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General Information

These notes are based on a course in Metamathematics taught by Professor Thomas
Scanlon at UC Berkeley in the Autumn of 2013. The course will focus on Model
Theory and the course book is Hodges’ a shorter model theory.

As with any such notes, these may contain errors and typos. I take full respon-
sibility for such occurences. If you find any errors or typos (no matter how trivial!)
please let me know at mps@berkeley.edu.

Lecture 17

Compactness Continued

The compactness theorem proved last time has many consequences and will be used
constantly from now on.

For instance if some formula ϕ(x, y) always defines a finite subset (in all struc-
tures) then in fact there is some bound on the size of the definable subsets. More
precisely we have the following proposition.

Proposition. Let T be a τ -theory and ϕ(x, y) ∈ L (τ) (where x and y are tuples).
If for all A |= T and a ∈ A we have that ϕ(A, a) is finite, then there is some k ∈ ω
such that T ` ∀y∃≤kx ϕ(x, y).

Proof. We expand the signature by adding constants {ci : i ∈ ω} ∪ {d}. Call this
new signature τ ′. Consider the τ ′-theory

S := T ∪ {ϕ(ci, d) : i ∈ ω} ∪ {ci 6= cj : i < j}.

Suppose, towards contradiction, that the proposition is false, i.e. there is no bound
k ∈ ω. Then we claim that S is finitely satisfiable. By compactness we then get a
model B′ of S. Taking the reduct B′|τ we will see that ϕ(B, a) is infinite for some
a.

So we must show that S is finitely satisfiable. Let S0 ⊆ S be finite. Then there
is some N ∈ ω such that

S0 ⊆ T ∪ {ϕ(ci, d) : i ≤ N} ∪ {ci 6= cj : i < j < N}.

By assumption there is no k ∈ ω that bounds ϕ(A, a), so there is some A |= T and
a from A such that |ϕ(A, a)| > N . Let b0, . . . , bN−1 be N distinct elements from
ϕ(A, a). Expand A to A′ (a τ ′-structure) by

dA
′

:= a
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and

cA
′

i :=

{
bi if i < N

a otherwise

(the choice a for cA′
i where i ≥ N is arbitrary, we could choose which ever element we

want). Now A′ |= S0 since A = A′|τ |= T and A |= ϕ(bi, a) for i < N and A |= ci 6= cj
for i < j < N . Thus S0 is satisfiable.

By compactness there is a model B′ of S. Let bi := cB
′

i and a := dB
′ . Let

B := B′|τ . Then B |= T and the infinitely many distinct bi’s are all in the set
ϕ(B, a) which is a contradiction. This completes the proof.

This proposition demonstrates a weakness of first-order logic. First-order logic
cannot tell the difference between “arbitrarily large but finite” and “infinite”. If we
want to say “finite” then we must say “finite and bounded by k” for some k. The
contrapositive is also interesting, namely that if we have a first-order theory with
arbitrarily large finite models, then there is an infinite model. Of course this makes
essential use of the first-order setting.

Example. Can one deduce the existence of an infinite well-ordered set from the exis-
tence of arbitrarily large finite well-ordered sets?

The most immediate approach using the compactness theorem never gets off
the ground since being a well-ordered set is not a first-order property! It is however
a second-order property, but second-order logic is not compact.

Instead what we can do is look at all sentences satisfied by all of the well-orders
An := ({0, 1, . . . , n− 1}, <). I.e. let T be the theory

Th({An : n ∈ ω}).

Question. What is T? In fact T is the theory of discrete linear order with first and
last elements. Can you prove this?

Applying compactness to

T ∪ {ci 6= cj : i 6= j, i, j ∈ ω}

to obtain a model A of T which is infinite.
The infinite model A will not be a well-order, however it will contain an infinite

well-order. Indeed A will have a first element, say b (bottom) and last element,
say t (top). t will have predecessors Pn(t) and b will have successors Sn(b) for all
n ∈ ω. Since A is a linear order Sn(b) 6= Pm(t) for any n,m, thus we get an infinite
descending chain t > P (t) > P 2(t) > . . . .

However the subset b < S(b) < S2(b) < . . . is an infinite well-order.

We mentioned that being a well-order is not first-order expressible. This has
not actually been proven yet.
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Proposition. If (X,<) is an infinite linear ordered set then there exists (Y,<) such
that (X,<) ≡ (Y,<) and such that (Y,<) is not well-ordered.

