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Abstract

We prove that a type-definable Lascar strong type has finite diameter. We
answer also some other questions from [1] on Lascar strong types. We give
some applications on subgroups of type-definable groups.

In this paper T is a complete theory in language L and we work within a monster
model C of T . For a0, a1 ∈ C let a0Θa1 iff 〈a0, a1〉 extends to an indiscernible
sequence 〈an, n < ω〉. We define a distance function d on C. Namely, d(a, b) is the
minimal natural number n such that for some a0 = a, a1, . . . , an−1, an = b we have
a0Θa1Θ . . . an−1Θan. If no such n exists, we set d(a, b) = ∞.

The transitive closure
Ls≡ of Θ (denoted also by EL) is the finest bounded in-

variant equivalence relation on C, its classes are called Lascar strong types. So

a
Ls≡ b ⇐⇒ d(a, b) < ∞.

bd≡ (denoted also by EKP ) is the finest bounded type-

definable equivalence relation on C. For details see e.g. [1]. So
bd≡ is coarser than

Ls≡
and each

bd≡-class is a union of some number of Lascar strong types.

1

Assume a ∈ C and let X be the Lascar strong type of a. We define the diameter
diam(X) as the supremum of d(a, b), b ∈ X. In [1] the authors ask whether X being
type-definable implies that X has finite diameter. (Strictly speaking, this is an
equivalent version of the question from [1].) Also they ask how many Lascar strong

types may be contained in a given
bd≡-class. We answer both questions in Corollary

1.8. Before we approach them it is convenient to consider a more general problem.
Namely, how many Lascar strong types are needed to make a type-definable set. We
answer this question in the next theorem. For a type or formula s(x), [s(x)] denotes
the set of types containing s(x).

Theorem 1.1 Assume that p∗ ∈ S(∅) and X ⊆ p∗(C) is a type-definable set, which
is a union of some number of Lascar strong types of infinite diameter. Then

|X/Ls≡| ≥ 2ℵ0.
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In the proof of Theorem 1.1 we will need a topological lemma related to the Baire
category theorem. Assume K is a compact space and A is a family of subsets of K
covering K. We define an increasing sequence Zα, α ∈ Ord ∪ {−1}, of open subsets
of K. We let Z−1 = ∅, for limit α we put Zα =

⋃
β<α Zβ, and for α = β+1 we define

Zα =
⋃

A∈A

int(Zβ ∪ A).

We call 〈Zα〉α∈Ord∪{−1} the open analysis of K with respect to A. There is a minimal
β such that Zβ = Zβ+1. We call this β the height of K with respect to A. If Zβ = K,
we say thatK is analyzable with respect to A, or A-analyzable. The closed setK\Zβ

is called the core of K with respect to A, or the A-core of K.
The Cantor-Bendixson analysis of K is the open analysis with respect to A =

{{x} : x ∈ K}. Also Morley rank may be defined in terms of open analyses of some
compact spaces.

If A′ is another covering of K, we say that A′ refines A, if every member of A′ is
contained in some member of A.

Remark 1.2 (1) If K is A-analyzable and Zα 6= K, then Zα+1\Zα is relatively open
and dense in K \ Zα and the height of K with respect to A is a successor ordinal.
(2) If A′ refines A and K is A′-analyzable, then K is A-analyzable.

Lemma 1.3 Assume f : K ′ → K is a continuous surjection of compact spaces, A
is a covering of K and A′ is a covering of K ′.
(1) Assume A = A0 ∪ A1,

⋃
A0 ∩

⋃
A1 = ∅ and S =

⋃
A0. If K is A-analyzable,

then the set
⋃

A∈A0
intS(A) is relatively open and dense in S.

(2) Assume A′ = {f−1[A] : A ∈ A}. Let C ′ be the A′-core of K ′. Then f [C ′] is the
A-core of K. In particular, K ′ is A′-analyzable iff K is A-analyzable.
(3) Assume A = {f [A′] : A′ ∈ A′}. If K ′ is A′-analyzable, then K is A-analyzable.

If in Lemma 1.3(1) A0 is a countable family of closed sets, S =
⋃
A0 is a Gδ-set and

A1 = {K \ S}, then K is A-analyzable. In this way Lemma 1.3 is related to the
Baire category theorem.
Proof. Let 〈Zα〉 be the open analysis of K with respect to A.

(1) Assume U is an open subset of K meeting S. We have that Z0 ∩ U ∩ S ⊆⋃
A∈A0

intS(A). If Z0 ∩ U ∩ S = ∅, then S is dense in U \ Z0, Z1 ∩ U ∩ S 6= ∅ and
Z1 ∩ U ∩ S ⊆

⋃
A∈A0

intS(A).
(2) Clearly the A-core of K contains f [C ′]. We will show the reverse inclusion.

