next up previous
Next: About this document ...

MATH 16B SECOND MIDTERM SOLUTIONS

Prepared by Di-an Jan

    1. First, try to simplify the integrand, in this case, with one of the laws of exponents

      $\displaystyle \int_2^3 x^2 (e^x)^2 \,d x= \int_2^3 x^2 e^{2x} \,d x$    

      this is a product but not in the form of a substitution, so try integration by parts. Now the derivative of $ x^2$ is simpler and the antiderivative is more complicated, while the derivative and antiderivatives of $ e^{2x}$ are about the same in complexity, so try \begin{displaymath}\begin{array}[t]{r@{}l@{\quad}r@{}l}
f (x) &= x^2 & g(x) &= ...
...\\
f'(x) &= 2x & G(x) &= \tfrac{1}{2}e^{2x} \\
\end{array}\end{displaymath}

      $\displaystyle \int x^2 e^{2x} \,d x= \tfrac{1}{2} x^2 e^{2x} - \int x e^{2x} \,d x$    

      To do the resulting integral, again integrate by parts \begin{displaymath}\begin{array}[t]{r@{}l@{\quad}r@{}l}
f (x) &= x & g(x) &= e^...
... \\
f'(x) &= 1 & G(x) &= \tfrac{1}{2}e^{2x} \\
\end{array}\end{displaymath}

      $\displaystyle \int x e^{2x} \,d x = \tfrac{1}{2} x e^{2x} - \tfrac{1}{2} \int e^{2x} \,d x = \tfrac{1}{2} x e^{2x} - \tfrac{1}{4} e^{2x} + C$    

      Finally, we put it all together with the limits,

      $\displaystyle \int_2^3 x^2 (e^x)^2 \,d x$ $\displaystyle = \Bigl(\tfrac{1}{2} x^2 e^{2x} - \bigl(\tfrac{1}{2} x e^{2x} - \tfrac{1}{4} e^{2x}\bigr) \Bigr\vert _2^3$    
        $\displaystyle = \Bigl(\tfrac{1}{2} x^2 e^{2x} - \tfrac{1}{2} x e^{2x} + \tfrac{1}{4} e^{2x} \Bigr\vert _2^3 = \tfrac{13}{4} e^6 - \tfrac{5}{4} e^4$    

    2. Again, first simplify the integrand

      $\displaystyle \int_0^1 \dfrac{\ln (\sqrt[4]{x})}{x} \,d x = \int_0^1 \dfrac{\ln (x^{1/4})}{x} \,d x = \int_0^1 \dfrac{\ln x}{4x} \,d x$    

      Note that this is an improper integral because both $ \ln x$ and  $ \tfrac{1}{x}$ are not defined at $ x = 0$. To do the integral, note that the derivative of $ \ln x$ is  $ \tfrac{1}{x}$, so do substitution with $ u = \ln x$ and  $ du = \tfrac{1}{x} \,d x$

      $\displaystyle \int \dfrac{\ln (\sqrt[4]{x})}{x} \,d x = \tfrac{1}{4} \int u \,d u = \tfrac{1}{8} u^2 + C = \tfrac{1}{8} (\ln x)^2 + C$    

      But we need to plug in the lower limit as an improper integral

      $\displaystyle \int_0^1 \dfrac{\ln (\sqrt[4]{x})}{x} \,d x$ $\displaystyle = \lim_{a \to 0^+} \int_a^1 \dfrac{\ln (\sqrt[4]{x})}{x} \,d x$    
        $\displaystyle = \lim_{a \to 0^+} \tfrac{1}{8} \bigl((\ln 1)^2 - (\ln a)^2\bigr)$    
        $\displaystyle = \lim_{a \to 0^+} - \tfrac{1}{8} (\ln a)^2$    

      Note that $ \ln 1 = 0$. To evaluate the limit, note that as $ x \to 0$ from the positive side, $ \ln x$ becomes very big negative, so $ (\ln x)^2$ becomes very big positive, and  $ -\tfrac{1}{8} (\ln a)^2$ becomes very big negative. Thus the integral diverges, and we say

      $\displaystyle \int_0^1 \dfrac{\ln(\sqrt[4]{x})}{x} \,d x= -\infty$    

      There are other ways to do the integral correctly. These all give the same answer after simplifying with laws of logarithms and exponents.

      1. Substitution with  $ u = \ln (\sqrt[4]{x}) = \ln \bigl(x^{1/4}\bigr)$ and  $ du = \tfrac{1}{x^{1/4}} \bigl(\tfrac{1}{4} x^{-3/4}\bigr) \,d x
= \tfrac{1}{4x} \,d x$

        $\displaystyle \int \dfrac{\ln(\sqrt[4]{x})}{x} \,d x = 4 \int u \,d u= 2 u^2 + C = 2 \bigl(\ln(\sqrt[4]{x})\bigr)^2 + C$    

        Do not forget the chain rule in computing $ du$.

