6.5: Applications of the definite integral

Math 16A (Autumn 2005)

Thomas Scanlon

University of California, Berkeley

Week 15
Mean value

Definition

If y_1, \ldots, y_n is a finite sequence of real numbers, then the average or mean value of the sequence is

$$\mu = \frac{y_1 + \cdots + c_n}{n}$$
Average value of a continuous function

If \(f(x) \) is a continuous function defined on some interval \([a, b]\), we can find the **average value** of \(f(x) \) from the notion of the average of a finite sequence.
Average value of a continuous function

If \(f(x) \) is a continuous function defined on some interval \([a, b]\), we can find the average value of \(f(x) \) from the notion of the average of a finite sequence.

Fix a number \(n \) and sample consider the sequence \(f(x_1), \ldots, f(x_n) \)
where \(a \leq x_1 \leq x_2 \leq \cdots \leq x_n \leq b \) is a sequence of points between \([a, b]\) chosen with a “uniform” distribution.
Average value of a continuous function

If $f(x)$ is a continuous function defined on some interval $[a, b]$, we can find the average value of $f(x)$ from the notion of the average of a finite sequence.

Fix a number n and sample consider the sequence $f(x_1), \ldots, f(x_n)$ where $a \leq x_1 \leq x_2 \leq \cdots \leq x_n \leq b$ is a sequence of points between $[a, b]$ chosen with a “uniform” distribution.

To make the notion of “uniform” precise, we could break $[a, b]$ into n intervals each of length $\Delta x = \frac{b - a}{n}$ and choose x_i in the i^{th} interval.
The average of the sequence is then
The average of the sequence is then

$$\mu = \frac{f(x_1) + \cdots + f(x_n)}{n}$$
The average of the sequence is then

\[\mu = \frac{f(x_1) + \cdots + f(x_n)}{n} = \frac{1}{n} \left(f(x_1) + \cdots + f(x_n) \right) \]
The average of the sequence is then

\[
\mu = \frac{f(x_1) + \cdots + f(x_n)}{n} = \frac{1}{b-a} (f(x_1) + \cdots + f(x_n)) \frac{b-a}{n}
\]
Average value, continued

The average of the sequence is then

\[\mu = \frac{f(x_1) + \cdots + f(x_n)}{n} \]

\[= \frac{1}{n} (f(x_1) + \cdots + f(x_n)) \frac{b - a}{n} \]

\[= \frac{1}{b - a} (f(x_1) + \cdots + f(x_n)) \Delta x \]
The average of the sequence is then

\[\mu = \frac{f(x_1) + \cdots + f(x_n)}{n} \]

\[= \frac{1}{b - a} (f(x_1) + \cdots + f(x_n)) \frac{1}{n} \]

\[= \frac{1}{b - a} (f(x_1) + \cdots + f(x_n)) \Delta x \]

This last expression is \(\frac{1}{b - a} \) [Riemann sum of \(f(x) \) with respect to \(n \) and \(x_1, \ldots, x_n \)].
As the Riemann sums approach the integral $\int_a^b f(x) \, dx$, we may define the average value of a continuous function over an interval in terms of its integral.
As the Riemann sums approach the integral $\int_{a}^{b} f(x) \, dx$, we may define the average value of a continuous function over an interval in terms of its integral.

Definition

Let $f(x)$ be a continuous function on the interval $[a, b]$ we define the average value or mean of $f(x)$ over $[a, b]$ to be

$$\mu = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx$$
Average value in an example

Example

Compute the average value of \(f(x) = e^x - x \) over the interval \([1, 3]\).
A solution

\[
\mu = \frac{1}{3-1} \int_1^3 (e^x - x) \, dx
\]
A solution

\[
\mu = \frac{1}{3-1} \int_1^3 (e^x - x) \, dx \\
= \left. \frac{1}{2} [e^x - \frac{1}{2} x^2] \right|_1^2
\]
6.5: Applications of the definite integral

A solution

\[\mu = \frac{1}{3 - 1} \int_{1}^{3} (e^{x} - x) \, dx \]

\[= \frac{1}{2} [e^{x} - \frac{1}{2} x^{2}] \bigg|_{1}^{3} \]

\[= \frac{1}{2} [(e^{2} - 2) - (e - \frac{1}{2})] \]
A solution

\[
\mu = \frac{1}{3 - 1} \int_{1}^{3} (e^x - x) \, dx
\]

\[
= \frac{1}{2} \left[e^x - \frac{1}{2} x^2 \right] \bigg|_{1}^{3}
\]

\[
= \frac{1}{2} \left[(e^2 - 2) - (e - \frac{1}{2}) \right]
\]

\[
= \frac{1}{2} e^2 - \frac{1}{2} e - \frac{3}{4}
\]
If a single payment of A dollars is made t years from now and we assume a fixed inflation rate of r, then that payment is worth Ae^{-rt} dollars in present value.
Continuous income stream

If a single payment of A dollars is made t years from now and we assume a fixed inflation rate of r, then that payment is worth Ae^{-rt} dollars in present value.