So suppose f [C ′] 6= K. Let 〈Z ′
α〉 be the open analysis of K ′ with respect to A′. It is

enough to show that Z0 6= ∅.
Suppose for a contradiction that Z0 = ∅. This means, that the sets from A

have empty interior. We construct recursively non-empty open subsets Ul of K and
numbers αl ∈ Ord∪{−1}, l < ω, such that the sequence 〈αl〉l<ω is strictly decreasing
(hence we will reach a contradiction) and

(∗) αl is minimal such that f−1[cl(Ul)] ⊆ Z ′
αl+1.
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We define U0 as a non-empty open subset of K with cl(U0) ∩ f [C ′] = ∅. Then for
some β we have f−1[cl(U0)] ⊆ Z ′

β. Since f−1[cl(U0)] is compact, we can choose α0 as
in (∗).

Suppose we have defined Ul and αl, we will define Ul+1 and αl+1. Since f−1[cl(Ul)]
is compact, by (∗) there are finitely many sets A0, . . . , Ak−1 ∈ A (for some k < ω)
and open sets Vi ⊆ K ′, i < k, with cl(Vi) ⊆ Z ′

αl
∪A′

i (where A′
i = f−1[Ai]), such that

f−1[cl(Ul)] ⊆
⋃

i<k Vi. Let V = f [
⋃

i<k cl(Vi) \ Z ′
αl

]. So V is a closed subset of K.
There are two cases.

Case 1. V has non-empty interior. In this case one of the sets f [cl(Vi)\Z ′
αl

] has
non-empty interior, but f [cl(Vi) \Z ′

αl
] ⊆ Ai, and Ai has empty interior, a contradic-

tion.
Case 2. V has empty interior. In this case choose a non-empty open set Ul+1 ⊆

Ul with cl(Ul+1) ∩ V = ∅. So f−1[cl(Ul+1)] ⊆ Z ′
αl

. Hence αl ≥ 0 and we may choose
αl+1 so that (∗) holds.

In this way we have finished the construction and the proof (2).
(3) Let A′′ = {f−1[A] : A ∈ A}. Then A′ refines A′′, hence by Remark 2, K ′ is

A′′-analyzable. By (2), K is A-analyzable. �

¿From now on until the end of the proof of Theorem 1.1 we assume thatX ⊆ p∗(C)
is a type-definable union of some number of Lascar strong types of infinite diameter
and a = 〈aα〉α<µ is a tuple of representatives of the Lascar strong types contained in
X. So X is definable by a type Φ0(x) over some C ⊆ C. It follows, that X is also
type-definable over a.

To see this, consider the restriction map r : S(Ca) → S(a). Since r is continuous,
the image of the compact set S(Ca) ∩ [Φ0(x)] via r is closed in S(a), hence
r[S(Ca) ∩ [Φ0(x)]] = S(a) ∩ [Φ(x, a)] for some type Φ(x, a) over a. Since X is a-
invariant, Φ(C, a) = X.

Let Y = S(a) ∩ [Φ(x, a)] = {tp(b/a) : b ∈ X}. So Y is a closed subset of S(a).
The main part of the proof of Theorem 1 is the following proposition.

Proposition 1.4 There is a type-definable over a set X ′ ⊆ X such that for every

formula ϕ(x) over a, if X ′ ∩ ϕ(C) 6= ∅, then |(X ′ ∩ ϕ(C))/
Ls≡| ≥ 2.

Proof. For α < µ and n < ω let

Yα = {tp(b/a) : b
Ls≡ aα} and Y n

α = {tp(b/a) : d(aα, b) ≤ n}.

So the sets Y n
α are closed in S(a), Yα =

⋃
n Y

n
α and Y =

⋃
α,n Y

n
α . Let 〈Zα〉 be the

open analysis of Y with respect to Y = {Y n
α : α < µ, n < ω} and let β+ be the

corresponding height of Y . There are two cases.
Case 1. Zβ+ 6= Y . In this case the set X ′ = {b ∈ X : tp(b/a) ∈ Y \Zβ+} satisfies

our demands.
Indeed, consider a formula ϕ(x) over a with X ′ ∩ ϕ(C) 6= ∅. Suppose for a

contradiction that X ′ ∩ ϕ(C) is contained in a single Lascar strong type, say aγ/
Ls≡.

Then (Y \ Zβ+) ∩ [ϕ(x)] ⊆ Yγ =
⋃

n Y
n
γ , hence by the Baire category theorem one of
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the sets Y n
γ , n < ω, has non-empty interior in Y \Zβ+ . This means, that Zβ++1 6= Zβ+ ,

a contradiction.
So in the further proof of Proposition 2 we may assume that the following Case

2 holds.
Case 2. Zβ+ = Y and Y is Y-analyzable. In this case we will eventually reach a

contradiction.

