1 (page 161, #26) Suppose that every member of A has cardinality at most κ, then $\text{card} \bigcup A \leq (\text{card} A) \cdot \kappa$.

Proof. Define $Y := \{ (a, x) : x \in a \in A \}$. Then by definition of the union, the function $f : Y \rightarrow \bigcup A$ defined by $(a, x) \mapsto x$ is surjective. Hence, $A \simeq Y$. It suffices to show that $Y \leq A \times \kappa$. Let $R := \{ (a, f) \in A \times (\bigcup A \times \kappa) : f$ is an injective function with domain a and range contained in $\kappa \}$. By hypothesis, every $a \in A$ has cardinality at most κ so that there is some injective $f : a \rightarrow \kappa$. That is, $\text{dom} R = A$. By the axiom of choice there is a function $F \subseteq R$ with $\text{dom} F = \text{dom} R = A$.

Define $G : Y \rightarrow A \times \kappa$ by $(a, x) \mapsto (a, F(a)(x))$. If $y = (a, x)$ and $y' = (a', x')$ are two elements of Y with $G(y) = G(y')$, then $a = a'$ and $F(a)(x) = F(a')(x') = F(a)(x')$. As $F(a)$ is injective, we have $x = x'$ as well, so that $y = y'$. Thus, G is injective showing that $Y \leq A \times \kappa$.

Therefore, $\text{card} \bigcup A \leq (\text{card} A) \cdot \kappa$. \hfill \Box

2 (page 161, #27)

(a) Let A be a collection of circular disks in the plane, no two of which intersect. Show that A is countable.

Proof. As \mathbb{Q}^2 is dense in \mathbb{R}^2, if D is any disk in the plane, then we must have $D \cap \mathbb{Q}^2 \neq \emptyset$. Let $R := \bigcup \{ D \cap \mathbb{Q}^2 | D \in A \}$. For $x \in R$, by definition, there is some $D \in A$ with $x \in D$. As the disks in A are disjoint, there can be at most one such D. Define $G : R \rightarrow A$ by $G := \{ (x, D) \in \mathbb{Q}^2 \times A | x \in D \}$. The above remark shows that R is a surjective function. Hence, we may find some injective $f : A \rightarrow R$ with $G \circ f = \text{id}_A$. As $R \subseteq \mathbb{Q}^2$, we have $|R| \leq \aleph_0$. Hence, $|A| \leq |\aleph_0|$. \hfill \Box

(b) Let B be a collection of circles in the plane, no two of which intersect. Need B be countable?

No. For r a positive real number, let $S_r := \{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 = r \}$. Then S_r is a circle and for $r \neq s$ we have $S_r \cap S_s = \emptyset$. Set $C := \{ S_r | r \in \mathbb{R}, r > 0 \}$.

(c) Let C be a collection of figure eights in the plane, no two of which intersect. Need C be countable?

Yes. Recall that we defined a figure eight to be a set of the form $X \cup Y$ where X and Y are circles whose bounded disks meet at exactly one point. For each pair of positive rational numbers p and q with $p \leq q$, we define $C_{p, q}$ to be the set of figure eights in C whose smaller circle has radius r with $p \leq r$ and whose large circle has radius R with $q \leq R < q + p$. Note that $C = \bigcup_{p \leq q} C_{p, q}$ is a countable union of the sets $C_{p, q}$. If we show that each $C_{p, q}$ is countable, then we know that C itself is. Note that if $F, E \in C_{p, q}$ are two distinct figure eights with the specified conditions on their radii, then not only are F and E disjoint, but the disks that they bound are also
disjoint as if \(F \) were a subset of the union of the disks bounded by \(F \), we would need the sum of the radii of the circles of \(F \) to be less than the radius of the larger circle of \(E \), but this sum is at least \(p + q \). Thus, exactly as in part (a) we may define an injective function \(f : C_{p,q} \to \mathbb{Q}^2 \) showing that \(C_{p,q} \) is countable.

3 (page 161, # 28) Find a set \(A \) of open intervals in \(\mathbb{R} \) such that every rational number belongs to one of those intervals but \(\bigcup A \neq \mathbb{R} \).

Let \(A = \{ (\sqrt{2} + n, \sqrt{2} + n + 1) : n \in \mathbb{Z} \} \).

4 (page 161, # 29) Let \(A \) be a set of positive real numbers. Assume that there is a bound \(b \) such that the sum of any finite subset of \(A \) is less than \(b \). Show that \(A \) is countable.

