MATH 113: ABSTRACT ALGEBRA (AUTUMN 2007) SOLUTIONS TO FINAL EXAMINATION

1. Let $Q(X) = X^5 - 3 \in \mathbb{Z}[X]$. Show that the ideal $(Q) \subseteq \mathbb{Z}[X]$ is prime but is not maximal.

Proof: We give a direct proof.

Note that by the Eisenstein criterion, Q is irreducible over \mathbb{Q} . Hence, the ideal generated by Q in $\mathbb{Q}[X]$ (let us call it J) is maximal and therefore prime. If f and g were elements of $\mathbb{Z}[X]$ with $fg \in Q$, then $fg \in J$. So either $f \in J$ or $g \in J$. Without loss of generality, $f \in J$. That is, there is some $h \in \mathbb{Q}[X]$ with hQ = f. We may write $h = \frac{1}{n}H$ where $n \in \mathbb{Z}_+$ is a positive integer and $H \in \mathbb{Z}[X]$ is an integral polynomial at least one of whose coëfficients is equal to ± 1 . We wish to show that n = 1. So assume that n > 1. Multiplying both sides by n = 1 we have $n \in \mathbb{Z}_+$ which is not zero in $n \in \mathbb{Z}_+$ as $n \in \mathbb{Z}_+$ is not. However, on the right, every coëfficient is divisible by $n \in \mathbb{Z}_+$ This a contradiction. Therefore, $n \in \mathbb{Z}_+$ and we have shown that $n \in \mathbb{Z}_+$ is prime.

Consider the map $\pi: \mathbb{Z}[X] \to \mathbb{Z}_2[X]$ given by reducing the coëfficients modulo two. The polynomial $X^5 - 3 \in \mathbb{Z}_2[X]$ is not a unit. Hence, $I := (X^2 = 3) \subsetneq \mathbb{Z}_2[X]$ is a proper ideal. Let $J := \pi^{-1}I$. Then J is a proper ideal of $\mathbb{Z}[X]$ which properly contains I (as $X^5 - 3 \in J$, $(X^5 - 3) \subseteq J$, but $2 \in J \setminus (X^5 - 2)$ as no constant is a multiple of a nonconstant polynomial).

2. Let $S := \mathbb{R} \setminus \{-1\}$ be the set of all real numbers other than minus one. Define * on S by a*b := a+b+ab. **Prove** or **disprove**: (S,*) is a group.

Proof:

closure If a and b are real numbers, then of course a*b=a+b+ab is a real number. Suppose now that a and b belong to S but $a*b \notin S$. That is, -1=a*b=a+b+ab. Adding one to both sides, we have 0=1+a+b+ab=(1+a)(1+b) which implies, as $\mathbb R$ is an integral domain, a=-1 or b=-1 contrary to out hypothesis.

identity Set e := 0. Then e * b = 0 + b + 0b = b = b + 0 + 0b = b * e.

inverse For $a \in S$, let $a^{-1} := \frac{-a}{1+a}$. As $a \neq -1$, it makes sense to divide by 1+a. We compute $a * \frac{-a}{1+a} = a + \frac{-a}{1+a} + a \frac{-a}{1+a} = a + \frac{-a-a^2}{1+a} = a + \frac{-a(1+a)}{1+a} = a - a = 0$. associativity For a, b and c in S we have (a*b)*c = (a*b)+c+(a*b)c = (a+b+ab)+c+(a+b+ab)c = a+b+c+ab+ac+bc+abc = a+(b+c+bc)+a(b+c+bc) = a+(b*c)+a(b*c) = a*(b*c)+a(b*c)=a*(b*c)+a(b*c)=a*(b*c)+a(b*c)=a*(b*c)+a(b*c)+a(b*c)=a*(b*c)+a(b*c)

3. Let α , β and γ be three distinct complex numbers satisfying $X^3 + 6X + 1 = 0$. Compute $[\mathbb{Q}(\alpha, \beta, \gamma) : \mathbb{Q}]$.

Date: 15 December 2007.

By the rational root criterion, X^3+6X+1 is irreducible over \mathbb{Q} . Computing derivatives, we see that this polynomial defines an increasing function on \mathbb{R} so that there is only one real root. Without loss of generality, call that real root α . Hence, $[\mathbb{Q}(\alpha):\mathbb{Q}]=3$, but because $\beta\notin\mathbb{R}\subseteq\mathbb{Q}(\alpha)$, we have $[\mathbb{Q}(\alpha)(\beta):\mathbb{Q}(\alpha)]>1$. As α is a root of X^3+6X+1 , the polynomial $X-\alpha$ divides X^3+6X+1 giving a quotient $Q(X)=X^2+\alpha X+(6-\alpha^2)\in\mathbb{Q}(\alpha)[X]$ which is satisfied by β . Therefore, $[Q(\alpha)(\beta):\mathbb{Q}(\alpha)]=2$. Finally, as β is a root of Q, the polynomial $X-\beta$ divides $X^2+\alpha X+(6-\alpha^2)$ with γ being a root of the quotient, $X+(\alpha-\beta)$. That is, $\gamma=\beta-\alpha$. Therefore, $[\mathbb{Q}(\alpha,\beta,\gamma):\mathbb{Q}]=[\mathbb{Q}(\alpha,\beta,\gamma):\mathbb{Q}(\alpha,\beta)][\mathbb{Q}(\alpha,\beta):\mathbb{Q}(\alpha)][\mathbb{Q}(\alpha):\mathbb{Q}]=1\times 2\times 3=6$

4. Prove or **disprove**: If p is a prime number and $a \in \mathbb{Z}_p$ is any element of the field of p elements, then the polynomial $X^p - a \in \mathbb{Z}_p[X]$ is reducible.