Proof. First extend the signature by constants: τ ′ = {<} ∪ {ci : i ∈ ω}. Let T be
the τ ′-theory

Th((X,<)) ∪ {ci > cj : i < j}

(note the “reversal” of the ordering of the ci’s). Now T is finitely satisfiable [proof:
by finding an appropriate finite subset of X (which we assumed was infinite) which
serves to give is a finite decreasing chain]. By compactness there is some infinite
model Y ′ of T. Taking the reduct back to τ we have (Y,<) ≡ (X,<) and Y has an
infinite descending chain.

The compactness theorem is very strong. As an example of its usefulness
consider Ax’s Theorem (Problem 13. Sec. 5.1 of Hodges). A variant of this theorem
is the following.

Theorem 1 (Ax). If f : Cn −−−→ Cn is given by polynomials and f has prime
order, then f has a fixed point.

Types

Definition. Given a τ -structure A, n ∈ ω, ā ∈ An and B ⊆ A then the type of ā
over B, tpA(ā/B) is

Th(AB, ā)

thought of in the language L (τB,x1,...,xn) where the xi’s are constant symbols which
must only be substituted with the ai’s.

Notation. If the structure A is clear from context then we write tp(ā/B) instead of
tpA(ā/B). Also we sometimes omit the bar above a even if a is a tuple.

Informally the type of a over B is the set of all formulae (with parameters from
B) which are true of a inside A. Concretely we have

tpA(a/B) = {ϕ(x1, . . . , xn; b̄) : A |= ϕ(a, b̄) with b̄ from B and ϕ from L (τ)}.

More generally,

Definition. An n-type over B (relative to A) is a complete finitely satisfiable theory
in L (τB,x1,...,xn) extending Th(AB).

Definition. Given an n-type p we say that a ∈ An realizes p if p = tp(a/B). If
there is such an element in An then we say that p is realized in A. If there is no
such element then we say that A omits p.
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We can always find an elementary superstructure wherein a given type is real-
ized:

Proposition. If p(x1, . . . , xn) is an n-type, then there is some A′ which is an ele-
mentary extension of A and a ∈ (A′)n such that p = tpA′

(a/B).

Proof. We use compactness. Let

T := p ∪ Th(AA)

(recall that Th(AA) = eldiag(A) by definition). We claim that T is finitely satisfiable.
Let T0 ⊆ T be finite. Let

T0 ∩ p = {ϕ1(x̄), . . . , ϕl(x̄)}

We will show that (T0∩p)∪Th(AA) has a model by showing that there exists ā ∈ An

such that (AA, ā) |= (T0 ∩ p) ∪ Th(AA). So we want a1, . . . , an ∈ A such that

AA |=
l∧

i=1

ϕi(a1, . . . , an).

We can find this if and only if

AB |= ∃x̄
l∧

i=1

ϕi(x̄)

(remember that the ϕi’s only involve parameters from B) which is true if and only if

∃x̄
∧
ϕi(x̄) ∈ Th(AB) ⊆ p

which is true since p is complete.
So by compactness there is some A′ |= T. So A′ |= Th(AA) and so A 4 A′.

Furthermore
p = tp(xA

′
1 , . . . , x

A′
n /B)

since p is complete and p ⊆ tp(xA
′

1 , . . . , x
A′
n /B), so p is realized in A′.

Example. We give an example where a type is omitted. Let A = (Q, <) and let
B = Q. Let C := {q ∈ Q : q <

√
2} and p(x) be the 1-type given by the complete

extension of
Th(AQ) ∪ {q < x|q ∈ C} ∪ {x < q : q ∈ Q \ C}

Now p is finitely satisfiable since given any finite p0 ⊆ p we only mention finitely
many

q1 < · · · < qn
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and of these qi’s some are in C and some are not. Letting qm be the maximal qi
contained in C then qm+1 is not in C. By density of Q there is some element r
between qm and qm−1 such that ϕ(r) holds for all ϕ ∈ p0. However p is not realized
in A since this would require

√
2 ∈ Q.

One way of realizing p in this case would be to let A′ = (Q ∪ {
√

2}, <) then
A 4 A′ and A′ realizes p.

It is worthwhile studying all types together as a topological space.

Definition. Given a τ -structure A and B ⊆ A and n ∈ ω the Stone space Sn(B)

(also denoted SX(B)) is the set

{p : p an n-type over B relative to A}.

We topologies Sn(B) by letting the basic open sets be

(ϕ) := {p ∈ Sn(B) : ϕ ∈ p}

for ϕ ∈ L (τB,x1,...,xn).
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