next up previous
Next: About this document ...


Integration Techniques
Example

Integrate


\begin{displaymath}\int x^3 \ln(x) dx\end{displaymath}


A solution

Let $u = x^4$ so that $du = 4 x^3 dx$. Note that $4 \ln(x) = \ln(x^4)$. So,

\begin{eqnarray*}
\int x^3 \ln(x) dx & = & \frac{1}{16} \int \ln(x^4) (4x^3) dx ...
... u) + C \\
& = & \frac{1}{4} x^4 \ln(x) - \frac{1}{16} x^4 + C
\end{eqnarray*}


Another solution

Set $u = \ln(x)$ and $dv = x^3 dx$. So that $du = \frac{dx}{x}$ and $v = \frac{1}{4} x^4$.

Then,

\begin{eqnarray*}
\int x^3 \ln(x) dx & = & \int u dv \\
& = & uv - \int v du \...
...x^3 dx \\
& = & \frac{1}{4} x^4 \ln(x) - \frac{1}{16} x^4 + C
\end{eqnarray*}


Another example

Compute


\begin{displaymath}\int \frac{4x}{\sqrt{x - 1}} dx\end{displaymath}


Solution

Set $u = 4x$ and $dv = \frac{dx}{\sqrt{x - 1}} = (x-1)^{-\frac{1}{2}} dx$ so that $du = 4dx$ and $v = 2 \sqrt{x-1}$. Then

\begin{eqnarray*}
\int \frac{4x}{\sqrt{x - 1}} dx & = & \int u dv \\
& = & 8x ...
...\
& = & 8x \sqrt{x - 1} - \frac{16}{3} (x - 1)^\frac{3}{2} + C
\end{eqnarray*}


Another example

Compute


\begin{displaymath}\int \frac{\ln(\ln(x))}{x \ln(x)} dx \end{displaymath}


Solution

Set $u = \ln(\ln(x))$ so that $du = \frac{dx}{x \ln(x)}$.

Then

\begin{eqnarray*}
\int \frac{\ln(\ln(x))}{x \ln(x)} dx & = & \int du \\
& = & u + C \\
& = & \ln(\ln(x)) + C
\end{eqnarray*}


Another example

Compute


\begin{displaymath}\int_{-\pi}^\pi x \sin(x^4) dx\end{displaymath}


Solution

If $f(x) = x \sin(x^4)$, then $f(-x) = -f(x)$. Thus, $\int_{-\pi}^0 x \sin(x^4) dx = - \int_0^\pi x \sin(x^4) dx$. So, $\int_{-\pi}^\pi x \sin(x^4) dx = 0$.





Thomas Scanlon 2004-03-05