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General Information

These notes are based on a course in Metamathematics taught by Professor Thomas

Scanlon at UC Berkeley in the Autumn of 2013. The course will focus on Model

Theory and the course book is Hodges' a shorter model theory.

As with any such notes, these may contain errors and typos. I take full respon-

sibility for such occurences. If you �nd any errors or typos (no matter how trivial!)

please let me know at mps@berkeley.edu.

Lecture 1

Model Theory is the study of the interrelation between structures and formal lan-

guage instantiating the relations between semantics and syntax. We shall start by

de�ning the structures. To de�ne a structure we need the data of a signature and

then an interpretation of the signature.

De�nition. A signature τ consists of three (disjoint) sets Cτ ,Fτ ,Rτ together with
a function

arity : Fτ ∪Rτ → Z+

The sets Cτ ,Fτ ,Rτ will contain the constant symbols, function symbols and

relation symbols, respectively. The arity function assigns to each function symbol

and each relation symbol some positive integer thought of as the number of arguments

that the function (respectively, the relation) takes. Note that we do not allow arities

of functions and relations to be zero.

De�nition. A τ-structure A is given by a set A and interpretations of the elements

of Cτ ∪ Fτ ∪Rτ , i.e.:

� each c ∈ Cτ is interpreted as an element cA in A.

� each f ∈ Fτ is interpreted as a function fA : Aarity(f) → A.

� each R ∈ Rτ is interpreted as a set RA ⊆ Aarity(R).

The set A is called the domain of A and also denoted dom(A). We also use

the notation R(A) for RA in anticipation of de�nable sets. For a ∈ RA we may also

write R(a).

Remark. In this course we do not require that A be nonempty!

Note that in order for ∅ to be a structure there can be no constant symbols

(i.e. Cτ = ∅).
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Remark. There is also a notion of a sorted signature, in which we would have another

set Sτ and in which �arity� would be replaced by giving the sort of each constant

symbol, the domain and target of each function symbol and the �eld of each relation

symbol. This is relevant in many situations for example when describing a vector

space over a �eld (so we need two sorts: vectors and scalars) and in computer science.

Example (Groups). A group G may be regarded as a structure. The signature is in

this case Cτ = {1}, Fτ = {·} and Rτ = ∅, and arity(·) = 2.

As an interpretation we might let 1G be the identity element of G and ·G :

G×G→ G the group multiplication.

Example (Graphs). A graph G is a triple (V,E, I) of vertices, edges and an incidence

relation, such that for e ∈ E and v, w ∈ V we have I(v, w, e) is (v, w) ∈ e (i.e. if e is
an edge between v and w).

There are two natural signatures to use that do give di�erent notions of graphs

as structures.

� Let τ be given by Cτ = ∅, Fτ = ∅ and Rτ = {V,E, I} where arity(V ) =

arity(E) = 1 and arity(I) = 3. With this signature we can now set dom(G) =

V ∪ E, V G = V , EG = E and

IG = {(v, w, e)|(v, w) ∈ e}.

� Let σ be the signature given by Cσ = ∅, Fσ = ∅ and Rσ = {E} with arity(E) =

2. Now dom(G) = V and

EG = {(v, w) | ∃e ∈ E such that (v, w) ∈ e}.

Now both signatures can be used to describe graphs but they are di�erent. In the

�rst case there can be multiple edges between the same vertices, while in the second

there cannot. However in the �rst case we can have an edge e ∈ E which is not

connected to any vertices. So it makes a di�erence which language one uses!

We want to turn the collection of τ -structures into a category. For this we

need morphisms.

De�nition. A homomorphism f : A→ B of τ -structures A and B, is given by a

function

f : dom(A)→ dom(B)

which respects all the �extra structure�. More precisely

� for all c ∈ Cτ we have f(cA) = cB
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� for all g ∈ Fτ (with say n = arity(g)) and a1, . . . , an ∈ dom(A) then

f(gA(a1, . . . , an)) = gB(f(a1), . . . , f(an)).

� for all R ∈ Rτ (with say n = arity(R)) if (a1, . . . , an) ∈ RA then

(f(a1), . . . , f(an)) ∈ RB.

Note that the notion of homomorphism depends on the choice of signature.

For instance when de�ning homomorphisms of rings if we use a signature which has

a constant symbol for the unit element then we get unit-preserving homomorphisms.

If the signature does not have a constant symbol for the unit then homomorphisms

of rings need not preserve the unit.

Proposition. If f : A→ B and g : B→ C are homomorphisms of τ -structures then

g ◦ f is a homomorphism from A to C. Furthermore the identity map 1A : A → A

gives a homomorphism of τ -structures 1A : A→ A.

Proof. Exercise (purely formal).

Thus, the collection of τ -structures together with homomorphisms between

them form a category, called Str(τ).

De�nition. For A and B τ -structures (with dom(A) = A and dom(B) = B) then

A is a substructure of B, written A ⊆ B if, A ⊆ B and

� for all c ∈ Cτ , cA = cB.

� for all f ∈ Fτ , fA = fB|An where n = arity(f).

� for all R ∈ Rτ , RA = RB ∩An where n = arity(R).

Proposition. For τ -structures A and B. If A ⊆ B then the inclusion map ι :

dom(A)→ dom(B) is a homomorphism.

Proof. We have a function from dom(A) to dom(B). We check all three conditions

� let c ∈ Cτ then ι(cA) = cA = cB since A is a substructure of B.