      2. Integration by parts with \begin{displaymath}\begin{array}[t]{r@{}l@{\quad}r@{}l}
f (x) &= \ln(\sqrt[4]{x...
... \\
f'(x) &= \tfrac{1}{4x} & g(x) &= \ln(x) \\
\end{array}\end{displaymath}

        $\displaystyle \int \dfrac{\ln(\sqrt[4]{x})}{x} \,d x$ $\displaystyle = \ln(\sqrt[4]{x}) \ln(x) - \int \dfrac{\ln x}{4x} \,d x$    
          $\displaystyle = \ln(\sqrt[4]{x}) \ln(x) - \tfrac{1}{8}(\ln x)^2 + C$    

        where $ f'(x)$ and  $ \int \tfrac{\ln x}{4x} \,d x$ are as calculated above.

        Integrating by parts don't work the other way because we don't know the antiderivative of  $ \ln(\sqrt[4]{x})$.

      3. Same as above but integrate  $ \int \tfrac{\ln x}{x} \,d x$ by parts \begin{displaymath}\begin{array}[t]{r@{}l@{\quad}r@{}l}
f (x) &= \ln x & G(x) &...
...x} \\
f'(x) &= \tfrac{1}{x} & g(x) &= \ln x \\
\end{array}\end{displaymath}

        $\displaystyle \int \dfrac{\ln x}{x} \,d x= (\ln x)^2 - \int \dfrac{\ln x}{x} \,d x$    

        Note that the two integrals are the some, so moving them to the same side gives

        $\displaystyle \int \dfrac{\ln x}{x} \,d x= \tfrac{1}{2} (\ln x)^2$    

        Integrating by parts the other way don't work. It gives

        $\displaystyle \int \dfrac{\ln x}{x} \,d x = \ln x - 1 + \int \dfrac{\ln x}{x} \,d x- \int \dfrac{1}{x} \,d x = C - 1 + \int \dfrac{\ln x}{x} \,d x$    

        because  $ \int \tfrac{1}{x} \,d x= \ln x + C$. This don't tell us anything as indefinite integrals differ by a constant.

    3. There are a couple ways to do $ \int \cos(x) \sin(x) \sqrt[3]{\sin(x) + 2} \,d x$

      1. The integrand contains a single  $ \cos x \,d x$ and many $ \sin x$, whose derivative is $ \cos x$, so try the substitution  $ u = \sin x$ and  $ du = \cos x \,d x$

        $\displaystyle \int \cos(x) \sin(x) \sqrt[3]{\sin(x) + 2} \,d x = \int u (u + 2)^{1/3} \,d u$    

        then all we can do next is integration by parts. Since the derivative of $ u$ is the simplest, we should try \begin{displaymath}\begin{array}[t]{r@{}l@{\quad}r@{}l}
f (u) &= u & g(u) &= (u...
...'(u) &= 1 & G(u) &= \tfrac{3}{4} (u + 2)^{4/3} \\
\end{array}\end{displaymath}

        $\displaystyle \int u (u+2)^{1/3} \,d u$ $\displaystyle = \tfrac{3}{4} u (u + 2)^{4/3} - \tfrac{3}{4} \int (u + 2)^{4/3} \,d u$    
          $\displaystyle = \tfrac{3}{4} u (u + 2)^{4/3} - \tfrac{9}{28} (u + 2)^{7/3} + C$    
          $\displaystyle = \tfrac{3}{4} \sin(x) \, \bigl(\sin(x) + 2\bigr)^{4/3} - \tfrac{9}{28} \bigl(\sin(x) + 2\bigl)^{7/3} + C$    

        Note that the variable is $ u$, which is converted back to $ x$ at the end.

      2. Instead, we can take a bigger substitution without changing its derivative  $ u = \sin(x) + 2$ and  $ du = \cos x \,d x$

        $\displaystyle \int \cos(x) \sin(x) \sqrt[3]{\sin(x) + 2} \,d x = \int (u - 2) u^{1/3} \,d u$    

        Note that we used  $ u = \sin(x) + 2$ to replace  $ \sin(x) = u - 2$. This is necessary because $ x$ depends on $ u$ because $ u$ depends on $ x$, and when we integrate with respect to $ u$ we need to know exactly how $ \sin(x)$ changes with respect to $ u$. There are two ways to do the integral:

        1. Integrate by parts, with $ f(x)$ chosen to have the simplest derivative \begin{displaymath}\begin{array}[t]{r@{}l@{\quad}r@{}l}
f (u) &= u - 2 & g(u) &...
...\
f'(u) &= 1 & G(u) &= \tfrac{3}{4} u^{4/3} \\
\end{array}\end{displaymath}

          $\displaystyle \int (u - 2) u^{1/3} \,d u$ $\displaystyle = \tfrac{3}{4}(u - 2) u^{4/3} - \tfrac{3}{4} \int u^{4/3} \,d u$    
            $\displaystyle = \tfrac{3}{4}(u - 2) u^{4/3} - \tfrac{9}{28} u^{7/3} + C$    

          which is the same as before when we put in  $ u = \sin x + 2$.

