
SOLUTIONS TO PRACTICE FINAL

1. Let α ∈ C be a complex number satisfying the equation α3 − 3α + 1 = 0.
Compute [Q(

√
−5, α) : Q].

By the rational root criterion, the only possible roots of Q(X) := X3 − 3X + 1
in Q are ±1 which one checks are not actually roots. As Q is cubic, if it were
reducible it would have a linear factor. As it has no roots, it is irreducible. Hence,
[Q(α) : Q] = 3. The square root of negative five satisfies the polynomial R(X) =
X2 + 5 ∈ Q(α)[X]. Hence, [Q(α,

√
−5) : Q(α)] = 1 or 2. If this degree were one,

then Q(
√
−5) ⊆ Q(α) so that 3 = [Q(α) : Q] = [Q(α) : Q(

√
−5)][Q(

√
−5) : Q]. But

we know that X2 + 5 is irreducible over Q so that [Q(
√
−5) : Q] = 2, which does

not divide 3. Hence, [Q(α,
√
−5) : Q] = [Q(α,

√
−5) : Q(

√
−5)][Q(

√
−5) : Q] =

3× 2 = 6.

2. Prove or disprove: If K is an extension field of Q and [K : Q] < ∞, then there
is an irreducible polynomial P (X) ∈ K[X].

Easy solution: I meant to include the condition that deg(P ) > 1. Clearly,
P (X) = X ∈ K[X] is irreducible. The rest of the solution deals with the intended
question.

Proof: Let p > [K : Q] be any prime number greater than the degree of the
field extension. Let Q(X) := Xp − 2. By the Eisenstein criterion, Q is irreducible
over Q. Let R be an irreducible factor of Q over K and set L := K[X]/(R).
Let α ∈ L be the image of X. As Q(α) = 0, we have [Q(α) : Q] = p. Thus,
[L : K]d = [L : K][K : Q] = [L : Q] = [L : Q(α)][Q(α) : Q] = [L : Q(α)]p. Hence,
p divides [L : K] which being no more than p as deg(R) ≤ p must be equal to p.
That is, Q is irreducible over K.

3. Let g(X) = X4 − X2 + X + 1 ∈ Z3[X]. Write g as a product of irreducible
polynomials.

Observe that g(2) = 16 − 4 + 2 + 1 = 0 ∈ Z3 Hence, x − 2 = x + 1 divides g.
Using long division, one computes g(x) = (x + 1)(x3 − x2 + 1). Substituting 0,
1, and 2 for x in the cubic factor, we find that it has no roots in Z3. As Z3 is a
field, we know that a cubic polynomial with no roots is irreducible. Hence, we have
expressed g as a product of irreducible polynomials.

4. Write 5− 3√49
1+ 3√7

in the form a + b 3
√

7 + c 3
√

49 for rational numbers a, b, and c.
3
2 −

3
2

3
√

7 + 1
2

3
√

49

5. Show that if φ : R → S is a homomorphism of commutative rings and a ∈ S

is any element, then there is a unique homomorphism φ̃ : R[X] → S for which
φ̃(X) = a and φ̃(r) = φ(r) for all r ∈ R.

We prove uniqueness first. The map φ̃ is a homomorphism. Hence, if f =∑
biX

i ∈ R[X], we must have φ̃(f) = φ̃(
∑

biX
i) =preservation of addition

∑
φ̃(biX

i) =preservation of multiplication∑
φ̃(bi)φ̃(X)i =hypotheses on eφ

∑
φ(bi)ai. Now, we check that this formula correctly

defines a homomorphism. Let f =
∑

biX
i and g =

∑
cjX

j . Then
1
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φ̃(f + g) = φ̃(
∑

(bi + ci)Xi)

=
∑

φ(bi + ci)ai

=
∑

(φ(bi) + φ(ci))ai

=
∑

(φ(bi)ai + φ(ci)ai)

=
∑

φ(bi)ai +
∑

φ(ci)ai

= φ̃(f) + φ̃(g)

φ̃(fg) = φ̃(
∑

k

(
∑

i+j=k

bicj)Xk)

=
∑

k

φ(
∑

i+j=k

bicj)ak

=
∑

k

(
∑

i+j=k

φ(bicj))ak

=
∑

k

(
∑

i+j=k

φ(bi)φ(cj))ak

=
∑

i

∑
k

φ(bi)φ(cj)ai+j

= (
∑

bia
i)(

∑
cja

j)

= φ̃(f)φ̃(g)

Of course, φ̃(1) = 1.