For every b ∈ X and n < ω let Ub = {tp(c/b) : c ∈ X}, Yb = {tp(c/b) : c
Ls≡ b},

Y n
b = {tp(c/b) : d(c, b) ≤ n} and

Z0
b = {r ∈ Yb : for some ϕ(x) ∈ r and n < ω we have Yb ∩ [ϕ(x)] ⊆ Y n

b }.

Claim 1.5 Z0
b is a relatively open and dense subset of Yb. Moreover there is no

bound on d(c, b) for c
Ls≡ b with tp(c/b) ∈ Z0

b .

Proof. We could have chosen a so that a0 = b. So we may assume b = a0. Ub is
closed as a continuous image (via the restriction map) of the closed set Y . If µ is
countable, then one can show that the set Yb is a Gδ-subset of Ub, and then the claim
follows directly from the Baire category theorem (which holds in a Gδ-subset of a
compact space), since Yb =

⋃
n Y

n
b .

In general µ may be uncountable, so we have to argue differently. Let f : Y → Ub

be the restriction map and Y ω
0 = Y \

⋃
n Y

n
0 . Then A′ = {Y n

0 : n ≤ ω} is a covering
of Y such that Y is finer than A′. Since Y is Y-analyzable, by Remark 2 Y is also
A′-analyzable.

Let A = {Y n
b : n ≤ ω}, where Y ω

b = Ub \
⋃

n<ω Y
n
b . By Lemma 1.3 (for K ′ := Y

and K := Ub) we get that Ub is A-analyzable and Z0
b is dense in Yb. Let 〈Z∗

α〉 be the
open analysis of Ub with respect to A.

For the last clause, suppose there is a bound k on d(c, b) for c
Ls≡ b with tp(c/b) ∈

Z0
b . We will prove that Yb = Z0

b .
Suppose otherwise. Choose the first α such that Z∗

α meets Yb \Z0
b . It follows that

Z∗
α contains an open subset W of Ub such that ∅ 6= W ∩ (Yb \ Z0

b ) ⊆ Y n
b for some

n < ω. But then for all c with tp(c/b) ∈ (W ∩ Yb)∪Z0
b we have d(c, b) ≤ max{n, k},

hence W ∩ Yb ⊆ Z0
b , a contradiction.

Now Yb = Z0
b implies, that the diameter of the Lascar strong type of b is ≤ k,

contradicting the assumptions of Theorem 1.1. �

For any b ∈ X we define d(a, b) as d(aα, b) for the aα with aα
Ls≡ b. We carry out

an inductive analysis of X. For n < ω let

Xn = {b ∈ X : d(a, b) ≤ n} and Y n = {tp(b/a) : b ∈ Xn}.

We see that X =
⋃

nX
n, Y =

⋃
n Y

n and Y n, n < ω, are unions of the closed sets
Y n

α , α < µ. Let 〈Zα〉 be the open analysis of Y with respect to Y ′ = {Y n : n < ω}.
Since Y refines Y ′ and Y is Y-analyzable, by Remark 1.2 we get that Y is also Y ′-
analyzable. Let β∗ be the height of Y with respect to Y ′. By Remark 1.2, β∗ is a
successor, say β∗ = α∗ + 1 for some α∗ ∈ Ord ∪ {−1}.
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Lemma 1.6 (1) If there is a finite bound on d(a, b) for b ∈ ϕ(C, a) with tp(b/a) ∈
Zα+1 \ Zα, then Y ∩ [ϕ(x, a)] ⊆ Zα+1.
(2) There is some k > 0 such that for all b ∈ X with tp(b/a) ∈ Y \ Zα∗

, we have
d(a, b) ≤ k.
(3) β∗ = 0 iff there is a finite bound on the diameters of the Lascar strong types
contained in X.

Proof. (1) By Remark 1.2, Zα+2 \Zα+1 is dense in Y ∩ [ϕ(x, a)]\Zα+1. On the other
hand our assumptions imply that Zα+2 ∩ [ϕ(x, a)] ⊆ Zα+1. So Y ∩ [ϕ(x, a)] ⊆ Zα+1.

(2) The set Y \ Zα∗
is covered by relatively open subsets of some Y n, n < ω.

By compactness, a finite number of these sets covers Y \ Zα∗
, hence the conclusion

follows.
(3) Immediate. �

Proof of Proposition 1.4 continued. We will define recursively elements bl ∈ X, for-
mulas ϕl(x, a), ψl(x, bl) and numbers αl, βl ∈ Ord∪{−1} for l < ω so that αl < βl, the
sequences 〈αl〉l<ω, 〈βl〉l<ω are strictly decreasing (hence we will reach a contradiction)
and the following hold.

(a) tp(bl/a) ∈ Zβl+1 \ Zβl .

