12.3: Expected Value and Variance

If X is a random variable with corresponding probability density function $f(x)$, then we define the expected value of X to be

$$E(X) := \int_{-\infty}^{\infty} x f(x) dx$$

We define the variance of X to be

$$\text{Var}(X) := \int_{-\infty}^{\infty} [x - E(X)]^2 f(x) dx$$

Alternate formula for the variance

As with the variance of a discrete random variable, there is a simpler formula for the variance.
\begin{align*}
\text{Var}(X) &= \int_{-\infty}^{\infty} [x - E(X)]f(x)dx \\
&= \int_{-\infty}^{\infty} [x^2 - 2xE(X) + E(X)^2]f(x)dx \\
&= \int_{-\infty}^{\infty} x^2f(x)dx - 2E(X)\int_{-\infty}^{\infty} xf(x)dx \\
&\quad + E(X)^2\int_{-\infty}^{\infty} f(x)dx \\
&= \int_{-\infty}^{\infty} x^2f(x)dx - 2E(X)E(X) + E(X)^2 \times 1 \\
&= \int_{-\infty}^{\infty} x^2f(x)dx - E(X)^2
\end{align*}

Interpretation of the expected value and the variance

The expected value should be regarded as the average value. When \(X \) is a discrete random variable, then the expected value of \(X \) is precisely the mean of the corresponding data.

The variance should be regarded as (something like) the average of the difference of the actual values from the average. A larger variance indicates a wider spread of values.

As with discrete random variables, sometimes one uses the standard deviation, \(\sigma = \sqrt{\text{Var}(X)} \), to measure the spread of the distribution instead.
Example

The uniform distribution on the interval $[0, 1]$ has the probability density function

$$f(x) = \begin{cases}
0 & \text{if } x < 0 \text{ or } x > 1 \\
1 & \text{if } 0 \leq x \leq 1
\end{cases}$$

Letting X be the associated random variable, compute $E(X)$ and $\text{Var}(X)$.

Solution

$$E(X) = \int_{-\infty}^{\infty} x f(x) \, dx$$

$$= \int_{-\infty}^{0} x \times 0 \, dx + \int_{0}^{1} x \times 1 \, dx + \int_{1}^{\infty} x \times 0 \, dx$$

$$= 0 + \frac{1}{2} \left[x^2 \right]_{0}^{1} + 0$$

$$= \frac{1}{2}$$
Solution, continued

We compute

\[\int_{-\infty}^{\infty} x^2 f(x)dx = \int_{0}^{1} x^2 dx \]
\[= \frac{1}{3} x^3 \bigg|_{x=1}^{x=0} \]
\[= \frac{1}{3} \]

Solution, completed

Hence,

\[\text{Var}(X) = \int_{-\infty}^{\infty} x^2 f(x)dx - E(X)^2 \]
\[= \frac{1}{3} - \frac{1}{4} \]
\[= \frac{1}{12} \]
Another example

Let X be the random variable with probability density function

$$f(x) = \begin{cases}
 e^x & \text{if } x \leq 0 \\
 0 & \text{if } x > 0
\end{cases}.$$

Compute $E(X)$ and $\text{Var}(X)$.

Solution

Integrating by parts with $u = x$ and $dv = e^x dx$, we see that

$$\int x e^x dx = x e^x - e^x + C.$$

Thus,

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx = \int_{-\infty}^{0} x e^x dx = \lim_{r \to -\infty} \int_{r}^{0} x e^x dx = \lim_{r \to -\infty} \left[-1 - re^r + e^r \right] = 1.$$

[We used L'Hôpital's rule to see that

$$\lim_{r \to -\infty} re^r = \lim_{r \to -\infty} e^r = \lim_{r \to -\infty} \frac{1}{e^{\frac{1}{r}}} = 0.$$]
Solution, continued

We compute

\[
\int x^2 e^x \, dx = x^2 e^x - 2 \int xe^x \, dx = x^2 e^x - 2xe^x + 2e^x + C
\]

So,

\[
\int_{-\infty}^{\infty} x^2 f(x) \, dx = \int_{-\infty}^{0} x^2 e^x \, dx = \lim_{r \to -\infty} (2 - r^2 e^r + 2re^r - 2e^r) = 2
\]

This gives \(\text{Var}(X) = 2 - 1^2 = 1. \)

One more example

Suppose that the random variable \(X \) has a cumulative distribution function

\[
F(x) = \begin{cases}
\sin(x) & \text{if } 0 \leq x \leq \frac{\pi}{2} \\
0 & \text{if } x < 0 \text{ or } x > \frac{\pi}{2}
\end{cases}
\]

Compute \(E(X) \) and \(\text{Var}(X) \).
Solution

First, we must find the probability density function of X. Differentiating we find that the function

$$f(x) = \begin{cases}
\cos(x) & \text{if } 0 \leq x \leq \frac{\pi}{2} \\
0 & \text{otherwise}
\end{cases}$$

is the derivative of F at all but two points. Thus, $f(x)$ is a probability density function for X.

Solution, continued

$$E(X) = \int_{-\infty}^{\infty} x f(x) \, dx$$

$$= \int_{0}^{\frac{\pi}{2}} x \cos(x) \, dx$$

$$= (x \sin(x) + \cos(x)) \bigg|_{x=0}^{x=\frac{\pi}{2}}$$

$$= \frac{\pi}{2} - 1$$
Solution, finished

Integrating by parts, we compute

\[
\text{Var}(X) = \int_0^{\frac{\pi}{2}} x^2 \cos(x)dx - E(X)^2
\]

\[
= (x^2 \sin(x) - 2x \sin(x) + 2x \cos(x)) \bigg|_{x=0}^{x=\frac{\pi}{2}} - \left(\frac{\pi}{2} - 1\right)^2
\]

\[
= \frac{\pi^2}{4} - 2 - \left(\frac{\pi^2}{4} - \pi + 1\right)
\]

\[
= \pi - 3
\]