1. Show that if \((G, \cdot)\) is a group of order 9, then \(G\) is abelian.

Using material we have not yet covered (namely, Lagrange’s Theorem and the class equation), this problem is not so difficult. Just using the material up through Section 9, it is very complicated. No question of this kind will appear on the this test.

2. Let \((G, \cdot)\) be a group and \(X\) any set. Let \(F\) be the set of functions with domain \(X\) and range \(G\). Define a binary operation \(*\) on \(F\) by \((f \ast g)(x) := f(x) \cdot g(x)\). Is \((F, *)\) a group? If so, prove that it is. If not, give an axiom which is violated and prove that this is so.

Yes, \((F, *)\) is a group.

Proof:

identity The identity element is the function \(I: X \to G\) which is identically equal to the identity element, \(e\), of \(G\). Indeed, for any \(f \in F\) and any \(x \in X\) we have \((I \ast f)(x) = I(x) \cdot f(x) = e \cdot f(x) = f(x)\). Hence, \(I \ast f = f\).

inverse Let \(f \in F\) be any element of \(F\). Let \(g: X \to G\) be defined by \(g(x) := (f(x))^{-1}\). Then for any \(x \in X\) we have \((g \ast f)(x) = g(x) \cdot f(x) = (f(x))^{-1} \cdot f(x) = e = I(x)\). Hence, \(g \ast f = I\) so that \(g\) is a left-inverse of \(f\).

associativity Let \(f, g,\) and \(h\) be elements of \(F\). For any \(x \in X\) we have \(f \ast (g \ast h)(x) = f(x) \cdot (g \ast h)(x) = f(x) \cdot (g(x) \cdot h(x)) = (f(x) \cdot g(x)) \cdot h(x) = (f \ast g)(x) \cdot h(x) = (f \ast g) \ast h(x)\). Hence, \(f \ast (g \ast h) = (f \ast g) \ast h\).

3. Let \(\sigma = (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8)\) and \(\tau = (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8)\)

a. Write \(\tau\) as a product of cycles.

Solution: \(\tau = (1, 3, 2, 5, 8, 4, 7, 6)\) is already a cycle.

b. Write \(\sigma\) as a product of transpositions.

Solution: \(\sigma = (1, 7)(1, 5)(1, 8)(2, 4)\)

c. Compute \(\sigma \tau\) and \(\tau \sigma\).

Solution: \(\sigma \tau = (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8)\) and \(\tau \sigma = (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8)\)

d. What is the order of \(\sigma\)? of \(\sigma \tau\)?

Solution: The order of \(\sigma = (1, 8, 5, 7)(2, 4)\) is four while the order of \(\sigma \tau = (1, 3, 4)(2, 7, 6, 8)\) is twelve.

4. How many generators does the group \(\mathbb{Z}_{225}\) have?
Solution: There are one hundred twenty generators of \(\mathbb{Z}_{225} \): a positive integer \(a < 225 \) is a generator of \(\mathbb{Z}_{225} \) just in case it is divisible by neither 3 nor 5.

5. Let \(G := [0, 1) \) be the set of real numbers \(x \) with \(0 \leq x < 1 \). Define an operation \(* \) on \(G \) by

\[
x * y := \begin{cases}
 x + y & \text{if } x + y < 1 \\
 x + y - 1 & \text{if } x + y \geq 1
\end{cases}
\]

Is \((G, *) \) a group? If so, prove that it is. If not, demonstrate how some axiom is violated.

Yes, \((G, *) \) is a group.

Proof:

identity 0 is the identity as for any \(y \in [0, 1) \), the sum \(0 + y = y < 1 \) so that \(0 * y = y \).

inverse Let \(x \in [0, 1) \). If \(x = 0 \), then 0 is a left inverse of \(x \). Otherwise, set \(y := 1 - x \) which lies in \((0, 1)\) as \(0 < x < 1 \). Then \(y + x = 1 \geq 1 \) so that \(y \) is a left inverse of \(x \).

associativity Let \(x, y, \) and \(z \) be elements of \([0, 1)\). In each way of computing \(x * (y * z) \) (respectively, \((x * y) * z\)) we obtain \(x + (y + z) - n \) (respectively, \((x + y) + z - n\)) where \(n \) is 0, 1 or 2 depending on which value yields an element of \([0, 1)\).

