1. (page 54, # 22)
(a) $A \subseteq B \Rightarrow F[A] \subseteq F[B]$

Proof. Let $x \in F[A]$. By definition, there is some $a \in A$ with $F(a) = x$. As $A \subseteq B$, we have $a \in B$ so that $x = F(a) \in F[B]$. As x was arbitrary, we have shown that $F[A] \subseteq F[B]$. \qed

(b) $(F \circ G)[A] = F[G[A]]$

Proof. We show left to right inclusion first. Take $x \in (F \circ G)[A]$. By definition, there is some $a \in A$ with $(F \circ G)(a) = x$. By definition of the composition, we have $x = (F \circ G)(a) = F(G(a))$. By definition of $G[A]$ we have that $G(a) \in G[A]$ so that $x \in F[G[A]]$ as claimed.

For the other inclusion, suppose that $x \in F[G[A]]$. By definition of $F[G[A]]$ there is some $y \in G[A]$ with $F(y) = x$. By definition of $G[A]$ there is some $a \in A$ with $G(a) = y$. Thus, $x = F(G(a)) = (F \circ G)(a)$ so that $x \in (F \circ G)[A]$.

With the two inclusions proved, we conclude that equality holds. \qed

(c) $Q \upharpoonright (A \cup B) = (Q \upharpoonright A) \cup (Q \upharpoonright B)$

Proof. Recall that for a general relation R and set A we define $R \upharpoonright A := (R \cap (A \times \text{rng}R))$.

$$Q \upharpoonright (A \cup B) = Q \cap ((A \cup B) \times \text{rng}Q)$$
$$= Q \cap ((A \times \text{rng}Q) \cup (B \times \text{rng}Q))$$
$$= (Q \cap (A \times \text{rng}Q)) \cup (Q \cap (B \times \text{rng}Q))$$
$$= (Q \upharpoonright A) \cup (Q \upharpoonright B)$$ \qed

2. (page 54, # 29) Assume $f : A \to B$ and $G : B \to \mathcal{P}A$ is defined by

$$G(b) := \{x \in A | f(x) = b\}$$

If $f : A \to B$ is surjective, then G is injective.

Proof. Suppose that $b, b' \in B$ and $G(b) = G(b')$. As f is surjective, there is some $a \in A$ with $f(a) = b$. By definition of G, we have $a \in G(b)$. As $G(b) = G(b')$, we have $a \in G(b')$ as well. By definition of G, we have $f(a) = b'$. Combining this with the equality $b = f(a)$, we conclude that $b = b'$. Thus, G is injective. \qed

The converse does not hold. The correct biconditional is that G is injective if and only if there is at most one element in $B \setminus f[A]$.

3. (page 54, # 30)
We need a lemma for this problem.
Lemma For any set \(X \) and nonempty set \(Y \), we have \(X \subseteq \bigcap Y \iff (\forall Z \in Y) X \subseteq Z \).

Proof. Suppose that \(X \subseteq \bigcap Y \). Let \(x \in X \). As \(X \subseteq \bigcap Y \), we have \(x \in \bigcap Y \). By definition of \(\bigcap Y \), for every \(Z \in Y \) we have \(x \in Z \). Thus, for every \(Z \in Y \) we have \(X \subseteq Z \).

Suppose now that for every element \(Z \in Y \) we have \(X \subseteq Z \). Take \(x \in X \). Then, for every \(Z \in Y \) we have \(x \in Z \). By the definition of \(\bigcap Y \), we have \(x \in \bigcap Y \). Therefore, \(X \subseteq \bigcap Y \). \(\square \)

(a1) \(F(B) = B \)

Proof. We define \(\mathcal{X} := \{ X \subseteq A | F(X) \subseteq X \} \). In our notation \(B = \bigcap \mathcal{X} \).