Proof: Every nonzero element of \mathbb{Z}_p is a unit. Hence, the unit group has size p-1 so that for any $b \in \mathbb{Z}_p \setminus \{0\}$ we have $b^{p-1} = 1$. Multiplying both sides by b, we have $a^p = a$. Of course, $0^p = 0$ also. Thus, every element a of \mathbb{Z}_p satisfies $a^p = a$. So, a is a zero of the polynomial $X^p - a$ implying that X - a divides this polynomial. As p > 1, this means that $X^p - a$ is reducible.

5. Compute $11^{7,890,207}$ in \mathbb{Z}_{504}

We factor $504 = 8 \times 9 \times 7$. Hence, $\mathbb{Z}_{504} \cong \mathbb{Z}_8 \times \mathbb{Z}_9 \times \mathbb{Z}_7$ and $\mathbb{Z}_{504}^{\times} \cong \mathbb{Z}_8^{\times} \times \mathbb{Z}_9^{\times} \times \mathbb{Z}_7^{\times} \cong (\mathbb{Z}_2 \times \mathbb{Z}_2) \times (\mathbb{Z}_6) \times (\mathbb{Z}_6)$. Therefore, the exponent of $\mathbb{Z}_{504}^{\times}$ is six. We compute that $7890207 \equiv 3 \pmod{6}$. Thus, $11^{7890207} = 11^3 = 1331 = 323$ in \mathbb{Z}_{504} .

6. Express the factor group $(\mathbb{Z}_{20} \times \mathbb{Z}_{12})/\langle (6,6) \rangle$ as a product of cyclic groups.

The order of 6 in \mathbb{Z}_{20} is ten while in \mathbb{Z}_{12} it is two. Hence, $\#\langle(6,6)\rangle=10$ so that the factor group is an abelian group of order twenty-four. Thus, it is isomorphic to the Cartesian product of \mathbb{Z}_3 with an abelian group of order eight. As the maximal 2-part of an element of $\mathbb{Z}_{20} \times \mathbb{Z}_{12}$ is four, the group of order eight must be either $\mathbb{Z}_2 \times \mathbb{Z}_4$ or $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$. The element $(1,0) + \langle (6,6) \rangle$ has order four as the only element of $\langle (6,6) \rangle$ of the form (2,n) is (2,6). Therefore, the two-part of the quotient is $\mathbb{Z}_2 \times \mathbb{Z}_4$. That is, the factor group is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_3$.

7. Let G be a group. Recall that the *center* of G is the normal subgroup $Z(G) := \{x \in G : (\forall g \in G)gx = xg\}$. **Prove** or **disprove**: If G/Z(G) is cyclic, then G is abelian.

Proof: Let $g \in G$ so that gZ(G) generates G/Z(G). Let a and b be two elements of G. Then we may write $a = g^i x$ and $b = g^j y$ for some x and y in Z(G) and integers i and j. Then $ab = g^i x g^j y = ^{\text{because } x \in Z(G)} g^i g^j x y = ^{\text{because powers of } g \text{ commute }} g^j g^i x y = ^{\text{because } y \in Z(G)} g^j y g^i x = ba$. Thus, G is abelian.

8. Prove or **disprove**: If $f(x) \in \mathbb{Z}_4[x]$ is a unit, then f is a constant polynomial.

Disproof: Consider f(x) = 2x + 1. Then $f^2 = (4x^2 + 4x + 1) = 1$. Thus, $f = f^{-1}$.

9. Let E be an extension field of the field F. Let $\alpha \in E$ be algebraic of odd degree over F. Show that α^2 is algebraic of odd degree over F and that $F(\alpha) = F(\alpha^2)$.

Proof: As $F(\alpha)$ is a field, the element $\alpha^2 = \alpha \times \alpha \in F(\alpha)$ so that $F(\alpha^2) \subseteq F(\alpha)$. As α satisfies the polynomial $X^2 - \alpha^2 \in F(\alpha^2)[X]$, we have $[F(\alpha) : F(\alpha^2)] \leq 2$. We wish to show that this degree must be one. We have $[F(\alpha) : F] = [F(\alpha) : F(\alpha^2)][F(\alpha^2) : F]$ and the number on the left is odd. Hence, each of $[F(\alpha) : F(\alpha^2)]$ and $[F(\alpha^2) : F]$ must be odd and finite. As $[F(\alpha) : F(\alpha^2)] \leq 2$, this forces $F(\alpha) = F(\alpha^2)$.

10. Let G be a group. Suppose that $N \leq G$ is a normal subgroup having the property that for all a and b in G, the element $aba^{-1}b^{-1}$ belongs to N. **Prove** that G/N is abelian.

Proof: Let g and h be two elements of G/N. Represent them as g = aN and h = bN for some a and b from G. By the hypothesis on N applied to b^{-1} and a^{-1} , we know that $b^{-1}a^{-1}ba \in N$. Thus, $gh = (aN)(bN) = abN = abb^{-1}a^{-1}baN = baN = (bN)(aN) = hg$. As g and h were arbitrary elements of G/N, we have shown that G/N is abelian.