� ι commutes with all interpretations of the function symbols since ι = 1B|A.
� if (a1, . . . , an) ∈ RA then by the substructure property (ι(a1), . . . , ι(an)) =

(a1, . . . , an) ∈ RB.

so ι is indeed a homomorphism.

Warning!. The converse of the above proposition is not true in general! There exist

τ -structures A and B such that dom(A) ⊆ dom(B) and such that the inclusion map

is a homomorphism and yet A is not a substructure of B.
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As an example, let τ be the signature given by Cτ = Fτ = ∅ and Rτ = {P}
with arity(P ) = 1. Let B = R and A = R and consider these as τ -structures

where PB = R and PA = ∅, respectively. Now the inclusion map 1R : A → B is a

homomorphism (we need only to check the condition on relation symbols, which is

vacuous since PA = ∅). However A is not a substructure of B since PA 6= PB ∩A.
Our notion of substructure is in some sense not the categorically correct no-

tion. It is too restrictive. We want the homomorphisms (of τ -structures) to be the

morphisms of Str(τ) but the above example shows that a subobject is not given by

a monic morphism.

In some sense, some preservation of negation is built in to the de�nition of

substructure, which is not built into the de�nition of homomorphism. That is, for

f : A → B to be a homomorphism we require only that if some identity or relation

holds in A of some tuple a, then the corresponding identity or relation holds of f(a).

For A to be a substructure of B, we require that not only is the inclusion map

ι : A ↪→ B a homomorphism, but if some identity or relation fails to hold in A of

some tuple a, then the corresponding identity or relation fails to hold of a in B.

Proposition. For τ -structures A,B and C. If A,B ⊆ C and dom(A) = dom(B)

then A = B

Proof. By hypothesis dom(A) = dom(B). For c ∈ Cτ we have cA = cC = cB.

Let f ∈ Fτ and R ∈ Rτ of arity n. We have fA = fC|An = fC|Bn = fB by

the substructure property. Finally RA = RC ∩ An = RC ∩ Bn = RB again by the

substructure property.

So substructures are completely determined by their domain.

If {Bi}i∈I is a collection of substructures (with Bi = dom(Bi)) of A then
⋂
Bi

will denote the τ -structure whose domain is
⋂

dom(Bi) and where constants, func-

tions and relations are interpreted on the intersection as before.

Proposition. For A a τ -structure and X ⊆ dom(A) there exists a smallest (with

respect to inclusion) substructure 〈X〉 ⊆ A such that X ⊆ dom(〈X〉).

Proof. We claim that if {Bi}i∈I is a collection of substructures of A then
⋂
Bi is a

substructure of A.

If c is a constant symbol then ∀i ∈ I, cA ∈ Bi so cA ∈
⋂
Bi. For f a function

symbol with arity n and ā ∈ (
⋂
Bi)

n then ∀j ∈ I, fA(ā) ∈ Bj and so fA(ā) ∈
⋂
Bi.

Thus fA|(⋂Bi)n is a function from (
⋂
Bi)

n to
⋂
Bi. Likewise for R a relation symbol

of arity n, de�ne R
⋂
Bi := RA ∩ (

⋂
Bi)

n. Now by de�nition
⋂
Bi is a substructure

of A.
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With this in hand we now de�ne the set of all substructures of A that contain

the subset X,

X := {B : B ⊆ A and X ⊆ dom(B)}.

Note that A ∈X . By the above claim,
⋂

X is a substructure of A, and by de�nition

X ⊆ dom(
⋂

X ). Furthermore if X ⊆ dom(B) for some substructure B then since

B ∈ X we have dom(
⋂

X ) ⊆ dom(B). Thus setting 〈X〉 =
⋂

X we see that 〈X〉
is a substructure of A whose domain contains X and whose domain is a subset of

the domain of each substructure B of A which contains X. With the Squash Lemma

below we conclude that 〈X〉 is in fact a substructure of each such B and thereby

complete the proof.

Remark. The above proposition is true as stated since we allow structures with empty

domains.

Lemma. (The Squash Lemma) If A,B,C are τ -structures and dom(A) ⊆ dom(B) ⊆
dom(C), and if both A ⊆ C and B ⊆ C, then A ⊆ B.

Proof. For c ∈ Cτ we have cA = cC = cB by use of the given substructures. Similarly

for function and relation symbols.

The above construction of 〈X〉 doesn't actually show how to build 〈X〉. It

works from above, since we know that there is some substructure containing X.

Now we think of 〈X〉 as the substructure generated by X and we should be able to

build 〈X〉 from below, simply using X.

In our attempt to build the substructure 〈X〉 we must �rst look at the constant

symbols. For each c ∈ Cτ if cA /∈ X then we must add it. Futhermore for all function

symbols and all tuples from X if f applied to these tuples is not in X then we must

add these values. Thus we get a bigger set, and we can start over, and keep going

until we �nish. To make sense of this we introduce terms.

De�nition. To a signature τ we have a set T (τ) containing the closed τ-terms.

T is given by recursion.

� T (τ) contains all constant symbols

� if f ∈ Fτ with arity(f) = n and t1, . . . , tn ∈ T (τ) then f(t1, . . . , tn) ∈ T (τ).

Remark. The above de�nition of T (τ) has two subtle issues. For one we did not

specify exactly what a term is. Secondly it is not clear that the above recursive

de�nition actually de�nes a set. To actually justify these details requires a bit of set

theory.
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