In sketching the graph of a function, one should look for basic qualitative features.

- Relative Extrema
- Inflection Points
- Intercepts
- Concavity
- Asymptotes
Graphing a cubic

Example

Graph \(f(x) = x^3 - 2x^2 + x - 1 \) for \(-3 \leq x \leq 3\).
To find the relative extrema we look at the endpoints of the domain of the function (if any) and at the zeros of the derivative.

At the endpoints

- $f(-3) = -27 - 18 - 3 - 1 = -49$
- $f(3) = 27 - 18 + 3 - 1 = 11$.

Thomas Scanlon
University of California, Berkeley
Math 16A (Autumn 2005)
We compute the first derivative

\[f'(x) = 3x^2 - 4x + 1 \]
\[= (3x - 1)(x - 1) \]

So that \(f'(x) = 0 \) for \(x = \frac{1}{3} \)
and \(x = 1 \).

We evaluate the function at these points obtaining
\[f\left(\frac{1}{3}\right) = \frac{1}{27} - \frac{6}{27} + \frac{9}{27} - \frac{27}{27} = -\frac{23}{27} \]
and
\[f(1) = 1 - 2 + 1 - 1 = -1. \]
Finding inflection points and determining concavity

Concavity may change where \(f''(x) = 0 \). In our case, we have \(f''(x) = 6x - 4 \) so that the only possible inflection point occurs at \(x = \frac{2}{3} \).

As \(6x - 4 < 0 \) when \(x < \frac{2}{3} \) and \(6x - 4 > 0 \) when \(x > \frac{2}{3} \), we see that the graph of \(f(x) \) is concave down for \(x < \frac{2}{3} \) and is concave up when \(x > \frac{2}{3} \) and that \(x = \frac{2}{3} \) is an inflection point.
Finding the intercepts

To find the y-intercept we evaluate at zero:

$$f(0) = -1$$

To find the x-intercept, we must solve $f(x) = 0$. In our case, there is no simple algebraic solution to this problem. However, we can approximate the location of the x-intercept by evaluating f in the range $1 \leq x \leq 2$.
Finding the asymptotes

To find the asymptotes, we look at undefined points for the function and at \(\lim_{x \to \pm \infty} f'(x) \).

In our case, the function is continuous at every real number. So, there are no vertical asymptotes.

As \(f(x) \) is defined only in the region \(-3 \leq x \leq 3\), we need not consider asymptotes at \(\infty \).
Graphing a rational function

Example

Graph \(f(x) = x^2 - 2x + \frac{1}{x-1} \)
for \(-3 \leq x \leq 3\).
To find the relative extrema we look at the endpoints of the domain of the function (if any) and at the zeros of the derivative.

At the endpoints

- \(f(-3) = (-3)^2 - 2(-3) + 1/(-3 - 1) = 14.75 \) and

- \(f(3) = 3^2 - 2(3) + 1/(3 - 1) = 3.5. \)
We compute the first derivative

\[f'(x) = 2x - 2 - (x - 1)^{-2} \]

\[= \frac{2(x - 1)^3 - 1}{(x - 1)^2} \]

So that \(f'(x) = 0 \) for \(x = 1 + \sqrt[3]{\frac{1}{2}} \).

We evaluate the function at this point obtaining \(f(1 + \sqrt[3]{\frac{1}{2}}) \approx 0.889881575 \)
Finding inflection points and determining concavity

Concavity may change where \(f''(x) = 0 \).
In our case, we have \(f''(x) = 2 + 2(x - 1)^{-3} \) so that the only possible inflection point occurs at \(x = 0 \).
As \(f''(x) < 0 \) when \(0 < x < 1 \) and \(f''(x) > 0 \) when \(x > 1 \) or \(x < 0 \), we see that the graph of \(f(x) \) is concave down for \(0 < x < 1 \) and is concave up when \(x < 0 \) or \(x > 1 \) and that \(x = 0 \) is an inflection point.
Finding the intercepts

To find the y-intercept we evaluate at zero:

$$f(0) = -1$$

To find the x-intercept, we must solve $f(x) = 0$. In our case, there is no simple algebraic solution to this problem. However, we can approximate the location of the x-intercept by evaluating f in the range $-0.4 \leq x \leq -0.3$.
Finding the asymptotes

To find the asymptotes, we look at undefined points for the function and at \(\lim_{x \to \pm \infty} f'(x) \).

In our case, the function is undefined at \(x = 1 \) and there is clearly a vertical asymptote there.

As the function is only defined for \(-3 \leq x \leq 3 \), we need not consider asymptotes at infinity.
Graphing a function with fractional powers

Example

Graph \(f(x) = x + \sqrt{4 - 3x} \) for \(0 \leq x \leq \frac{4}{3} \).
To find the relative extrema we look at the endpoints of the domain of the function (if any) and at the zeros of the derivative.

At the endpoints

- $f(0) = 2$ and
- $f\left(\frac{4}{3}\right) = 0$.
We compute the first derivative

\[f'(x) = 1 - \frac{3}{2}(4 - 3x)^{-\frac{1}{2}} \]

So that \(f'(x) = 0 \) for \(x = \frac{7}{12} \).

We evaluate the function at this point obtaining \(f\left(\frac{7}{12}\right) = \frac{25}{12} \).
Concavity may change where $f''(x) = 0$. In our case, we have $f''(x) = \frac{-9}{4}(4 - 3x)^{-\frac{3}{2}}$. In the range where $f''(x)$ is defined, $f''(x)$ is always negative so that the graph of $f(x)$ is always concave down. Note, however, that $f''(x)$ tends to zero as x approaches $\frac{4}{3}$.
Finding the intercepts

To find the \(y \)-intercept we evaluate at zero:
\[f(0) = 2 \]

To find the \(x \)-intercept, we must solve
\[f(x) = 0. \]

Setting \(f(x) = 0 \), we must solve \(\sqrt{4 - 3x} = x \). Squaring, we must solve \(4 - 3x = x^2 \). Adding \(4 - 3x \) to both sides of the equation, we see that we must solve \(x^2 + 3x - 4 = 0 \). This polynomial factors as \(x^2 + 3x - 4 = (x - 1)(x + 4) \). As \(0 \leq x \leq \frac{4}{3} \), \(-4\) is not an intercept. Moreover, substituting, we find that 1 is not an intercept either! (By squaring we introduced a potential sign error.)
In our case, the function is defined everywhere, but
\[\lim_{x \to \frac{4}{3}} f'(x) = \lim_{x \to \frac{4}{3}} \left(1 - \frac{\frac{3}{2\sqrt{3-4x}}}{\frac{3}{2\sqrt{3-4x}}} \right) = \infty \] So, \(x = \frac{4}{3} \) is a vertical asymptote to the graph of \(f(x) \).