11.4: Infinite series with positive terms

There are several tests for the convergence or divergence of infinite series with all positive terms. We consider two.

- Integral test
- Comparison test

Integral test

If f is a function with $f(x)$ a decreasing continuous function defined for all numbers $x \geq k$, then the infinite series $\sum_{n=k}^{\infty} f(n)$ converges if and only if the integral $\int_{1}^{\infty} f(x) d x$ converges.

Example

Use the integral test to determine whether or not $\sum_{n=1}^{\infty} \frac{1}{n}$ converges.

Solution

Indeed, it does not as

$$
\begin{aligned}
\int_{1}^{\infty} \frac{d x}{x} & =\lim _{r \rightarrow \infty} \int_{1}^{r} \frac{d x}{x} \\
& =\left.\lim _{r \rightarrow \infty} \ln (x)\right|_{x=1} ^{x=r} \\
& =\lim _{r \rightarrow \infty} \ln (r) \\
& =\infty
\end{aligned}
$$

Another example

Does the series $\sum_{n=1}^{\infty} \frac{n}{e^{n}}$ converge?

Solution

Consider $f(x)=x e^{-x}$. We compute $f^{\prime}(x)=(1-x) e^{-x}$ which is negative for all $x>1$. Thus, f is decreasing.

We compute using integration by parts with $u=x$ so that $d u=d x$ and $d v=e^{-x}$ so that $v=-e^{-x}$,

$$
\begin{aligned}
\int_{1}^{\infty} x e^{-x} d x & =\left.\lim _{r \rightarrow \infty}\left(-x e^{-x}-e^{-x}\right)\right|_{x=1} ^{x=r} \\
& =\lim _{r \rightarrow \infty}-(r+1) e^{-r}+\frac{2}{e} \\
& =\frac{2}{e}
\end{aligned}
$$

Hence, $\sum_{n=1}^{\infty} \frac{n}{e^{n}}$ converges.

Comparison tests

If $a_{1}, a_{2}, a_{3}, \ldots$ and $b_{1}, b_{2}, b_{3}, \ldots$ are two sequences of positive numbers for which $a_{i} \leq b_{i}$ for every i, then

$$
\text { if } \sum_{n=1}^{\infty} a_{n} \text { diverges, so does } \sum_{n=1}^{\infty} b_{n}
$$

while

$$
\text { if } \sum_{n=1}^{\infty} b_{n} \text { converges, so does } \sum_{n=1}^{\infty} a_{n}
$$

moreover,
$0 \leq \sum_{n=1}^{\infty} a_{n} \leq \sum_{n=1}^{\infty} b_{n}$.

Examples

Does the series $\sum_{n=1}^{\infty} \frac{1}{n 2^{n}}$ converge?

Solution

Yes: $0<\frac{1}{n 2^{n}} \leq \frac{1}{2^{n}}$ for every n. We know $\sum_{n=1}^{\infty} \frac{1}{2^{n}}=1$. Hence, $\sum_{n=1}^{\infty} \frac{1}{n 2^{n}}$ converges and is at most 1 .