Note that \(\mathcal{X} \neq \emptyset \) as \(A \in \mathcal{X} \). Let \(X \in \mathcal{X} \) be arbitrary. Then \(B \subseteq X \) by the Lemma. By monotonicity of \(F \), \(F(B) \subseteq F(X) \). By definition of \(\mathcal{X} \), we have \(F(X) \subseteq X \). By transitivity of \(\subseteq \), we have \(F(B) \subseteq X \). By the Lemma again, we have \(F(B) \subseteq \bigcap \mathcal{X} = B \). By monotonicity of \(F \), we conclude that \(F(F(B)) \subseteq F(B) \). By definition of \(\mathcal{X} \), we have \(F(B) \in \mathcal{X} \). Applying the Lemma again, we have \(B \subseteq F(B) \). With both inclusions proved, we have \(F(B) = B \). \(\square \)

(a2) \(F(C) = C \)

Proof. Define a new function \(G : \mathcal{P}A \to \mathcal{P}A \) by \(G(X) := F(X) \). (Here \(\mathcal{X} := A \setminus \{ X \} \).

We check that \(G \) is monotone: if \(X \subseteq Y \), then \(Y \subseteq X \). As \(F \) is monotone, we have \(F(Y) \subseteq F(X) \). Taking complements again, we have \(G(X) = \overline{F(X)} \subseteq \overline{F(Y)} = G(Y) \).

Set \(D := \bigcap \{ X \subseteq A | G(X) \subseteq X \} \). By part (a1), we know \(G(D) = D \).

Using De Morgan’s laws and the definitions of \(G \) and \(D \), we compute:

\[
\overline{C} = \bigcup \{ X \subseteq A | F(X) \supseteq X \} \\
= \bigcap \{ \overline{X} | F(X) \supseteq X \} \\
= \bigcap \{ X | F(X) \supseteq \overline{X} \} \\
= \bigcap \{ X | F(X) \subseteq X \} \\
= D
\]

Use the definition of \(G \) to see that

\[
\overline{C} = D \\
= G(D) \\
= \overline{F(D)} \\
= \overline{F(\overline{C})} \\
= \overline{F(C)}
\]

Taking complements again, we conclude that \(C = F(C) \). \(\square \)

(b) Suppose that \(F(X) = X \). We are to show that \(B \subseteq X \subseteq C \).
Proof. If \(F(X) = X \), then in particular, \(F(X) \subseteq X \) so that \(X \in X \). By the Lemma, \(B \subseteq X \).

Likewise, if \(X \subseteq F(X) \), then as \(C = \bigcup \{ Y \subseteq A | Y \subseteq F(Y) \} \) by the dual form of the Lemma, \(X \subseteq C \). \(\square \)

4. (page 55, # 31) Suppose that the first form of the axiom of choice holds. Let \(I \) be any set and \(H \) a function whose domain includes \(I \). Recall that \(\prod_{i \in I} H(i) := \{ f \mid f \text{ is a function with } \text{dom}(f) = I \text{ & } (\forall i \in I) f(i) \in H(i) \} \). Let \(Y := \bigcup_{i \in I} H(i) = \text{rng}(H \upharpoonright I) \). Let \(R := \{ (i, y) \in I \times Y | y \in H(i) \} \).

By definition of the domain, \(H(i) \neq \emptyset \) for each \(i \in I \). By the Axiom of Choice in its first form, there is some function \(f \subseteq R \) with \(\text{dom}f = \text{dom}R = I \).

Comparing the definitions of \(R \) and \(\prod_{i \in I} H(i) \) we see that \(f \in \prod_{i \in I} H(i) \) showing that \(\prod_{i \in I} H(i) \neq \emptyset \).

Suppose now that the second form of the Axiom of Choice holds. That is, every Cartesian product of nonempty sets is nonempty. Let \(R \) be any relation. If \(R = \emptyset \), then \(R \) is already a function so that we may take \(f = R \) giving a function which is a subset of \(R \) having the same domain. So, we may assume that \(R \neq \emptyset \). Set \(I := \text{dom}R \). Let \(B := \text{rng}R \). Define \(H : I \to B \) by \(i \mapsto \{ y \in \text{rng}(R(i, y)) \in R \} \).

By definition of the domain, \(H(i) \neq \emptyset \) for each \(i \in I \). By the Axiom of Choice in its second form, there is some \(f \in \prod_{i \in I} H(i) \).

By definition of the product, \(f : I \to Y \) and \((\forall i \in I) f(i) \in H(i) \). By definition of \(H \), we have that for each \(i \in I \), \((\langle i, f(i) \rangle \in R \).

That is, \(f \subseteq R \) and \(\text{dom}f = I \).

