MATH 113: ABSTRACT ALGEBRA (AUTUMN 2007) MIDTERM # 2 SOLUTIONS

1. (10 points) Compute $5^{8,238,390,323}$ in \mathbb{Z}_{33} .

Solution: $33 = 3 \times 11$. Hence, $\mathbb{Z}_{33} \cong \mathbb{Z}_2 \times \mathbb{Z}_{11}$ so that $\mathbb{Z}_{33}^{\times} \cong \mathbb{Z}_3^{\times} \times \mathbb{Z}_{11}^{\times}$ which has $(3-1) \times (11-1) = 20$ elements. Dividing, we see that the remainder of 8,238,390,323 upon division by 20 is 3. Hence, $5^{8,238,390,323} = 5^3$ in \mathbb{Z}_{33} . Of course, $5^3 = 125 = 3 \times 33 + 26$. Hence, $5^{8,238,390,323} = 26$ in \mathbb{Z}_{33} .

2. (15 points) Let G be a finite group and $\phi: G \to H$ a homomorphism of groups. Prove or disprove: $\#\phi[G]$ divides #G.

Solution: The statement is true. Indeed, if $K := \ker \phi$ is the kernel of ϕ , then $\phi[G] \cong G/K$ which has order dividing #(G) by Lagrange's Theorem.

- **3.** (15 points) Consider the factor group $G := (\mathbb{Z}_{24} \times \mathbb{Z}_4)/\langle (6,2) \rangle$.
 - a. What is the order of G? (Prove that your answer is correct.)
 - b. Is G cyclic? (Again, prove that your answer is correct.)

Solution: G is a quotient of a group of order $24 \times 4 = 96$ by a normal subgroup of order $\#\{(6,2),(12,0),(18,2),(0,0)\}=4$. Hence, by Lagrange's Theorem, #(G)=24, answering part a. If G were cyclic, then as it would be isomorphic to \mathbb{Z}_{24} , there would be exactly one element of order 2, namely the element corresponding to 12. However, in G, the elements $(3,1) + \langle (6,2) \rangle$ and $(6,0) + \langle (6,2) \rangle$ are distinct as $(6,0) - (3,1) = (3,3) \notin \langle (6,2) \rangle$ but each has order 2. Hence, G is not cyclic.

4. (10 points) Show that if G is a nontrivial group having the property that for all subgroups $H \leq G$ either H = G or H is trivial, then G is finite and has a prime number of elements.

Solution: Let $a \in G$ be any element other than the identity. Such must exist as G is nontrivial. Let $H := \langle a \rangle$ be the group generated by a. By hypothesis, as $a \in H$ so that H is nontrivial, H = G. That is, G is a cyclic group. If G were infinite, then $G \cong \mathbb{Z}$, but $2\mathbb{Z} < \mathbb{Z}$ is a proper nontrivial subgroup of \mathbb{Z} contrary to our hypothesis on G. Thus, $G \cong \mathbb{Z}_n$ for some n > 1. If n were composite, say d is a proper divisor of n, then $0 < d\mathbb{Z}_n < \mathbb{Z}_n$ would be a proper nontrivial subgroup of \mathbb{Z}_n , again contradicting our hypothesis on G. Therefore, n is prime as claimed.

5. (10 points) Suppose that G is a group of order 203. Show that if H < G is a proper subgroup, then H is cyclic.

Solution: Let H < G be a proper subgroup of G. By Lagrange's Theorem, #H divides $\#G = 203 = 7 \times 29$. As H is a proper subgroup, we must has #H = 1, 7, 4

Date: 8 November 2007.

or 29. Of course, the trivial group is cyclic and we know that any group of prime order is cyclic. Hence, H is cyclic.

6. (15 points) How many solutions are there to the equation $x^2 + 5x + 4 = 0$ in the ring \mathbb{Z}_{30} ? [Hint: How many solutions are there in \mathbb{Z}_2 ? in \mathbb{Z}_3 ? and in \mathbb{Z}_5 ? Answering these questions correctly is worth seven points of partial credit.]

Solution: By the Chinese Remainder Theorem, $\mathbb{Z}_{30} \cong \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_5$. Thus, the number of solutions to the equation $x^2 + 5x + 4 = 0$ in \mathbb{Z}_{30} is the product of the number of such solutions in \mathbb{Z}_2 , in \mathbb{Z}_3 and in \mathbb{Z}_5 . Evaluating in each of these rings, we find the solutions in \mathbb{Z}_2 are 0 and 1, in \mathbb{Z}_3 we have just 2, and in \mathbb{Z}_5 we have 1 and 4. Hence, there are exactly four solutions in \mathbb{Z}_{30} , namely 11, 14, 26 and 29.

7. (10 points) Suppose that the group G acts on a set X of size n. Show that there is a normal subgroup $N \subseteq G$ for which #(G/N) divides n!.

Solution: From the action we obtain a homomorphism $\rho: G \to S_X$ defined by $g \mapsto [x \mapsto g \cdot x]$. Let $N := \ker \rho$ be the kernel of ρ , which is necessarily a normal subgroup of G. Then, $G/N \cong \rho[G] \leq S_X$. By Lagrange's Theorem, $\#\rho[G]$ divides $\#S_X = n!$. Hence, #G/N divides n!.

8. (15 points) Let R be a commutative ring for which \mathbb{Z}_2 is a subring. Show that the function $F: R \to R$ defined by $F(x) := x^2$ is a ring homomorphism.

Solution: We check:

$$F(1) = 1$$
 $F(1) = 1^2 = 1 \cdot 1 = 1$

F(xy) = F(x)F(y) Let x and y be elements of R. Then $F(xy) = (xy)^2 = xyxy =$ ^{by commutativity} $xxyy = x^2y^2 = F(x)F(y)$.

$$F(x+y) = F(x) + F(y) \text{ Let } x \text{ and } y \text{ be elements of } R. \text{ Then } F(x+y) = (x+y)^2 = (x+y)(x+y) = (x+y)x + (x+y)y = x^2 + yx + xy + y^2 = \text{by commutativity } x^2 + (xy+xy) + y^2 = x^2 + xy(1+1) + y^2 = \text{as } \mathbb{Z}_2 \text{ is a subring } x^2 + xy \cdot 0 + y^2 = x^2 + y^2 = F(x) + F(y).$$

Hence, F is a ring endomorphism.