(b) ψl(x, bl) ` ϕl(x, a).

(c) ∅ 6= Ybl
∩ [ψl(x, bl)] ⊆ Y m

bl
for some m < ω.

(d) αl < α∗ is minimal such that Y ∩ [ϕl(x, a)] ⊆ Zαl ∪ Y n for some n < ω.

First we deal with the case l = 0. Choose a b0 ∈ X with tp(b0/a) ∈ Y \ Zα∗
and let

β0 = α∗. Let k > 0 be as in Lemma 1.6. So d(a, b0) ≤ k.

By Claim 1.5 choose c
Ls≡ b0 with tp(c/b0) ∈ Z0

b0
and d(b0, c) ≥ 3k. By the triangle

inequality it follows that d(a, c) ≥ 2k, hence by the choice of k, tp(c/a) ∈ Zα∗
and

the same is true for any other c′ |= tp(c/b0).
The set Y \ Zα∗

is closed in S(a), so we can regard it as a type over a. We have
that the type (Y \ Zα∗

)(x) ∪ tp(c/b0)(x) is inconsistent, hence there are formulas
ψ0(x, b0) ∈ tp(c/b0) and ϕ0(x, a) satisfying (b),(c) and Y ∩ [ϕ0(x, a)] ⊆ Zα∗

. Then
we choose α0 < α∗ satisfying (d) by the definition of Zα∗

.
Next suppose we have found bl, ϕl, ψl, αl and βl satisfying (a)–(d) and we will

define bl+1, ϕl+1, ψl+1, αl+1 and βl+1.
Choose a formula θ(y, a) ∈ tp(bl/a) with ψl(x, y) ∧ θ(y, a) ` ϕl(x, a). Since

tp(bl/a) ∈ Zβl+1 \ Zβl , by Lemma 6 for every γ < βl there is no finite bound on
d(a, b′) for b′ ∈ θ(C, a) with tp(b′/a) ∈ Zγ+1 \ Zγ. If βl is a successor, let βl+1 be the
predecessor of βl, while for limit βl choose βl+1 < βl with αl < βl+1. Then choose
bl+1 ∈ θ(C, a) with tp(bl+1/a) ∈ Zβl+1+1 \ Zβl+1 and such that d(a, bl+1) > n+m.

Since tp(bl) = tp(bl+1), ψl(C, bl)∩Ybl
being non-empty implies that also ψl(C, bl+1)∩

Ybl+1
6= ∅. There are two cases.
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Case 1. There is some c′ ∈ ψl(C, bl+1) with c′
Ls≡ bl+1 and tp(c′/a) 6∈ Zαl.

In this case for such a c′ we have d(a, c′) ≤ n, d(bl+1, c
′) ≤ m (by (c),(d)), while

d(a, bl+1) > n+m, which violates the triangle inequality.
This contradiction shows that αl ≥ 0 and the following Case 2 holds.

Case 2. For every c′ ∈ ψl(C, bl+1) with c′
Ls≡ bl+1 we have that tp(c′/a) ∈ Zαl. In

this case choose such a c′. Again we see that the type tp(c′/bl+1)(x) ∪ (Y \ Zαl)(x)
is inconsistent, hence for some ψl+1(x, bl+1) ∈ tp(c′/bl+1) implying ψl(x, bl+1) and for
some ϕl+1(x, a) we have that

(b’) ψl+1(x, bl+1) ` ϕl+1(x, a) and

(d’) Y ∩[ϕl+1(x, a)] ⊆ Zαl+1∪Y n for some minimal αl+1 ∈ Ord∪{−1} with αl+1 < αl

and some n < ω.

In this way we have completed the recursive construction and the proof of Proposition
1.4. �

Lemma 1.7 Assume X ′ is as in Proposition 1.4, n < ω, a, b ∈ X ′ and d(a, b) = ∞.
Then there are formulas ϕ(x) ∈ tp(a/a) and ψ(x) ∈ tp(b/a) such that for all a′ ∈
X ′ ∩ ϕ(C) and b′ ∈ X ′ ∩ ψ(C) we have d(a′, b′) > n.

Proof. Let p = tp(a/a) and q = tp(b/a). The type

{“d(x, y) ≤ n”} ∪ p(x) ∪ q(y)

is inconsistent. So there is a formula χ(x, y) such that “d(x, y) ≤ n” ` χ(x, y), and
formulas ϕ(x) ∈ p(x) and ψ(y) ∈ q(y) such that the formula χ(x, y)∧ ϕ(x)∧ ψ(y) is
contradictory. Clearly the formulas ϕ(x) and ψ(x) satisfy our demands. �

Proof of Theorem 1.1. Choose X ′ as in Proposition 1.4. Using Lemma 1.7 we
construct a tree ϕη(x), η ∈ 2<ω, of formulas over a such that

(a) ϕη(C) ∩X ′ 6= ∅,

(b) ϕη_〈i〉(x) ` ϕη(x) for i = 0, 1, and

(c) if η 6= ν ∈ 2n, then for all a ∈ ϕη(C)∩X ′ and b ∈ ϕν(C)∩X ′ we have d(a, b) ≥ n.