As ordinary addition is associative, these values are equal.

6. Prove or disprove: Every associative binary operation on a set with two elements is commutative.

Solution: False. On any set \(X \) we may define a binary operation \(* \) by \(x * y := x \).

Then, \(* \) is associative as for any \(x, y, \) and \(z \) from \(X \) we have \(x * (y * z) = x = (x * y) = (x * y) * z \). However, if \(X \) has at least two elements, then \(* \) is not commutative.

Indeed, if \(x \neq y \), then \(x * y = x \neq y = y * x \).

7. Complete the following table to form a multiplication table for a group (if possible) and explain why the resulting multiplication gives a group, or demonstrate that no such completion is possible.

If the table extends to the multiplication table of a group, the \(e \) must be a two-sided identity. Moreover, successively ensuring that the equations \(aX = \beta \) and \(X\alpha = \beta \) always have unique solutions, we see that up to a permutation of \(\{a, b, c, d, f\} \), the only possible table is given below

<table>
<thead>
<tr>
<th></th>
<th>e</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>e</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>f</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>e</td>
<td>c</td>
<td>d</td>
<td>f</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>f</td>
<td>e</td>
<td>a</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>d</td>
<td>f</td>
<td>e</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>b</td>
<td>a</td>
<td>f</td>
<td>e</td>
<td>c</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>c</td>
<td>d</td>
<td>b</td>
<td>a</td>
<td>e</td>
</tr>
</tbody>
</table>

However, this binary operation is not associative, as, for instance, \((a * c) * f = d * f = c \neq e = a * a = a * (e * f)\). Thus, the table does not extend to the multiplication table of a group.
8. Let \(G := \mathbb{R}_+ \) be the set of positive real numbers and let \(\cdot \) be the usual multiplication operation. Is the function \(x \mapsto x^2 \) an isomorphism of \(G \) with itself? If so, prove so. If not, demonstrate that it is not.

Yes, this function is an isomorphism from \(G \) to \(G \). It is one-to-one and onto as the function \(x \mapsto \sqrt{x} \) is a two-sided inverse function. Moreover, \((x \cdot y)^2 = x^2 \cdot y^2\).

9. Prove or disprove: the set \(\mathbb{Q}(i) = \{a + bi : a, b \in \mathbb{Q}\} \) is a subgroup of \((\mathbb{C}, +)\).

Yes, this is a subgroup. The set \(\mathbb{Q}(i) \) contains \(0 = 0 + 0i \), is closed under addition as for \(a, b, c, \) and \(d \) rational numbers, \((a + bi) + (c + di) = (a + c) + (b + d)i \) and each of \(a + c \) and \(b + d \) is a rational number, and is closed under taking inverses as for \(a \) and \(b \) rational numbers, \(- (a + bi) = (-a) + (-b)i \) and each of \(-a \) and \(-b \) is rational.

10. Let \(G \leq S_n \) be a subgroup of the symmetric group on \(n \) letters. Show that either every permutation in \(G \) is even or exactly half of the permutations in \(G \) are even.

As we have not discussed the alternating group in class, no question of this kind will appear on this exam.

11. Find a subgroup of \(S_5 \) which is isomorphic to the Klein group \(V \).

Solution: Consider \(G = \{\iota, (1, 2), (3, 4), (1, 2)(3, 4)\} \).

12. Prove or disprove: every group of order 11 is commutative.

As with Question 1, this question is very easy given Lagrange’s Theorem, but beyond the methods introduced thusfar. No question of this kind will appear on the exam.

13. How many subgroups does \(S_4 \) have? Prove that your answer is correct.

This question is too labor intensive for a test situation.

14. Prove or disprove: If \((G, \ast)\) is a group and for every pair of elements \((a \ast b)^6 = a^6 \ast b^6\), then \(G \) is commutative.

Solution: This is false. Consider \(G = S_3 \). Then for any \(\sigma \in G \) we have \(\sigma^6 = \iota \). Hence, for any two \(a \) and \(b \) in \(G \) we have \((ab)^6 = \iota = \iota \ast \iota = a^6 \ast b^6\); but \(G \) is not commutative.

15. Prove or disprove: If \(G \) is a group and \(H \leq G \) and \(K \leq G \) are two subgroups, then \((H \cap K) \leq G\).