Proof. For each positive integer \(n \) define \(A_n := A \cap (\frac{1}{n}, \infty) \). I claim that for each \(n \), the set \(A_n \) is finite. Suppose this fails for some \(n \). Let \(k \in \omega \) be a natural number for which \(k > nb \). If \(A_n \) were infinite, then we could find \(a_1, \ldots, a_k \in A \) distinct.

We have \(b > \sum_{i=1}^{k} a_i > \sum_{i=1}^{k} \frac{1}{n} = \frac{k}{n} > \frac{nk}{n} = b \). With this contradiction, we see that \(A_n \) is finite. Thus, \(A = \bigcup_{n=1}^{\infty} A_n \) being a countable union of at most countable sets is itself at most countable. \(\square \)

5 (page 161, # 30) Assume that \(A \) is a set with at least two elements. Show that \(\text{Sq}(A) \preceq \omega A \).

Proof. By definition of \(\text{Sq}(A) \), we have \(\text{Sq}(A) = \bigcup_{n \in \omega} n A \).

We break the argument into two cases at this point.

If \(A \) is finite, then each of the sets \(n A \) is also finite and, thus, at most countable. Therefore, \(\text{Sq}(A) \) is also at most countable. However, as \(2 \preceq A \), we see that \(\text{Sq}(A) \preceq \omega \times 2 \preceq \omega A \).

If \(A \) is infinite, then \(A \approx A \cup \{ \ast \} := A' \) where \(\ast \notin A \). Let \(g : A' \to A \) be a bijection and let \(G : \omega A' \to A' \) be the induced bijection given by \(\sigma \mapsto g \circ \sigma \).

Define a function \(F : \text{Sq}(A) \to \omega A' \) by

\[
F(\sigma)(n) = \begin{cases}
\sigma(n) & \text{if } n \in \text{dom} \sigma \\
\ast & \text{otherwise}
\end{cases}
\]

Then \(F \) is injective as if \(F(\sigma) = F(\tau) \) we see that \(\text{dom}(\sigma) = F(\sigma)^{-1}[\text{dom}(\tau)] = F(\tau)^{-1}[\text{dom}(\sigma)] \) and that we have \(\sigma = F(\sigma) \upharpoonright \text{dom}(\sigma) = F(\tau) \upharpoonright \text{dom}(\sigma) = F(\tau) \upharpoonright \text{dom}(\tau) = \tau \).

Composing \(F \) with \(G \), we see that \(\text{Sq}(A) \preceq \omega A \). \(\square \)

6 (page 165, # 32) Let \(\mathcal{F}A \) be the collection of all finite subsets of \(A \). Show that if \(A \) is infinite, then \(A \approx \mathcal{F}A \).

Proof. We claim that for \(n \in \omega \) and \(n > 0 \) we have \(A \approx n A \). We prove this by induction on \(n \). For \(n = 1 \), there is an obvious bijection between \(A \) and \(1 A \) given
by $a \mapsto [0 \mapsto a]$. Assuming the result for n, we compute

\[
\begin{align*}
{n^+ A} &= n \cup \{n\} A \\
&\approx n A \times \langle n \rangle A \quad \text{by Thm 6I(4)} \\
&\approx n A \times A \quad \text{by the base case} \\
&\approx A \times A \quad \text{by IH} \\
&\approx A \quad \text{by Lemma 6R}
\end{align*}
\]

Thus, by problem 26 of page 161, we have that $|\operatorname{Sq}(A)| \leq \aleph_0 \cdot |A| = |A|$. However, as $A \subseteq \operatorname{Sq}(A)$, we certainly have $|A| \leq |\operatorname{Sq}(A)|$. Therefore, $A \approx \operatorname{Sq}(A)$.

Now, define a function $\operatorname{Sq}(A) \to FA$ by $\sigma \mapsto \operatorname{rng} \sigma$. By definition of a finite set, this function is surjective. Thus, $|FA| \leq |\operatorname{Sq}(A)| = |A|$. Again, as every singleton in A is a finite set, we have $|A| \leq |FA|$. Therefore, $A \approx FA$. \square

7 (page 165, # 35) Find a collection A of 2^{\aleph_0} sets of natural numbers such that any two distinct members of A have finite intersection.

Proof. We prove a claim.

Claim: Let K be any infinite set with $\text{card}K = \kappa$. Let $IK := \{X \in \mathcal{P}K \mid |X| \geq \aleph_0\}$. Then $|IK| = 2^\kappa$.

