
Math 225A – Model Theory

Speirs, Martin

Autumn 2013



General Information

These notes are based on a course in Metamathematics taught by Professor Thomas
Scanlon at UC Berkeley in the Autumn of 2013. The course will focus on Model
Theory and the course book is Hodges’ a shorter model theory.

As with any such notes, these may contain errors and typos. I take full respon-
sibility for such occurences. If you find any errors or typos (no matter how trivial!)
please let me know at mps@berkeley.edu.

Lecture 18

Stone Space

Let us recall the definition of Sn(B) from last time.

Definition. Given a τ -structure B, A ⊆ dom(B) and n ∈ ω then the Stone space
of B over A is

Sn(A) := {p : p is an n-type over A}

The basic open sets in Sn(A) are of the form

(ϕ) := {p ∈ Sn(A) : ϕ ∈ p} for ϕ ∈ L (τA,x1,...,xn)

Remark. The spaces Sn(A) are also called type spaces.

A topological space X is totally disconnected if for all distinct elements a
and b of X there exists an open partition U, V such that a ∈ U and b ∈ V .

Proposition. Sn(A) is a totally disconnected compact space.

Proof. For totally disconnectedness: Take p 6= q from Sn(A). Then there is some
ϕ in the symmetric difference of p and q. Suppose ϕ ∈ p \ q. Then p ∈ (ϕ) and
q ∈ (¬ϕ) since types are complete. Now Sn(A) = (ϕ)∪ (¬ϕ) and (ϕ)∩ (¬ϕ) = ∅. So
Sn(A) is totally disconnected.

Now for compactness: Suppose U is an open cover of Sn(A). We may assume
that U consists of basic open sets, i.e. there is some set Φ of formulae in L (τA,x1,...,xn)

such that U = {(ϕ) : ϕ ∈ Φ}.
Suppose towards contradiction that there is no finite subcover of U exists.

Consider the theory
T := Th(BA) ∪ {¬ϕ(x̄) : ϕ ∈ Φ}.
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We claim that T is satisfiable. If not then by compactness there is some finite Φ0 ⊆ Φ

such that
Th(BA) ∪ {¬ϕ : ϕ ∈ Φ0}

would be inconsistent. I.e.

Th(BA) ` ¬
∧
ϕ∈Φ0

¬ϕ(x̄)

which implies
Th(BA) `

∨
ϕ∈Φ0

ϕ(x̄)

which is true if and only if
BA |= ∀x̄

∨
ϕ∈Φ0

ϕ(x̄)

Then for any type p in Sn(A) since p ⊇ Th(BA) we must have

p `
∨
ϕ∈Φ0

ϕ(x̄).

Now since p is complete it must satisfy one of the ϕ(x), i.e.

p ` ϕ(x̄)

for some ϕ(x̄) ∈ Φ0. Another way of saying this is that p ∈ (ϕ). But then p models
Th(BA)∪{¬ϕ : ϕ ∈ Φ0} contrary to the assumption that this theory is inconsistent.

Now applying compactness to the theory T we get a model (C, b̄) |= T. Letting
q = tp(b̄/A) then q ⊇ T, so q /∈

⋃
ϕ∈Φ(ϕ), but this is a contradiction since

q ∈ Sn(A) \
⋃
ϕ∈Φ

(ϕ).

which was assumed empty.

Remark. In particular Sn(A) is Hausdorff. Also note that the basic open sets (ϕ)

are clopen.

Remark. Another way of showing that Sn(A) is compact would be to use Tychonoff’s
theorem (the product of compact spaces is compact). Then one would consider the
map

Sn(A) −−−→
∏

ϕ∈L (τA,x̄)

{0, 1}

which sends p ∈ Sn(A) to it’s characteristic function,

χp(ϕ) =

{
0 if ϕ /∈ p
1 if ϕ ∈ p
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Giving {0, 1} the discrete topology, and
∏
{0, 1} the product topology we get, by

Tychonoff’s theorem that the product is compact. The map above is continuous,
and injective. Furthermore the image is closed (hence compact) and the map is
actually a homeomorphism onto it’s image.