6. Express the quotient group (Z60 × Z24 × Z40)/〈(5, 16, 25)〉 as a direct sum of
cyclic groups.

Z4 × Z8 × Z3 × Z5 × Z5

[How did I find this? Write Z60×Z24×Z40 as Z4×Z3×Z5×Z8×Z3×Z8×Z5

and the group by which we are factoring as 〈(1, 2, 0, 0, 1, 1, 0)〉. One easily computes
that the least common multiple of the orders of the components is twenty four.
Hence, the factor group may be expressed as a product of abelian groups of order
thirty-two, three, and twenty-five. One checks that the images of (0, 0, 0, 1, 0, 0, 0)
and (0, 0, 0, 0, 0, 1, 0) have orders eight and four, respectively, and are independent
while the images of (0, 0, 1, 0, 0, 0, 0) and (0, 0, 0, 0, 0, 0, 1) have order five and are
independent.]

7. There is no question seven.

8. Compute 135,389 in Z305.
As 305 = 5 × 61, we see that Z×305 ∼= Z×5 × Z×61 ∼= Z4 × Z60. Hence, 1360 = 1.

Computing the powers of 13, we find that 1312 = 1. Dividing, we see that 5389 ≡ 1
(mod 12). Hence, 135,389 = 13 in Z305.

9. Prove or disprove: If φ : R → S is a homomorphism of rings and p ( S is a
prime ideal, then φ−1p := {x ∈ R : φ(x) ∈ p} is a prime ideal.



SOLUTIONS TO PRACTICE FINAL 3

Proof: As p is prime, the factor ring S/p is an integral domain. Let π : S → S/p
be the quotient map. Then the composite π ◦ φ : R → S/p is a homomorphism
and φ−1p = ker(π ◦ φ) is the kernel of a homomorphism to an integral domain and
therefore must be a prime ideal.

10. Find (with proof) all automorphisms of Z.
There are two automorphisms of (Z,+): The identity map and the map x 7→ −x.
To prove this we note that if G is any group and α and β are two homomorphisms

from Z to G for which α(1) = β(1), then α = β. We prove by induction on n ≥ 0
that α(n) = β(n). The case of n = 0 is automatic as both map to the identity
element of G. For n+1 we have α(n+1) = α(n)α(1) =by IH and the original hypothesis

β(n)β(1) = β(n + 1). Thus for n ≥ 0 we have α(n) = β(n) but of course α(−n) =
α(n)−1 = β(n)−1 = β(−n).

Thus, an automorphism α : Z → Z is determined by α(1) =: N . As α(n) =
nα(1) = nN for every n ∈ Z we see that the image of α is contained in the ideal
NZ which is all of Z only in case N is a unit, 1 or −1.

The identity map is clearly an automorphism. The map x 7→ −x is its own
compositional inverse and it satisfies −(x + y) = −x +−y.

[The question as stated is ambiguous, if we asked about ring automorphisms, then
only the identity map would be an automorphism, as any ring automorphism would
also be a group automorphism and the map x 7→ −x is not a ring automorphism
since −1 6= (−1)(−1).]

11. Prove or disprove: every group of order twelve has a subgroup of order six.
Disproof: The group A4 has order twelve but no subgroup of order six. Let

G < A4 be a purported subgroup of order six. Considering cycles, we see that the
elements of S4 can have order 1, 2, 3 and 4. Hence, G 6∼= Z6. Thus, G ∼= S3 and
has two elements of order three and three elements of order two. At the cost of
permuting the set {1, 2, 3, 4}, we may assume that G contains the cycle (1, 2, 3),
and thus also (1, 3, 2). The elements of A4 of order two have the form (a, b)(c, d)
where (a, b) and (c, d) are disjoint transpositions and {a, b, c, d} = {1, 2, 3, 4}. G
must contain some element of order two. Hence, there is an element of the form
(a, 4)(c, d) with {a, c, d} = {1, 2, 3}. But then (1, 2, 3)(a, 4)(c, d) is a three-cycle with
4 in its orbit. This product belongs to G but is not (1, 2, 3) or (1, 3, 2) contrary to
the above considerations. Hence, G does not exist.

12. Prove or disprove: If G is a nonempty set with a binary operations ∗ which
satisfies left and right cancelation for all a and b in G there is some x ∈ G with
a ∗ x = b and some y with y ∗ a = b, then (G, ∗) is a group.

Disproof: Consider the following multiplication table.
∗ a b c
a a b c
b c a b
c b c a

In each row and in each column each element appears exactly once so that
cancelation holds, but (b ∗ c) ∗ a = b ∗ a = c 6= a = b ∗ b = b ∗ (c ∗ a) so that
associativity fails meaning that (G, ∗) is not a group.

13. How many elements of the group Z12 × Z16 × S5 have order four?
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792 [We compute the number of elements of order dividing four and then subtract
the number of elements of order dividing two. There are four elements of Z12 of
order dividing four: 0, 3, 6, 9; four in Z16: 0, 4, 8, 12; and seventy-six in S5: count
the four cycles (30), transpositions (10), products of two disjoint transpositions
(15), and the identity (1). Hence, in the product group there are 4× 4× 56 = 896
elements of order dividing 4. Similarly, there are 2×2×26 = 104 elements of order
dividing 2. Thus, there are 896− 104 = 792 elements of order exactly four.]