Since X ′ is type-definable over a, for η ∈ 2ω we can choose aη ∈ X ′ ∩
⋂

n<ω ϕη�n(C).
We see that for η 6= ν ∈ 2ω we have d(aη, aν) = ∞. �

Corollary 1.8 (1) A type-definable Lascar strong type has finite diameter.

(2) Assume X is a
bd≡-class, which is not a Lascar strong type. Then |X/Ls≡| ≥ 2ℵ0.

Proof. (1) Let X be a type-definable Lascar strong type. If diam(X) is infinite, then
we get a contradiction with Theorem 1.1. (2) is immediate. �

Ziegler [1] has given an example of a theory, where
Ls≡ and

bd≡ differ. This example
is constructed from a sequence of definable Lascar strong types with growing finite
diameters. Using Theorem 1.1 we can see that this is not accidental.
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Corollary 1.9 (1) Assume in T there is a sequence of type-definable Lascar strong
types Xn, n < ω, with growing finite diameters. Then in T there is a Lascar strong

type, which is not type-definable. In particular,
Ls≡ and

bd≡ differ.

(2)
Ls≡ and

bd≡ agree iff there is a finite bound on the diameters of Lascar strong types.

Proof. (1) Let an ∈ Xn, a = 〈an〉n<ω and let X be the Lascar strong type of a. X
projects onto each Xn and for a′ = 〈a′n〉n<ω ∈ X, d(a, a′) ≥ d(an, a

′
n). So X has

infinite diameter and is not type-definable.
(2) follows from (1). �

Related to
Ls≡ and

bd≡ are the groups AutfL(C) and AutfKP (C). Namely,

AutfL(C) = {f ∈ Aut(C) : f preserves each
Ls≡-class} and AutfKP (C) = {f ∈

Aut(C) : f preserves each
bd≡-class}. Moreover, as a subgroup of Aut(C), AutfL(C) is

generated by
⋃
{Aut(C/M) : M ≺ C} (see [1]).

Corollary 1.10 AutfL(C) = AutfKP (C) ⇐⇒ AutfL(C) is generated by
⋃
{Aut(C/M) :

M ≺ C} in finitely many steps.

The fact, that
Ls≡ and

bd≡ differ is equivalent to AutfL(C) 6= AutfKP (C). Hence we
get the following corollary.

Corollary 1.11 Assume AutfL(C) 6= AutfKP (C). Then |AutfKP (C)/AutfL(C)| ≥
2ℵ0.

Corollary 1.11 answers another question from [1]. When T is countable, then in the
above results we can replace ≥ 2ℵ0 by = 2ℵ0 . This is because then the objects in

question are Borel in nature. For example, as explained in [1], when X is a
bd≡-class,

then we can interpret X/
Ls≡ as the set of equivalence classes of some Borel equivalence

relation on a Polish space.

More generally, in the above results
Ls≡may be replaced by any equivalence relation

E defined as the reflexive and transitive closure of some 0-type-definable symmetric
binary relation R(x, y) implying tp(x) = tp(y). The corresponding distance function
dE on an E-class is given by:

dE(a, b) = the minimal number of steps needed to go from a to b via R.

Let S be a 0-type-definable set (possibly of infinite tuples). Let R(x, y) be the

conjunction of all formulas ϕ(x, y) such that on S, x
Ls≡ y implies ϕ. In other words,

R is the closure of
Ls≡ in the Stone topology on S×S. Let E be the transitive closure

of R. [1, Corollary 2.6] proves that on S E equals
bd≡ and the dE-diameter of each

E-class is ≤ 2. This is a nice illustration of the extended version of Corollary 1.8.
Let us consider an even more general situation. We say that an equivalence

relation E is
∨∧

-definable if E =
⋃

n<ω Φn, where each Φn is type-definable. We
can and will assume additionally, that each Φn is reflexive, symmetric and Φn(x, y)∧
Φn(y, z) implies Φn+1(x, z). In this case we say that

∨
n<ω Φn is a normal form of E.
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Corollary 1.12 Assume E(x, y) is an
∨∧

-definable equivalence relation implying
tp(x) = tp(y), with normal form

∨
n<ω Φn. Assume p ∈ S(∅) and X ⊆ p(C) is a

type-definable set, which is a union of some E-classes. Then either E is equivalent
on X to some Φn(x, y) (and is type-definable on X) or |X/E| ≥ 2ℵ0.