Proof of claim: We may write $\mathcal{P}K$ as the disjoint union of IK and FK. By the result of the previous problem, we have $\text{card}FA = \kappa$. Letting $\lambda := \text{card}IK$, we compute

\[
2^\kappa = \text{card}\mathcal{P}K = \text{card}(FK \cup IK) = \text{card}(FK) + \text{card}(IK) = \kappa + \lambda \quad \text{by Problem 6}
\]

\[
= \max\{\kappa, \lambda\} \quad \text{by the absorption law}
\]

\[
= \lambda \quad \text{as } \kappa < 2^\kappa
\]

By Euclid’s theorem, the set P of prime numbers is a countably infinite set. Hence, the set IP of infinite sets of primes has cardinality 2^{\aleph_0}.

For each $X \in IP$ define $A_X := \{\prod_{p \leq n, p \in X} p \mid n \in \omega\} \subseteq \omega$. This association defined a function $F : IP \to \mathcal{P}\omega$. Let $A := \text{rng}F$.

Note that for any $X \in IP$ the set A_X is infinite as X is infinite so that there are elements of A_X with arbitrarily many prime divisors. If $X \neq Y$ are two distinct elements of IP, then there is some prime which belongs to one set but not the other. Without loss of generality, we may assume $p \in X \setminus Y$. Let $A'_X := \{\prod_{p \leq n, p \in X} \ell \mid n < p\}$ and $A''_X := A_X \setminus A'_X$. Note that if $y \in A_Y$, then p does not divide y while p divides every element of A''_X. Thus, $A_X \cap A_Y$ is contained in $A'_X \cap A_Y \subseteq A'_X \subseteq \{m \in \omega : m < p!\}$ which is a finite set. Hence, $A_X \cap A_Y$ is finite. As A_X is infinite, this implies in particular that $A_X \neq A_Y$. Thus, the map $F : IP \to A$ is a bijection so that A has cardinality 2^{\aleph_0} and is almost disjoint. \square

8 Show that for any infinite cardinal κ, we have $\kappa! = 2^\kappa$.

Proof. Let K be any set with $\text{card}K = \kappa$. Let $\text{Sym}(K) := \{\sigma : K \to K| \sigma \text{ a bijection }\}$. Then by definition, we have $\kappa! = \text{card} \text{Sym}(K)$.

As every permutation is a function from K to K (and in particular a relation with field K), we have $\text{Sym}(K) \subseteq \mathcal{P}(K \times K)$ so that $\kappa! \leq 2^{\kappa \cdot \kappa} = 2^\kappa$.

For the other inequality, define a function $F : \text{Sym}(K) \to \mathcal{P}K$ by $\sigma \mapsto \{x \in K| \sigma(x) = x\}$. Let $A := \text{rng}F$. To compute the cardinality of A we need a claim.

Claim: Let X be any set with $\text{card}X \geq 2$. Then there is a permutation $\pi : X \to X$ having no fixed points.

Proof of claim: If X is finite, then $X \approx n$ for some $n \in \omega$ with $n > 2$. Let $f : n \to X$ be a bijection. Define $\sigma : n \to n$ by $\sigma(i) = i^+$ if $i < n - 1$ and $\sigma(n - 1) = 0$. Define $\pi : X \to X$ by $\pi = f \circ \pi \circ f^{-1}$.

If X is infinite of cardinality λ, then as $\lambda = \lambda \times \lambda$, we can find a bijection $g : X \to X \times 2$. Define $\sigma : X \times 2 \to X \times 2$ by $(x, i) \mapsto (x, 1 - i)$. Let $\pi := g^{-1} \circ \sigma \circ g$.

From the claim it follows that $B = \{X \in \mathcal{P}K | \text{card}(K \setminus X) \neq 1\}$. For if $X = K$, then $X = F(\text{id}_K)$ and if $K \setminus X =: Y$ has more than one element, then we can find (by the claim) a permutation $\pi : Y \to Y$ having no fixed points so that if $\sigma = \pi \cup \text{id}_X$ we have $F(\sigma) = X$. Finally, if $K \setminus X = \{a\}$ is a singleton, then X cannot be in the image of F as any permutation which fixes X must fix its complement setwise, and in the case of a singleton, being fixed setwise is the same as being fixed pointwise.

There is an obvious bijection between K and the set of subsets of K whose complements are singletons given by $a \mapsto K \setminus \{a\}$. Hence, $|\mathcal{P}K \setminus B| = \kappa$. As in the proof the claim in problem 7, we conclude that $|B| = 2^\kappa$. As $F : \text{Sym}(K) \to B$ is surjective, we conclude that $\kappa! \geq 2^\kappa$.

Combining this with the other inequality, we conclude that $\kappa! = 2^\kappa$. □