Thus, \(f \) witnesses that this instance of the Axiom of Choice in its first form holds.

5. (page 61, # 32)

(a) \(R \) is symmetric iff \(R^{-1} \subseteq R \)

Proof. Suppose \(R \) is symmetric. Let \((x, y) \in R^{-1} \). By definition of the converse relation, \((y, x) \in R \). As \(R \) is symmetric, we conclude \((x, y) \in R \). Thus, \(R^{-1} \subseteq R \).

Conversely, suppose that \(R^{-1} \subseteq R \). Suppose that \((x, y) \in R \). By definition of \(R^{-1} \), we have \((y, x) \in R^{-1} \). As \(R^{-1} \subseteq R \), we have \((y, x) \in R \). Therefore, \(R \) is symmetric. \(\square \)

(b) \(R \) is transitive iff \(R \circ R \subseteq R \)

Proof. Suppose that \(R \) is transitive. Let \(t \in R \circ R \). By definition, there are \(x, y, \) and \(z \) such that \(t = (x, z) \), \((x, y) \in R \) and \((y, x) \in R \). As \(R \) is transitive, we know \((x, z) \in R \). Therefore, \(t \in R \) so that \(R \circ R \subseteq R \).

Conversely, suppose that \(R \circ R \subseteq R \). Suppose that \((x, y) \in R \) and that \((y, z) \in R \). By definition of the composition, \((x, z) \in R \circ R \). As \(R \circ R \) is a subset of \(R \), we have \((x, z) \in R \). Therefore, \(R \) is transitive. \(\square \)

6. (page 61, # 37) We prove that \(R_{II} \) is an equivalence relation on \(A \). First, we check that \(R_{II} \) is reflexive. Take \(a \in A \). Then as \(A \) is a partition, there is some \(B \in A \) with \(a \in B \). From the definition of \(R_{II} \) (applied to \(x = y = a \) and taking \(B \) as the witness) we have \(a R_{II} a \). Secondly, we check that \(R_{II} \) is symmetric. Suppose that \(aR_{II} b \). So there is some \(B \in A \) with \(a \in B \& b \in B \). As the conjunction is symmetric, we have \(b \in B \& a \in B \) so that \(b R_{II} a \) as well showing that \(R_{II} \) is symmetric. Finally, we check that \(R_{II} \) is transitive. Suppose that \(aR_{II} b \) and \(bR_{II} c \).
The first relation is witnessed by some $B \in \Pi$ with $a \in B$ and $b \in B$ while the second relation is witnessed by some $C \in \Pi$ with $b \in C$ and $c \in C$. As Π is a partition, either $B = C$ or $B \cap C = \emptyset$. As $b \in B \cap C$, we must be in the first case: $B = C$. But then, $a \in B$ and $c \in B$ so that $aR_{\Pi}c$ holds.

7 (page 62, # 40) This question is not well-posed as one needs to define the notion of number of prime factors precisely. If one sets $P(x) := \{p|p \text{ is prime and divides } x\}$ and then defines the number of prime factors of x to be the size of $P(x)$, then the answer to the question is no as, for instance, $2R3$ but $\neg(6R9)$. However, if one writes $n = \prod_{\text{prime } p} p^{v_p(n)}$ and then defines the number of prime factors of n to be

\[\sum_{\text{prime } p} v_p(n) \] the answer would be yes as $3n$ always has one more factor than n so that f would respect R.

8 (page 64, # 44) We prove now that f is injective. Suppose that $f(x) = f(y)$. If $x \neq y$, then either $x < y$ or $y < x$. As the roles of x and y are interchangeable, we may assume that $x < y$. By hypothesis on f, $f(x) < f(y)$. As $f(y) = f(x)$ we would have $f(x) < f(x)$ contradicting Theorem 3R.

We prove now the second clause. Suppose that $f(x) < f(y)$. As $<$ is a total order, either $x < y$, $x = y$, or $x > y$. We eliminate the latter two possibilities. If $x = y$, then, of course, $f(x) = f(y) > f(x)$ violating the trichotomy (Theorem 3R). If $x > y$, then by monotonicity of f, we have $f(x) > f(y)$. By transitivity of $>$, we would have $f(x) < f(x)$ which again violates Theorem 3R. Therefore, we must have $x < y$.