. For $x, y \in G$ define d(x, y) as the minimal n such that $x^{-1}y \in W_n$. If no such n exists, we put $d(x, y) = \infty$. So d is a distance function on G, which is invariant under left translation. The theorem may be restated as follows.

- (a) If the diameter of H is infinite, then H is not type-definable and $[G:H] \geq 2^{\aleph_0}$.
- (b) If moreover T is small, then [G:H] is unbounded.
- (a) corresponds to Theorem 1.1 and Proposition 1.4, while (b) corresponds to Theorem 2.2 and Corollary 2.3. We will sketch the proof.

To prove (a), we may assume [G:H] is bounded (because if H is type-definable, then we can assume G=H). Let $\overline{a}=\langle a_{\alpha}\rangle_{\alpha<\mu}$ be a tuple of representatives of the right cosets of H in G such that $a_0=e$, the neutral element of G (notice that $e\in dcl(\emptyset)$). We proceed as in the proof of Proposition 1.4, with X=G. Claim 1.5 is still true in our present setting: when b=e, the proof is the same, and this case implies the general case of an arbitrary $b\in X$ (since left translation by b maps Z_e^0 into a subset of Z_b^0).

To prove (b), suppose for a contradiction that [G:H] is bounded. It follows that every infinite indiscernible sequence of elements of G is contained in a single coset of H. So we may assume that if $a, b \in G$ and $\langle b, ba \rangle$ extends to an infinite indiscernible sequence, then $a \in W_1$.

We proceed as in the proofs of Lemma 2.1, Theorem 2.2 and Corollary 2.3, with the following modifications. Let X = H. We define subsets X_a^n and $Z_{\overline{a}}^{\alpha}$ of X for $a \in X$ and finite non-empty tuples $\overline{a} \subset X$ as in Section 2. Notice however the new meaning of d. Also we have:

- (c) If $\overline{a} \subseteq dcl(\overline{a}')$, then $Z_{\overline{a}}^{\alpha} \subseteq Z_{\overline{a}'}^{\alpha}$.
- (d) For $b \in X$, $b \cdot Z_{\overline{a}}^{\alpha} \subseteq Z_{\overline{a} \cap \langle b \rangle}^{\alpha}$.

We define the height and analyzability of X over \overline{a} as before. The following lemma corresponds to Lemma 2.1. The proof is also similar.

Lemma 3.2 Assume X is analyzable. Then for some $\overline{a} \subset X$, the height of X over \overline{a} is a successor $\gamma + 1$ for some $\gamma \in Ord \cup \{-1\}$ and there is a finite bound on $d(a_0, b), b \in X \setminus Z_{\overline{a}}^{\gamma}$.

Proof For $\overline{a} = \langle a_i \rangle_{i < k} \subset X$ choose the minimal β such that $X_e^1 \subseteq Z_{\overline{a}}^{\beta}$. Choose \overline{a} so that β is minimal possible. β is a successor, say $\beta = \gamma + 1$. Choose $\Phi(x, \overline{a})$ and $\varphi(x, \overline{a})$ such that $\Phi(G, \overline{a}) \cap X = Z_{\overline{a}}^{\gamma}$ and $X_e^1 \setminus Z_{\overline{a}}^{\gamma} \subseteq \varphi(G, \overline{a}) \cap X \subseteq Z_{\overline{a}}^{\beta}$ (as in Lemma 2.1). Using the definition of $Z_{\overline{a}}^{\alpha}$, we get a bound $m < \omega$ on $d(a_0, b)$ for $b \in X \cap \varphi(G, \overline{a}) \setminus Z_{\overline{a}}^{\gamma}$. Notice that if $b \in X$, then by (d) we have

$$b \cdot Z_{\overline{a}}^{\gamma} = b \cdot \Phi(G, \overline{a}) \cap X \subseteq Z_{\overline{a} \cap \langle b \rangle}^{\gamma},$$

and by the left invariance of d,

$$X_b^1 = b \cdot X_e^1 \subseteq b \cdot (\Phi(G, \overline{a}) \cup \varphi(G, \overline{a})) \cap X \subseteq Z_{\overline{a} \cap \langle b \rangle}^{\beta}.$$

We prove that

(*) there are finitely many elements $b_j \in X, j < n$, (for some n), such that $X \subseteq \bigcup_{j < n} \left(Z_{\overline{a} \cap \langle b_j \rangle}^{\gamma} \cup b_j \cdot \varphi(G, \overline{a}) \right)$.

Suppose not. Then we find $b_j \in X$, $j < \omega$, such that

(e)
$$b_j \notin \bigcup_{i < j} b_i \cdot (\Phi(G, \overline{a}) \cup \varphi(G, \overline{a})).$$

By the Ramsey theorem we may assume (allowing $b_j \in G$) that, in addition to (e), the sequence $\langle b_j \rangle_{j < \omega}$ is indiscernible. But then by the choice of W_1 , $d(b_0, b_1) = 1$, hence

$$b_1 \in X_{b_0}^1 \subseteq b_0 \cdot (\Phi(G, \overline{a}) \cup \varphi(G, \overline{a})),$$

a contradiction.

Choose b_0, \ldots, b_{n-1} as in (*) and let $\overline{a}' = \overline{a} \cap \langle b_i \rangle_{i < n}$. We see that $X \subseteq Z_{\overline{a}'}^{\beta}$. By the choice of \overline{a} , $X_e^1 \not\subseteq Z_{\overline{a}'}^{\gamma}$, hence β is the height of X over \overline{a}' . Also, $\bigcup_{j < n} Z_{\overline{a} \cap \langle b_j \rangle}^{\gamma} \subseteq Z_{\overline{a}'}^{\gamma}$, hence $X \setminus Z_{\overline{a}'}^{\gamma} \subseteq \bigcup_{j < n} b_j \cdot \varphi(G, \overline{a})$. The rest is as in the proof of Lemma 2.1. \square

Using Lemma 3.2 we conclude the proof of (b) as in Theorem 2.2 and Corollary 2.3. \square

Similarly as in Theorem 1.1, in Theorem 3.1 we have that if $X \subseteq G$ is a type-definable union of some number of right cosets of H, and H is not type-definable, then $|X/H| \ge 2^{\aleph_0}$.

There is a topological counterpart of Theorem 3.1(1). Assume G is a compact topological group and H is a closed subgroup of G, generated by closed sets V_n , $n < \omega$. Then by the Baire category theorem H is generated by finitely many of the sets V_n , in finitely many steps.

Theorem 3.1 suggests a possibility of defining a "generic type" in an arbitrary type-definable group.

References

- [1] E.Casanovas, D.Lascar, A.Pillay, M.Ziegler, Galois groups of first order theories, Journal of Mathematical Logic 1(2001), 305-319.
- [2] B.Kim, A note on Lascar strong types in simple theories, J.Symb. Logic 63(1998), 926-936.
- [3] K.Krupiński, L.Newelski, On bounded type-definable equivalence relations, Notre Dame J.Formal Logic, submitted.

mailing address:

Mathematical Institute, University of Wroclaw, pl. Grunwaldzki 2/4, 50-384 Wroclaw, Poland e-mail: newelski@math.uni.wroc.pl