In 14. Prove or disprove: If R = C([0, 1]) is the ring of continuous real-valued

functions on the closed interval [0, 1] := {x ∈ R : 0 ≤ x ≤ 1}, then I := {f ∈ R :
f( 1

2 ) = 0} is a maximal ideal.
Proof: The map R → R given by f 7→ f( 1

2 ) is a homomorphism onto a field.
Hence, its kernel, I, is a maximal ideal.

15. How many subgroups of S5 have exactly three elements?
Ten.

16. Let G be the set of functions from R to R of the form x 7→ ax + b for some
real numbers a and b with a 6= 0. Prove or disprove: G is a group under the binary
operation of composition.

Proof: Let (ax+b)◦(cx+d) = acx+(ad+b) and if a and c are nonzero, then so
is ac. Thus, G is closed under the operation of composition. The identity function
is (1)x + 0 and (ax + b)−1 = (1/a)x + (−b/a) while composition of functions is
always commutative.

17. Write the following permutation as a product of disjoint cycles.(
1 2 3 4 5 6 7 8 9
5 8 2 6 9 7 1 3 4

)
(1, 5, 9, 4, 6, 7)(2, 8, 3)

18. Prove or disprove: If G is a group and H < G is a subgroup with #(G/H) = 3,
then H C G.

Disproof: Consider G = S3 and H = {ι, (1, 2)}. Then #(G/H) = 3 by H 6C G
as (1, 2, 3)H = {(1, 2, 3), (1, 3, 2)} 6= {(1, 2, 3), (2, 3)} = H(1, 2, 3).

19. Prove or disprove: If K is a field and f and g are polynomials over K and
K[X]/(f) ∼= K[X]/(g), then (f) = (g).

Disproof: Consider K = R and f(X) = X2 + 1 and g(X) = X2 + 2. Each of
the fields K[X]/(f) and K[X]/(g) is isomorphic to C bu X2 + 1 is not a multiple
of X2 + 2 for if it were, i

√
2 would be a zero of X2 + 1.

20. Prove or disprove: There is a nontrivial homomorphism φ : Z4 → S3

Proof: Recall that for any group G and element g ∈ G, the function α : Z → G
defined by n 7→ gn is a homomorphism. Consider the case of G = S3 and a = (1, 2).
Then the kernel of α is 2Z ⊇ 4Z. Hence, there is a homomorphism ᾱ : Z4 → S3

given by n 7→ (1, 2)n. As ᾱ(1) = (1, 2) 6= ι, ᾱ is nontrivial.

21. Let p be a prime number. Suppose that G := Zp acts on the set X. Let
Y := {x ∈ X : (∀g ∈ Zp)g · x = x}. Show that #Y ≡ #X (mod p).

We may express X as a disjoint union of orbits. Each orbit has the form Gx for
some x ∈ X and as such Gx ∼= G/Gx as a G-set. As #G = p is prime, if x is not
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fixed by G, then Gx has p elements. Hence, X may be expressed as a disjoint union
of Y and a disjoint union of sets each of size p. Therefore, the number of elements
of X is the same as that of Y modulo p.

22. Let K be a field and g(x) ∈ K[x] r K a nonconstant polynomial over K of
degree d. Prove that there are at most d elements a of K satisfying g(a) = 0.

Prood: By induction on d. If d = 1, then g(x) = cx + d for some c ∈ K×

and d ∈ K. If g(a) = 0, then ca + d = 0 so that a = −d
c . Thus, there is only

one zero. More generally, if a is a zero of g, then let q and r be polynomials with
g(x) = q(x)(x− a) + r and deg(r) < 1. As 0 = g(a) = q(a)(a− a) + r = r, we must
have g = q(x)(x − a). As deg(q) < deg(g), by induction q has at most deg(g) − 1
zeros. As K is an integral domain, if g(b) = 0, then either q(b) = 0 or b = a. Thus,
there are no more than deg(g) zeros to g.

23. Let g(x) := x3 + x + 1 ∈ Z2. Let K := Z2[x]/(g). Prove that K is a field.
Let α ∈ K be a solution to α3 + α + 1 = 0. Write the polynomial x3 + α + 1 as a
product of irreducible polynomials over K.

(x + α)(x2 + αx + α2)

24. Prove or disprove: If φ : R → S is a homomorphism of rings, a ∈ R and
φ(a) ∈ S×, then a ∈ R×.

Disproof: Consider R = Z, S = Q, φ the natural inclusion and a = 2.

25. How many elements of the factor group Q/Z have order dividing 5, 239, 290?
5, 239, 290 [Why? q + Z has order dividing 5, 239, 290 if and only if 5, 239, 290q

is an integer if and only if q = a/5, 239, 290 for some integer a. Every element of
Q/Z may be expressed uniquely in the form q + Z for some rational number q with
0 ≤ q < 1 . Thus, we may take for a any integer with 0 ≤ a < 5, 239, 290 and there
are 5, 239, 290 such.]