        2. Or, we can multiply it out and use the laws of exponents to simplify

          $\displaystyle \int (u - 2) u^{1/3} \,d u$ $\displaystyle = \int \bigl(u^{4/3} - 2 u^{1/3}\bigr) \,d u$    
            $\displaystyle = \tfrac{3}{7} u^{7/3} - \tfrac{3}{2} u^{4/3} + C$    
            $\displaystyle = \tfrac{3}{7} \bigl(\sin(x) + 2\bigr)^{7/3} - \tfrac{3}{2} \bigl(\sin(x) + 2\bigr)^{4/3} + C$    

          and we can see this is the same by multiplying out $ \tfrac{3}{4}(u - 2) u^{4/3} - \tfrac{9}{28} u^{7/3}$

      3. We can also try integration by parts first, but it's harder to see how to choose $ f(x)$ and $ g(x)$ without before using substitution to simplify the integral. For $ g(x)$, we need something we can integrate to $ G(x)$

        \begin{displaymath}\begin{array}{r@{}l@{\quad}r@{}l} g(x) &= \sin(x) & G(x) &= -...
...) &= \tfrac{3}{4} \bigl(\sin(x) + 2\bigr)^{4/3} \\  \end{array}\end{displaymath}    

        The last case corresponds to  $ f(x) = \sin(x)$ and  $ f'(x) = \cos(x)$. It is the only one where $ f'(x)$ is no more complicated than $ f(x)$ and in fact, the only one that can be done by integrating by parts, giving

        $\displaystyle \int \cos(x) \sin(x) \sqrt[3]{\sin(x) + 2} \,d x$ $\displaystyle = \tfrac{3}{4} \sin(x) \, \bigl(\sin(x) + 2\bigr)^{4/3} - \tfrac{3}{4} \int \cos(x) \, \bigl(\sin(x) + 2\bigr)^{4/3} \,d x$    
          $\displaystyle = \tfrac{3}{4} \sin(x) \, \bigl(\sin(x) + 2\bigr)^{4/3} - \tfrac{9}{28} \bigl(\sin(x) + 2\bigr)^{7/3} + C$    

  1. To approximate  $ \int_0^4 2^x \,d x$ using Simpson's rule with $ n = 2$, divide the interval $ [0,4]$ into $ 2$ pieces bounded by the points $ a_0 = 0$, $ a_1 = 2$ and $ a_2 = 4$ each of size  $ \Delta x= 2$. Let  $ f(x) = 2^x$, then the trapezoid rule approximation is

    $\displaystyle T_2$ $\displaystyle = \left(\frac{f(a_0) + f(a_1)}{2} + \frac{f(a_1) + f(a_2)}{2}\right) \Delta x$    
      $\displaystyle = \frac{f(a_0) + 2 f(a_1) + f(a_2)}{2} \Delta x$    
      $\displaystyle = 1 + 8 + 16 = 25$    

    The midpoints are $ x_1 = 1$ and $ x_2 = 3$ so the midpoint rule approximation is

    $\displaystyle M_2$ $\displaystyle = \bigl(f(x_1) + f(x_2)\bigr) \Delta x$    
      $\displaystyle = (2 + 8)(2) = 20$    

    The Simpson rule approximation is

    $\displaystyle S_2 = \frac{2 M_2 + T_2}{3} = \frac{65}{3} = 21\tfrac{2}{3}$    

    Or, with the other formula,

    $\displaystyle S_2$ $\displaystyle = \dfrac{f(a_0) + 4 f(x_1) + 2 f(a_1) + 4 f(x_2) + f(a_2)}{6} \Delta x$    
      $\displaystyle = \dfrac{1 + 8 + 8 + 32 + 16}{3} = \frac{65}{3} = 21\tfrac{2}{3}$    

  2. To solve the differential equation  $ y' = t e^{t^2} y$, with initial condition  $ y(0) = -10$, use separation of variables. First, there is a constant solution $ y = 0$, but that doesn't satisfy the initial condition. Then