Notation (temporary). If the signature is ambiguous then we denote by Sτn(A) the
space of n-types of B over A ⊆ B where B is a τ -structure.

Consider τ ⊆ τ ′, an extension of signatures B′ a τ ′-structure and A ⊆ B′ :=

dom(B′). Then there is a restriction map

|τ : Sτ
′
n (A) −−−→ Sτn(A)

sending p ∈ Sτ ′n (A) to p|τ := p ∩L (τA,x̄).

Proposition. The above map is continuous and surjective.

Proof. surjective: Let q ∈ Sτn(A). We claim that q ∪ eldiag(B′) is consistent. If not
then there is some finite set Ξ ⊆ eldiag(B′) and finite Q ⊆ q such that Ξ ∪ Q is
inconsistent. We have

Ξ = {ξ1(b1), . . . , ξm(bm)}, ξi ∈ L (τ ′A) and bi a tuple from B

and
Q = {ϕ1(x̄), . . . , ϕl(x̄)}, ϕi ∈ L (τA).

By padding we can assume all the tuples bi are the same. Further, by conjunction
we may assume that m = l = 1 so

Ξ = {ξ(b)} and Q = {ϕ(x̄)}.

Since Ξ ∪Q is inconsistent we have

ξ(b) ` ¬ϕ(x̄)

(where x̄ = x1, . . . , xn are new constants, not appearing in Cτ ′B ) so have

ξ(b) ` ∀x̄¬ϕ(x̄).

But ∀x̄¬ϕ(x̄) is a sentence in L (τA). Now Th(B′A|τ ) ⊆ Th(B′B) and so B′B |= ξ(b)

so B′B |= ∀x̄¬ϕ(x̄), which implies that ∀x̄¬ϕ(x̄) is in Th(B′A|τ ). Since q ∈ Sτn(A) we
have q ⊇ Th(B′A|τ ). So ∀x̄¬ϕ(x̄) ∈ q but q ` ϕ(x̄) which is a contradiction. Thus,
by compactness, q ∪ eldiag(B′) is consistent.

Let (B′′, b̄) |= eldiag(B′) ∪ q. Set p = tpτ
′
(b/A). Then p|τ = q. So the map is

surjective.
Continuity : Let U ⊆ Sτn(A) be a basic open set, say U = (ϕ)τ for some

ϕ ∈ L (τA,x̄). Then (−)|−1
τ (U) = (ϕ)τ

′ , which is also basic open. Thus the map is
continuous.
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Corollary. Given A ⊆ B ⊆ C there is a continuous onto map Sn(B) −−−→ Sn(A).
S

So restriction of parameters defines a surjective continuous map.

Example (Finite type spaces). In the language of equality (i.e. τ = ∅) we have
|S1(∅)| = 1, |S2(∅)| = 2 and |S3(∅)| = 5.

Example (Countable type spaces). Let τ = {E} where E is a binary relation symbol.
Let the τ -structure A = (A,E) be such that E is an equivalence relation with exactly
one equivalence class of size n for each n ∈ ω and no other equivalence classes. Then
we claim that |S1(∅)| = ℵ0. We can find ℵ0 distinct elements of S1(∅) by considering
formulae (with one free variable x) expressing the number of elements related to
x. For instance we could let ϕn(x) be ∃=ny (y 6=x) ∧ E(y, x). This shows that
|S1(∅)| ≥ ℵ0. We will not prove the other inequality. One way to approach this
would be to prove some form of quantifier-simplification and then check that there
are ≤ ℵ0 types.

Example (Maximal type space). Let τ be the signature of ordered fields and let
A = (Q,+, ·, <, 0, 1). Then we claim |Sn(∅)| = 2ℵ0 . This is because we can define
all rational numbers, and using these we can define all cuts of Q, these are all
consistent, taking the completion of these we see that there are at least 2ℵ0 distinct
types. However there cannot be any more since the language is countable and each
type is a subset of the language.

