12.4: Exponential and normal random variables Exponential density function

Given a positive constant $k>0$, the exponential density function (with parameter k) is

$$
f(x)=\left\{\begin{array}{l}
k e^{-k x} \text { if } x \geq 0 \\
0 \text { if } x<0
\end{array}\right.
$$

Expected value of an exponential random variable

Let X be a continuous random variable with an exponential density function with parameter k.

Integrating by parts with $u=k x$ and $d v=e^{-k x} d x$ so that $d u=k d x$ and $v=\frac{-1}{k} e^{-k x}$, we find

$$
\begin{aligned}
E(X) & =\int_{-\infty}^{\infty} x f(x) d x \\
& =\int_{0}^{\infty} k x e^{-k x} d x \\
& =\left.\lim _{r \rightarrow \text { infty }}\left[-x e^{-k x}-\frac{1}{k} e^{-k x}\right]\right|_{0} ^{r} \\
& =\frac{1}{k}
\end{aligned}
$$

Variance of exponential random variables

Integrating by parts with $u=k x^{2}$ and $d v=e^{-k x} d x$ so that $d u=2 k x d x$ and $v=\frac{-1}{k} e^{-k x}$, we have

$$
\begin{aligned}
\int_{0}^{\infty} x^{2} e^{-k x} d x & =\lim _{r \rightarrow \infty}\left(\left.\left[-x^{2} e^{-k x}\right]\right|_{0} ^{r}+2 \int_{0}^{r} x e^{-k x} d x\right) \\
& =\lim _{r \rightarrow \infty}\left(\left.\left[-x^{2} e^{-k x}-\frac{2}{k} x e^{-k x}-\frac{2}{k^{2}} e^{-k x}\right]\right|_{0} ^{r}\right) \\
& =\frac{2}{k^{2}}
\end{aligned}
$$

So, $\operatorname{Var}(X)=\frac{2}{k^{2}}-E(X)^{2}=\frac{2}{k^{2}}-\frac{1}{k^{2}}=\frac{1}{k^{2}}$.

Example

Exponential random variables (sometimes) give good models for the time to failure of mechanical devices. For example, we might measure the number of miles traveled by a given car before its transmission ceases to function. Suppose that this distribution is governed by the exponential distribution with mean 100, 000. What is the probability that a car's transmission will fail during its first 50,000 miles of operation?

Solution

$$
\begin{aligned}
\operatorname{Pr}(X \leq 50,000) & =\int_{0}^{50,000} \frac{1}{100,000} e^{\frac{-1}{100,000} x} d x \\
& =-\left.e^{\frac{-x}{100,000}}\right|_{0} ^{50,000} \\
& =1-e^{\frac{-1}{2}} \\
& \approx .3934693403
\end{aligned}
$$

Normal distributions

The normal density function with mean μ and standard deviation σ is

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

As suggested, if X has this density, then $E(X)=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$.
The standard normal density function is the normal density function with $\mu=\sigma=1$. That is,

$$
g(x)=\frac{1}{\sqrt{2 \pi}} e^{\frac{-1}{2} x^{2}}
$$

Taylor expansion for the normal cumulative distribution function

Let $f(x)=\frac{1}{\sqrt{2 \pi}} e^{\frac{-1}{2} x^{2}}$ be the standard normal density function and let $F(x)=\int_{-\infty}^{x} f(t) d t$ be the standard normal cumulative distribution function.

We compute a Taylor series expansion,

$$
\begin{aligned}
G(x) & =\int \frac{1}{\sqrt{2 \pi}} e^{\frac{-1}{2} x^{2}} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!2^{n}} x^{2 n} d x \\
& =\frac{1}{\sqrt{2 \pi}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!2^{n}(2 n+1)} x^{2 n+1} \\
& =\frac{1}{\sqrt{2 \pi}}\left(x-\frac{1}{6} x^{3}+\frac{1}{40} x^{5}-\frac{1}{336} x^{7}+\cdots\right)
\end{aligned}
$$

So $F(x)=G(x)+C$ for some C. As 0 is the expected value, we need $\frac{1}{2}=F(0)=G(0)+C=C$.

Example

If the continuous random variable X is normally distributed, what is the probability that it takes on a value of more than a standard deviations above the mean?

Solution

Via a change of variables, we may suppose that X is normally distributed with respect to the standard normal distribution. Let F be the cumulative distribution function for the standard normal distribution.

$$
\begin{aligned}
\operatorname{Pr}(X \geq 1) & =\int_{1}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{\frac{-1}{2} x^{2}} d x \\
& =\lim _{r \rightarrow \infty}(F(r)-F(1)) \\
& \approx \lim _{r \rightarrow \infty}(F(r))-\left(\frac{1}{2}+\frac{1}{\sqrt{2 \pi}}\left(1-\frac{1^{3}}{6}+\frac{1^{5}}{40}\right)-\frac{1^{7}}{336}\right) \\
& \approx 0.5-.34332 \\
& =.15668
\end{aligned}
$$