Proof. For a, b ∈ X let dE(a, b) be the minimal n such that aΦnb. dE satisfies the
triangle inequality, hence we can repeat the proof of Theorem 1.1. �

2

Thus far we have not used the fact, that
Ls≡ is bounded. We shall do so in the proofs

of the next results.
Assume X is a Lascar strong type and a = 〈ai〉i<k is a non-empty (possibly

infinite) tuple of elements of C with a0 ∈ X. For a ∈ X let Xn
a = {b ∈ X : d(a, b) ≤

n}.
We define recursively relatively

∨
-definable over a subsets Zα

a of X, α ∈ Ord ∪
{−1}. We put Z−1

a = ∅, for limit α, Zα
a =

⋃
β<α Z

β
a and for α = β + 1 we define

Zα
a = {b ∈ X : for some ϕ(x) ∈ tp(b/a) and n < ω we have X ∩ ϕ(C) ⊆ Zβ

a ∪Xn
a0
}.

The minimal α such that Zα
a = Zα+1

a is called the height of X over a. We say that
X is analyzable (over a) if X = Zα

a for some α. By Lemma 1.3 we have that X
is analyzable over a iff X is analyzable over a0 iff X is analyzable over any b with
b0 ∈ X.

Lemma 2.1 Assume X is an analyzable Lascar strong type. Then for some a =
〈ai〉i<k, the height of X over a is a successor γ + 1 for some γ ∈ Ord ∪ {−1} and
there is a finite bound on d(a0, b), b ∈ X \ Zγ

a .

Proof. For a = 〈ai〉i<k with a0 ∈ X choose the minimal β such that X1
a0
⊆ Zβ

a .
Choose a so that β is minimal possible. Since X1

a0
is type-definable, β is a successor,

say β = γ + 1. Let Φ(x, a) be the disjunction of formulas with Φ(C, a) ∩ X = Zγ
a .

Choose ϕ(x, a) such that X1
a0
\ Zγ

a ⊆ ϕ(C, a) ∩X ⊆ Zβ
a . Using the definition of Zα

a

we get a bound m < ω on d(a0, b) for b ∈ X ∩ ϕ(C, a) \ Zγ
a . We prove that

(∗) there are finitely many tuples aj = 〈aj
i 〉i<k, j < n, (for some n), realizing tp(a)

and such that X ⊆
⋃

j<n

(
Zγ

aj ∪ ϕ(C, aj)
)
.

Suppose not. Then we find aj, j < ω, such that aj
0 ∈ X, tp(aj) = tp(a) and aj

0 6∈⋃
i<j

(
Φ(C, ai) ∪ ϕ(C, ai)

)
. By the Ramsey theorem we may assume that the sequence

〈aj〉j<ω is indiscernible. But then d(a0
0, a

1
0) = 1, hence a1

0 ∈ Φ(C, a0) ∪ ϕ(C, a0), a
contradiction.

Choose a0, . . . , an−1 as in (∗) and let a′ = 〈a′i〉i<kn be the concatenation of
a0, . . . , an−1. We see that X ⊆ Zβ

a′ . By the choice of a, X1
a′
0
6⊆ Zγ

a′ , hence β is

the height of X over a′. Also,
⋃

j<n Z
γ

aj ⊆ Zγ
a′ , hence X \ Zγ

a′ ⊆
⋃

j<n ϕ(C, aj).
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Let l = max{d(a0
0, a

j
0) : j < n}. By the triangle inequality, m + l is a bound on

d(a′0, b), b ∈ X \ Zγ
a′ . �

Clearly any Lascar strong type of finite diameter is analyzable and has height 0.

Theorem 2.2 No Lascar strong type of infinite diameter is analyzable.

Proof. Suppose for a contradiction, that X is an analyzable Lascar strong type of
infinite diameter. By Lemma 2.1 choose a such that the height of X over a is a
successor ordinal β∗ = α∗ + 1 and there is a bound on d(a0, b) for b ∈ X \ Zα∗

a .
Now essentially we may repeat the proof of Proposition 1.4, reaching a contra-

diction. For example, for b ∈ X let Yb = {tp(c/b) : c ∈ X}. By analyzability, the
set

Z0
b = {r ∈ Yb : for some ϕ(x) ∈ r and n < ω, we have ϕ(C) ∩X ⊆ Xn

b }

is open and dense in Yb. We leave the details to the reader. �

We say that a countable theory T is small, if S(A) is countable for every finite
A ⊆ C.

Corollary 2.3 Assume T is small. Then
Ls≡ and

bd≡ agree on finite tuples and
AutfL(C) is dense in AutfKP (C).