How can we correctly appraise the value of a continuous stream of income over time?
Continuous income stream

If a single payment of A dollars is made t years from now and we assume a fixed inflation rate of r, then that payment is worth Ae^{-rt} dollars in present value.

How can we correctly appraise the value of a continuous stream of income over time?

Example
Suppose that we expect to receive payments at a constant rate of A dollars per year. After b years we will have received Ab dollars. How much are these payments worth in present dollars?
We can approximate the continuous stream of income as a sequence of discrete payments spread evenly over time.
A solution

We can approximate the continuous stream of income as a sequence of discrete payments spread evenly over time. Fix a number n, let $\Delta t = \frac{b}{n}$ and let $t_i = i\Delta t$ for $i = 1, \ldots, n$.
We can approximate the continuous stream of income as a sequence of discrete payments spread evenly over time. Fix a number \(n \), let \(\Delta t = \frac{b}{n} \) and let \(t_i = i\Delta t \) for \(i = 1, \ldots, n \). If we aggregate the payments over each of these intervals, then we have a payment of size \(A\Delta t \) at time \(t_1 \), one of size \(A\Delta t \) at time \(t_2 \), and so on.
The payment of $A\Delta t$ at time t_1 is worth $(A\Delta t)e^{-rt_1}$ in present dollars.
The payment of $A\Delta t$ at time t_1 is worth $(A\Delta t)e^{-rt_1}$ in present dollars.
The payment at time t_2 is worth $(A\Delta t)e^{-rt_2}$ in present dollars, and so on.
The payment of $A\Delta t$ at time t_1 is worth $(A\Delta t)e^{-rt_1}$ in present dollars.
The payment at time t_2 is worth $(A\Delta t)e^{-rt_2}$ in present dollars, and so on.
Thus, the present value of this constant income stream is approximately

$$Ae^{-rt_1}\Delta t + Ae^{-rt_2}\Delta t + \cdots + Ae^{-rt_n}\Delta t$$
The payment of $A\Delta t$ at time t_1 is worth $(A\Delta t)e^{-rt_1}$ in present dollars.
The payment at time t_2 is worth $(A\Delta t)e^{-rt_2}$ in present dollars, and so on.
Thus, the present value of this constant income stream is approximately

$$Ae^{-rt_1}\Delta t + Ae^{-rt_2}\Delta t + \cdots + Ae^{-rt_n}\Delta t$$

We recognize this expression as a Riemann sum for $f(t) = Ae^{-rt}$.
So, the present value of the constant income stream is

$$\int_{0}^{b} Ae^{-rt} \, dt = \left[-\frac{A}{r} e^{-rt} \right]_{0}^{b}$$

$$= \frac{A}{r} (1 - e^{-rb})$$
Volumes of revolved solids

Let $f(x)$ be a continuous, non-negative function defined on some interval $[a, b]$. If the region under the graph of $y = f(x)$ is spun around the x-axis to make a solid, then this object has volume

$$\int_a^b \pi (f(x))^2 \, dx$$
Volume of a cone

Example

Find the volume of the cone with height 3 and slant height 5.
A solution

Such a cone may be obtained by sweeping the line segment from $(0, 0)$ to $(3, b)$ around the x-axis where b is chosen so that the segment has length 5.
A solution

Such a cone may be obtained by sweeping the line segment from $(0, 0)$ to $(3, b)$ around the x-axis where b is chosen so that the segment has length 5.
By the Pythagorean theorem we need $b^2 + 9 = 25$ so that $b = 4$.
Such a cone may be obtained by sweeping the line segment from
(0, 0) to (3, b) around the x-axis where b is chosen so that the
segment has length 5.
By the Pythagorean theorem we need $b^2 + 9 = 25$ so that $b = 4$.
The line segment is the graph of $f(x) = \frac{4}{3}x$ on [0, 3].
Such a cone may be obtained by sweeping the line segment from
(0, 0) to (3, b) around the x-axis where b is chosen so that the
segment has length 5.
By the Pythagorean theorem we need $b^2 + 9 = 25$ so that $b = 4$.
The line segment is the graph of $f(x) = \frac{4}{3}x$ on $[0, 3]$.
So, the volume of the cone is

$$
\int_{0}^{3} \pi \frac{16}{9} x^2 \, dx = 16\pi
$$