11.4: Infinite series with positive terms

There are several tests for the convergence or divergence of infinite series with all positive terms. We consider two.

1

- Integral test
- Comparison test

Integral test

If f is a function with f(x) a *decreasing* continuous function defined for all numbers $x \ge k$, then the infinite series

 $\sum_{n=k}^{\infty} f(n)$ converges if and only if the integral $\int_{1}^{\infty} f(x) dx$ converges.

 $\mathbf{2}$

Example

3

Use the integral test to determine whether or not $\sum_{n=1}^{\infty} \frac{1}{n}$ converges.

Solution

Indeed, it does not as

$$\int_{1}^{\infty} \frac{dx}{x} = \lim_{r \to \infty} \int_{1}^{r} \frac{dx}{x}$$
$$= \lim_{r \to \infty} \ln(x)|_{x=1}^{x=r}$$
$$= \lim_{r \to \infty} \ln(r)$$
$$= \infty$$

4

Does the series $\sum_{n=1}^{\infty} \frac{n}{e^n}$ converge?

Solution

5

Consider $f(x) = xe^{-x}$. We compute $f'(x) = (1 - x)e^{-x}$ which is negative for all x > 1. Thus, f is decreasing.

We compute using integration by parts with u = x so that du = dxand $dv = e^{-x}$ so that $v = -e^{-x}$,

$$\int_{1}^{\infty} x e^{-x} dx = \lim_{r \to \infty} (-x e^{-x} - e^{-x}) \Big|_{x=1}^{x=r}$$
$$= \lim_{r \to \infty} -(r+1) e^{-r} + \frac{2}{e}$$
$$= \frac{2}{e}$$

Hence, $\sum_{n=1}^{\infty} \frac{n}{e^n}$ converges.

6

Comparison tests

If a_1, a_2, a_3, \ldots and b_1, b_2, b_3, \ldots are two sequences of positive numbers for which $a_i \leq b_i$ for every *i*, then

if
$$\sum_{n=1}^{\infty} a_n$$
 diverges, so does $\sum_{n=1}^{\infty} b_n$

while

if
$$\sum_{n=1}^{\infty} b_n$$
 converges, so does $\sum_{n=1}^{\infty} a_n$

moreover,

$$0 \le \sum_{n=1}^{\infty} a_n \le \sum_{n=1}^{\infty} b_n.$$

 $\overline{7}$

Examples

8

Does the series $\sum_{n=1}^{\infty} \frac{1}{n2^n}$ converge?

Solution

Yes: $0 < \frac{1}{n2^n} \le \frac{1}{2^n}$ for every *n*. We know $\sum_{n=1}^{\infty} \frac{1}{2^n} = 1$. Hence, $\sum_{n=1}^{\infty} \frac{1}{n2^n}$ converges and is at most 1.