Remark. Could there be a countable language L where the number of types over
the empty set lies strictly between ℵ0 and 2ℵ0? The negative answer is known as
Vaught’s Conjecture.

Given a signaure τ and a set ∆(x̄; ȳ) of τ -formulae where x̄ is a finite tuple of
new variables and ȳ is arbitrary. Given a τ -structure A, b ∈ An, C ⊆ A we define a
∆-type, tp∆(b/C) as

tp∆(b/C) := {δ(x, d) : δ(x, y) ∈ ∆(x, y), d from C, and A |= δ(b, d)}
∪ {¬δ(x, d) : δ(x, y) ∈ δ(x, y)∆(x, y), d from C, and A |= ¬δ(b, d)}

Then we let the set of ∆-types, S∆
n (C) be the set of all maximal consistent

sets of formulae of the form δ(x, d) ∨ ¬δ(x, d) as δ ranges through ∆ and d ranges
through C.

As before there is a natural restriction map

|∆ : Sn(C) −−−→ S∆
n (C)

which is continuous and surjective.
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Remark (Concerning stability theory). We have defined ∆-types in the way that
Shelah defines them. This is a more syntactic way. There are however some semantic
properties that one would expect them to have which they do not have. There is a
subtle fix that can be found in Pillay’s book.

Proposition. Let A be a τ -structure. Let ∆n(x1, . . . , xn, ȳ) be a set of formulae.
Suppose that for all n the restriction map

|∆ : Sn(∅) −−−→ S∆
n (∅)

is a bijection. Then ∆ =
⋃
n ∆n is an elimination set for A.

Proof. Let ϕ ∈ L (τx1,...,xn) be a τ -formula. We must show that ϕ is equivalent to a
boolean combination of elements of ∆. Consider the theory

T := Thτ (A) ∪ {ϕ(a) ∧ ¬ϕ(b)} ∪ {δ(a)←→ δ(b) : δ ∈ ∆n(x̄)}.

where a and b are new n-tuples of constant symbols.
T must be inconsistent. For suppose (A′, a, b) |= T. Then tp(a) 6= tp(b) while

tp∆(a) = tp∆(b). By hypothesis this cannot happen since Sn(∅) is in bijection with
S∆
n (∅).

So (by compactness) there is some finite part, of T that is inconsistent. I.e.
there are some δ1, . . . , δl ∈ ∆ such that

T∗ := Th(A) ∪ {ϕ(a) ∧ ¬ϕ(b)} ∪ {δi(a)←→ δi(b) : i ≤ l}

is inconsistent.

Notation. Recall some notation previously used: θ1 := θ and θ−1 := ¬θ.
For s ∈ {−1, 1}l let,

Φs :=
l∧

i=1

δ
s(i)
i

and
Ψ :=

∨
{s : A|= ∃xϕ(x)∧Φs(x)}

Φs

Note that Ψ is a boolean combination of elements of ∆. Now we claim that Ψ is
equivalent to ϕ. Suppose a from A satisfies Ψ, i.e. A |= Ψ(a). So for some s ∈ {−1, 1}l

we have
A |= Φs(a)

and by definition of Ψ we have, for the same s that

A |= ∃xϕ(x) ∧ Φs
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Let b be from A such that
A |= ϕ(b) ∧ Φs(b).

So we have A |= Φs(a) ∧ Φs(b), thus for all i ≤ l we get

A |= δi(a)←→ δi(b)

Now, since T∗ is inconsistent, it follows that

A |= ϕ(a)←→ ϕ(b)

and since A |= ϕ(b) we finally have A |= ϕ(a).

This is a powerful technique for proving quantifier elimination. If you can show
– by automorphism arguments or some sort of semantic analysis – that some set ∆

of formulae is enough to distinguish all types, then it is also enough to distinguish all
formulae. This is the way that one proves quantifier elimination for more complicated
structures.
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