Proof:

identity \(e \in H \) and \(e \in K \) as each is a subgroup of \(G \). Hence, \(e \in (H \cap K) \).

inverse For any \(x \in (H \cap K) \), we have \(x^{-1} \in H \) as \(x \in H \leq G \) and \(x \in K \leq G \).

Thus, \(x^{-1} \in (H \cap K) \).

closure under multiplication For \(x \) and \(y \) in \((H \cap K) \) we have \(x \) and \(y \) are in \(H \leq G \) so that \(xy \in H \) and likewise, \(xy \in K \). Thus, \(xy \in (H \cap K) \).

16. Prove or disprove: If \(G \) is a finite group and some element of \(G \) has order equal to the size of \(G \), then \(G \) is cyclic.
Proof: Let \(g \in G \) have order \(n = \#(G) \). Then for each \(i \) with \(1 \leq i < n \) we have \(g^i \neq e \), the identity of \(G \). I claim that \(G = \langle g \rangle \). For this, it suffices to see that there are exactly \(n \) elements of \(\{ g^i : 0 \leq i < n \} \). If \(g^j = g^i \) for some \(j > i \), then multiplying both sides of the equation by \(g^{-1} = (g^i)^{-1} \) we have \(e = g^{j-i} \) even though \(1 \leq j-i < n \) contrary to the above observation. Hence, \(G = \langle g \rangle \) is cyclic.

17. Consider the function \(\sigma : \{0, \ldots, 15\} \to \{0, \ldots, 15\} \) defined by
\[
x \mapsto \begin{cases}
 x + 4 & \text{if } x < 12 \\
 x - 12 & \text{if } x \geq 12
\end{cases}
\]
Show that \(\sigma \) is a permutation and describe its orbits.

Solution: To see that \(\sigma \) is a permutation it suffices to check that it is onto. Let \(a \in \{0, \ldots, 15\} \). If \(a < 4 \), then \(a = \sigma(12 + a) \). If \(a \geq 4 \), then \(a = \sigma(a - 4) \).

The orbits are \(\{0, 4, 8, 12\} \), \(\{1, 5, 9, 13\} \), \(\{2, 6, 10, 14\} \) and \(\{3, 7, 11, 15\} \).

18. Let \(G \) be the set of all permutations of \(\mathbb{R} \) which move at most finitely many points. That is, \(\sigma : \mathbb{R} \to \mathbb{R} \) belongs to \(G \) just in case \(\sigma \in S_\mathbb{R} \) and \(\{ r \in \mathbb{R} : \sigma(r) \neq r \} \) is finite. Prove or disprove: \(G \) is a group under composition.

Proof:

identity The identity permutation does not move anything.

inverse Suppose \(\sigma \in G \). If \(\sigma^{-1}(x) \neq x \), then \(x = \sigma(\sigma^{-1}(x)) \neq \sigma(x) \) as \(\sigma \) is one-to-one. Hence, \(\sigma^{-1} \) moves no more elements than does \(\sigma \) and must also belong to \(G \).

closure under composition Suppose \(\sigma \) and \(\tau \) belong to \(G \). If \(x \) is fixed by both \(\sigma \) and \(\tau \), then \(\sigma \tau(x) = \sigma(x) = x \). Thus, the set of points moved by \(\sigma \tau \) is contained in the union of the set of points moved by \(\tau \) and the set of points moved by \(\sigma \), two finite sets, and is, thus, itself finite.

19. Let \(G \) be the set of \(2 \times 2 \) matrices having integer entries and a nonzero determinant. Prove or disprove: \(G \) is a group under matrix multiplication.

Disproof: The matrix \(A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \) belongs to \(G \) (as its determinant is \(4 \neq 0 \) and all of its entries are integers) but for any \(2 \times 2 \) matrix \(B \) with integer entries, we have \(\det(B) \in \mathbb{Z} \) and \(\det(AB) = \det(A) \det(B) = 4 \det(B) \) which cannot be equal to one. Thus, \(A \) does not have an inverse in \(G \).

20. Let \((G, *) \) be a group and \(a \in G \). Suppose that \(a * a = a \). Prove or disprove: \(a \) must be the identity element.

Proof: \(a = e * a = (a^{-1} * a) * a = a^{-1} * (a * a) = a^{-1} * a = e \)