Proof. The first clause is equivalent to the second one. Choose a Lascar strong type
X of a finite tuple a. Let Y = {tp(b/a) : b ∈ X} and Y n = {tp(b/a) : b ∈ Xn

a }.
Then Y =

⋃
n Y

n is an Fσ-subset of S(a). But since S(a) is countable, every subset
of S(a) is also a Gδ-set. Hence as noticed after Lemma 1.3, S(a) is analyzable with
respect to {Y n : n ≤ ω}, where Y ω = U \ Y . It follows that X is analyzable, hence

has finite diameter and is the
bd≡-class of a. �

In [1] there is an example of a small theory, where
Ls≡ and

bd≡ differ (on infinite tu-
ples, we mentioned it before Corollary 1.9), so Corollary 2.3 is sharp. In this example
the height of the Lascar strong type with infinite diameter equals −1. Corollary 2.3

should be compared with a result of Kim [2], who proves that in a small theory
bd≡

equals ≡ (the equality of types, another proof is given in [3]). Still no ℵ0-categorical

theory is known, where
Ls≡ and

bd≡ differ.

In [1] the authors conjecture that if
bd≡ and

Ls≡ differ, then
Ls≡ should be complicated

from the Borel point of view. Theorem 2.2 supports this conjecture. For example,
assume X is a Lascar strong type with infinite diameter. Then by the proof of
Corollary 15, S(a) is not analyzable with respect to {Y n : n ≤ ω}, where a ∈ X. In
particular, Y is not a Gδ-subset of S(a).

More generally, let M be any model of T and let g : C → S(M) be the func-
tion defined by g(a) = tp(a/M). If tp(a/M) = tp(b/M), then d(a, b) ≤ 1, hence
each Lascar strong type is type-definable over M . For p, q ∈ S(M) let d(p, q) =

inf{d(a, b) : a |= p, b |= q}. Define
Ls≡ on S(M) by p

Ls≡ q ⇐⇒ d(p, q) < ∞. For

9



each p ∈ S(M), the set Y n
p = {q ∈ S(M) : d(p, q) ≤ n} is closed (and equals g(Xn

a )

for every a |= p), hence
Ls≡ is an Fσ-equivalence relation on S(M) and for every

a, b ∈ C, a
Ls≡ b ⇐⇒ tp(a/M)

Ls≡ tp(b/M).
Let Y = {tp(a/M) : a ∈ X} and let p ∈ Y . Then by Lemma 1.3 (using g), S(M)

is not analyzable with respect to {Y n
p : n ≤ ω}, where Y ω

p = S(M) \
⋃

n<ω Y
n
p . In

particular, Y is not a Gδ-subset of S(M).
The last results may be generalized to an arbitrary bounded

∨∧
-definable equiv-

alence relation E refining ≡, however the assumption of boundedness is essential.
For example in an algebraically closed field K consider the relation x ∼ y ⇐⇒ x
and y are interalgebraic. The equivalence classes of ∼ are analyzable and of infinite
diameter.

3

The methods developed in this paper apply to yet another context. Assume G ⊆ C

is a 0-type-definable group and H is a subgroup of G, generated (as a group) by
countably many 0-type-definable sets Vn, n < ω. For x, y ∈ G let x ≡H y ⇐⇒
xH = yH. So ≡H is an equivalence relation on G, whose classes are the right cosets
of H.

When G is definable, our methods apply to ≡H almost directly. Namely, let
G∗ be an auxiliary copy of G, on which G acts by right translation, denoted by
∗. Consider the 2-sorted structure C∗ = (G,G∗, ∗), where G is equipped with the
structure induced from C and there is no structure on G∗, except for the action ∗.
Then in C∗, G∗ is the set of realizations of a complete isolated type p∗, and the orbit
relation on G∗ defined by xE y ⇐⇒ (∃g ∈ H)x ∗ g = y is an

∨∧
-relation. So our

previous results apply.
In general we can not associate with G its affine copy so smoothly. Still G acts

transitively on itself by right translation, and this makes it similar to the set of
realizations of a complete type (on which Aut(C) acts transitively). So we have the
following result.

Theorem 3.1 Assume G is a 0-type-definable group and H is a subgroup of G,
generated by countably many 0-type-definable sets Vn, n < ω.
(1) If H is type-definable, then H is generated by finitely many of the sets Vn, in
finitely many steps.
(2) If H is not type-definable, then [G : H] ≥ 2ℵ0. If moreover T is small and G
consists of finite tuples, then [G : H] is unbounded.

Proof. Let Wn, n < ω, be an increasing sequence of 0-type-definable subsets of G
such that H =

⋃
nWn, W0 = {e}, Wn = W−1

n and Wn ·Wn ⊆ Wn+1. For x, y ∈ G
define d(x, y) as the minimal n such that x−1y ∈ Wn. If no such n exists, we
put d(x, y) = ∞. So d is a distance function on G, which is invariant under left
translation. The theorem may be restated as follows.
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(a) If the diameter of H is infinite, then H is not type-definable and [G : H] ≥ 2ℵ0 .