    $\displaystyle \int \dfrac{y'}{y} \,d t$ $\displaystyle = \int t e^{t^2} \,d t$    
    $\displaystyle \int \dfrac{1}{y} \,d y$ $\displaystyle = \tfrac{1}{2} \int e^u \,d u$    
    $\displaystyle \ln\lvert y \rvert$ $\displaystyle = \tfrac{1}{2} e^{t^2} + C$    
    $\displaystyle \lvert y \rvert$ $\displaystyle = e^{\frac{1}{2} e^{t^2} + C} = e^{\frac{1}{2} e^{t^2}} e^C = A e^{\frac{1}{2} e^{t^2}}$    

    where $ u = t^2$ and $ A = e^C$. Since  $ y(0) = -10$ is negative, we must have $ y(t) < 0$ and  $ \lvert y \rvert = -y$

    $\displaystyle y = -A e^{\frac{1}{2} e^{t^2}}$    

    The initial condition requires

    $\displaystyle -10 = y(0) = -A e^{\frac{1}{2} e^{0^2}} = -A e^{\frac{1}{2}} = -A \sqrt{e}$    

    so  $ A = \tfrac{10}{\sqrt{e}}$ and

    $\displaystyle y(t) = -\tfrac{10}{\sqrt{e}} e^{\frac{1}{2} e^{t^2}} = -10 e^{\frac{1}{2} (e^{t^2}-1)}$    

  3. A Euler's method problem should be on the final.

    1. Start at $ t = 0$ at the given initial value $ y(0) = -1$. There, the slope  $ y' = g(y) = g(-1)$ is positive, so $ y$ increases. Thus we move right (the positive direction) along the $ y$-axis, and we find that the slope $ y' = g(y)$ decreases until it reaches 0 at $ y = 0$. Thus the solution $ y(t)$ starts from $ t = 0$ at $ y = -1$ with a positive slope, and concaves up and becomes asymptotic to $ y = 0$. This is (d).

    2. Start at $ t = 0$ at the given initial value $ y(0) = 1$. There, the slope  $ y' = g(y) = g(1)$ is negative, so $ y$ decreases. Thus we move left (the negative direction) along the $ y$-axis, and we find that the slope $ y' = g(y)$ increases (gets closer to 0) until it reaches 0 at $ y = 0$. Thus the solution $ y(t)$ starts from $ t = 0$ at $ y = 1$ with a negative slope, and concaves down and becomes asymptotic to $ y = 0$. This is (b).

  4. Let $ y$ be the amount of compound A, then the rate at which A transforms to B is $ y'$. The rate is negative because the amount of A decreases as it is transformed to B, but that's okay. ``The rate is proportional to the cube of B,'' and the other conditions translates to

    $\displaystyle y' = k y^3 \qquad y(0) = 20 \qquad y(1) = 15 \\ $    

    for some (negative) constant $ k$. The differential equation can be easily solved by separation of variables. There is a constant solution $ y = 0$ but that doesn't work, so

    $\displaystyle \int y^{-3} y' \,d t$ $\displaystyle = \int k \,d t$    
    $\displaystyle \int y^{-3} \,d y$ $\displaystyle = \int k \,d t$    
    $\displaystyle -\tfrac{1}{2} y^{-2}$ $\displaystyle = k t + C$    
    $\displaystyle y^{-2}$ $\displaystyle = -2 k t - 2 C$    
    $\displaystyle y$ $\displaystyle = (-2 k t - 2 C)^{-1/2} = \frac{1}{\sqrt{-2 k t - 2 C}}$    

    Initially, there are $ 20$ moles of A, so plug in $ t = 0$ and $ y = 20$, and the next to last equation above gives

    $\displaystyle 20^{-2} = 0 - 2 C$   or$\displaystyle \qquad -2 C = \tfrac{1}{400}$    

    $\displaystyle y = \frac{1}{\sqrt{\tfrac{1}{400} - 2 k t}} = \frac{20}{\sqrt{1 - 800 k t}}$    

    After $ 1$ second, there are $ 15$ moles of A, so plug in $ t = 1$ and $ y = 15$

    $\displaystyle 15 = \frac{20}{\sqrt{1 - 800 k}}$    
    $\displaystyle \tfrac{3}{4} = \frac{1}{\sqrt{1 - 800 k}}$    
    $\displaystyle 1 - 800 k = \tfrac{16}{9}$    
    $\displaystyle -800 k = \tfrac{7}{9}$    

    The solution is

    $\displaystyle y = \frac{20}{\sqrt{1 + \tfrac{7}{9} t}} = \frac{60}{\sqrt{9 + 7 t}}$    

    The amount of A after $ 2$ seconds is

    $\displaystyle y(2) = \frac{60}{\sqrt{23}}$    mol    




next up previous
Next: About this document ...
Di-an Jan 2001-04-06