(b) If moreover T is small, then [G : H] is unbounded.

(a) corresponds to Theorem 1.1 and Proposition 1.4, while (b) corresponds to The-
orem 2.2 and Corollary 2.3. We will sketch the proof.

To prove (a), we may assume [G : H] is bounded (because if H is type-definable,
then we can assume G = H). Let a = 〈aα〉α<µ be a tuple of representatives of
the right cosets of H in G such that a0 = e, the neutral element of G (notice that
e ∈ dcl(∅)). We proceed as in the proof of Proposition 1.4, with X = G. Claim 1.5
is still true in our present setting: when b = e, the proof is the same, and this case
implies the general case of an arbitrary b ∈ X (since left translation by b maps Z0

e

into a subset of Z0
b ).

To prove (b), suppose for a contradiction that [G : H] is bounded. It follows that
every infinite indiscernible sequence of elements of G is contained in a single coset of
H. So we may assume that if a, b ∈ G and 〈b, ba〉 extends to an infinite indiscernible
sequence, then a ∈ W1.

We proceed as in the proofs of Lemma 2.1, Theorem 2.2 and Corollary 2.3, with
the following modifications. Let X = H. We define subsets Xn

a and Zα
a of X for

a ∈ X and finite non-empty tuples a ⊂ X as in Section 2. Notice however the new
meaning of d. Also we have:

(c) If a ⊆ dcl(a′), then Zα
a ⊆ Zα

a′ .

(d) For b ∈ X, b · Zα
a ⊆ Zα

a_〈b〉.

We define the height and analyzability of X over a as before. The following lemma
corresponds to Lemma 2.1. The proof is also similar.

Lemma 3.2 Assume X is analyzable. Then for some a ⊂ X, the height of X over
a is a successor γ + 1 for some γ ∈ Ord ∪ {−1} and there is a finite bound on
d(a0, b), b ∈ X \ Zγ

a .

Proof For a = 〈ai〉i<k ⊂ X choose the minimal β such that X1
e ⊆ Zβ

a . Choose a so
that β is minimal possible. β is a successor, say β = γ+1. Choose Φ(x, a) and ϕ(x, a)
such that Φ(G, a) ∩X = Zγ

a and X1
e \ Z

γ
a ⊆ ϕ(G, a) ∩X ⊆ Zβ

a (as in Lemma 2.1).
Using the definition of Zα

a , we get a bound m < ω on d(a0, b) for b ∈ X∩ϕ(G, a)\Zγ
a .

Notice that if b ∈ X, then by (d) we have

b · Zγ
a = b · Φ(G, a) ∩X ⊆ Zγ

a_〈b〉,

and by the left invariance of d,

X1
b = b ·X1

e ⊆ b · (Φ(G, a) ∪ ϕ(G, a)) ∩X ⊆ Zβ
a_〈b〉.

We prove that
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(∗) there are finitely many elements bj ∈ X, j < n, (for some n), such that

X ⊆
⋃

j<n

(
Zγ

a_〈bj〉 ∪ bj · ϕ(G, a)
)
.

Suppose not. Then we find bj ∈ X, j < ω, such that

(e) bj 6∈
⋃

i<j bi · (Φ(G, a) ∪ ϕ(G, a)).

By the Ramsey theorem we may assume (allowing bj ∈ G) that, in addition to (e),
the sequence 〈bj〉j<ω is indiscernible. But then by the choice of W1, d(b0, b1) = 1,
hence

b1 ∈ X1
b0
⊆ b0 · (Φ(G, a) ∪ ϕ(G, a)) ,

a contradiction.
Choose b0, . . . , bn−1 as in (∗) and let a′ = a_〈bi〉i<n. We see that X ⊆ Zβ

a′ . By the
choice of a, X1

e 6⊆ Zγ
a′ , hence β is the height of X over a′. Also,

⋃
j<n Z

γ
a_〈bj〉 ⊆ Zγ

a′ ,

hence X \ Zγ
a′ ⊆

⋃
j<n bj · ϕ(G, a). The rest is as in the proof of Lemma 2.1. �

Using Lemma 3.2 we conclude the proof of (b) as in Theorem 2.2 and Corollary
2.3. �

Similarly as in Theorem 1.1, in Theorem 3.1 we have that if X ⊆ G is a type-
definable union of some number of right cosets of H, and H is not type-definable,
then |X/H| ≥ 2ℵ0 .

There is a topological counterpart of Theorem 3.1(1). Assume G is a compact
topological group andH is a closed subgroup ofG, generated by closed sets Vn, n < ω.
Then by the Baire category theorem H is generated by finitely many of the sets Vn,
in finitely many steps.

Theorem 3.1 suggests a possibility of defining a “generic type” in an arbitrary
type-definable group.
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