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General Information

These notes are based on a course in Metamathematics taught by Professor Thomas
Scanlon at UC Berkeley in the Autumn of 2013. The course will focus on Model
Theory and the course book is Hodges’ a shorter model theory.

As with any such notes, these may contain errors and typos. I take full respon-
sibility for such occurences. If you find any errors or typos (no matter how trivial!)
please let me know at mps@berkeley.edu.

Lecture 9

Skolemisation

Theorem 1 (Skolemisation Theorem). For any signature τ there exists a signature
τ ′ (= τ skolem) and a τ ′-theory T ′ (= T skolem) such that

• T ′ has skolem functions
• Every τ -structure extends to a τ ′-structure which models T ′. I.e. the restriction
map Mod(T ′) −−−→ Str(τ) is surjective.

Proof. The basic idea is just to put the required Skolem functions into the signature.
Of course just doing this for τ (say by extending τ to τ+) doesn’t work since there
will be new formulas in the language L (τ+) which lack Skolem functions. To remedy
this we construct a chain and take a union.

We construct an increasing sequence of signatures τ0 ⊆ τ1 ⊆ · · · and theories
T0 ⊆ T1 ⊆ · · · (where Tn is an L (τn)-theory). Then let

τ ′ :=
⋃
n

τn and T ′ :=
⋃
n

Tn.

The construction is as follows.

• Let τ0 := τ and T0 := ∅.
• At stage n define Cτn+1 := Cτn , Rτn+1 := Rτn , and

Fτn+1 := Fτn∪{f(ϕ,m) : ϕ ∈ L (τn), with free variables amongst x0, . . . , xm−1}.

The theory Tn+1 will be Tn together with

{∀x0, . . . , xm−1[ϕ(x0, . . . , xm−1, f(ϕ,m)(x̄))←→ ∃y ϕ(x̄, y)]

: ϕ ∈ L (τn) free variables in x0, . . . , xm−1}
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Now we claim that T ′ has Skolem functions. Indeed if ϕ(x̄, y) ∈ L (τ ′) with free
variables amongst x̄, y then ϕ(x̄, y) ∈ L (τn) for some n. Now we constructed Tn+1

to say that
∀x̄(ϕ(x̄, f(ϕ,m)(x̄))←→ ∃y ϕ(x̄, y)).

So T ′ does have a skolem function for ϕ.
Now we show the second claim, namely that the restriction map Mod(T ′) −−−→ Str(τ)

is surjective. We show that if An ∈ Mod(Tn) then there exists An+1 ∈ Mod(Tn+1)

such that An = An+1|τn ; To find An+1 we basically need to show how to interpret
the Skolem functions that entered at stage n.

Let fϕ,m ∈ Fτn+1 be a new function symbol in τn+1. To interpret fϕ,m we shall
need the axiom of choice:

For all sets X there exists a map f : X \ {∅} →
⋃
X such that ∀y ∈ X f(y) ∈ y.

Let X = {ϕ(ā,A) : ā ∈ Am} and let g be a choice function for X as afforded by the
axiom of choice. Then define

fAn+1
ϕ,m (ā) =

{
g(ϕ(ā,A)) if ϕ(ā,A) 6= ∅
a0 otherwise

Note that the second clause only happens when ϕ(ā,A) is empty, but then whatever
fϕ,m does to ā doesn’t matter. This interpretation makes An+1 into a τn+1-structure
which models Tn+1 and restricts back to An.

For a model B of a theory T with Skolem function the notion of substructure
and elementary substructure coincide! This follows as a Corollary to the following
proposition.

Proposition. If T is a τ -theory with Skolem functions then for every formula θ(x̄)

with at least one free variable, there is a quantifier-free formula ϕ(x̄) such that T |=
∀x̄(θ(x̄)↔ ϕ(x̄)).

Proof. We work by induction on the complexity of θ. The atomic case is immediate.
Boolean combinations are also immediate. For the case θ(x̄) is ∃y ψ(x̄, y) then we
have

T |= ∀x̄(θ(x̄)↔ ψ(x̄, fψ))

since T has Skolem functions. By induction we may find an equivalent formula for
ψ.

Corollary. If T has Skolem functions and B |= T , then if A ⊆ B then A 4 B

provided A 6= ∅.
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Proof. Let A ⊆ B be nonempty. We show A 4 B. By the Tarski-Vaught criterion
it suffices to check that for any formula ϕ(x̄, y) and ā a tuple of elements from A

(which exists since A 6= ∅) then A |= ∃y ϕ(ā, y)) iff B |= ∃y ϕ(ā, y). The forward
direction is immediate. Suppose B |= ∃y ϕ(ā, y) then since T has Skolem functions,
B |= ϕ(ā, fϕ(ā)) and since ϕ(ā, fϕ(ā)) only involves parameters from A we have
A |= ϕ(ā, fϕ(ā)) which implies that A |= ∃y ϕ(ā, y).

So skolemisation gives a way of building elementarily equivalent substructures.
As a corollary we get the full Downward Löwenheim-Skolem theorem.

Theorem 2 (Downward Löwenheim-Skolem theorem). Let L (τ) be a first-order
language, A a τ -structure, X a set of elements of A = dom(A) and λ a cardinal
such that |L (τ)| + |X| ≤ λ ≤ |A|. Then A has an elementary substructure B of
cardinality λ with X ⊆ dom(B).

Proof. We skolemise the empty τ -theory T = ∅ to get a τ skolem-theory T skolem and
an extension of A to a model Askolem of T skolem. Let Y be a subset of A with |Y | = λ

and X ⊆ Y . Then Let B′ be the substructure generated by Y . Finally take the
reduct B of B′ to τ . Now |B| ≤ |Y |+ |L (τ skolem)| = λ+ |L (τ)| = λ = |Y | ≤ |B|.
By the above corollary B′ 4 Askolem hence B 4 A.

Games

We will now discuss games for testing equivalence of structures. There are many
different forms of games. Different forms of games will bring different notions of
equivalence which correspond to different logics on the structures.

As a prelude we prove a famous theorem due to Cantor.

Theorem 3 (Cantor’s Back-and-Forth Theorem). If (A,≤) and (B,≤) are nonempty
countable dense linear orders without endpoints then they are isomorphic.

Notation. The abbreviation “DLO” is commonly used for the theory of dense linear
orders without endpoints.

Proof. Let A = {an : n ∈ ω} and B = {bn : n ∈ ω} be some enumerations of A and
B respectively. We shall construct an increasing sequence {fn : n ∈ ω} of partial
isomorphisms (i.e. fn is an isomorphisms between its domain and codomain thought
of as substructures) such that

1. fn ⊆ fn+1,
2. dom(fn) ⊇ {a0, . . . , an−1} and range(fn) ⊇ {b0, . . . , bn−1},
3. and fn is finite for all n.
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We do this as follows. We let f0 := ∅. At stage n+ 1 we want to extend fn to ensure
that an ∈ A is in the domain and that bn is in the range of fn+1. There are four
cases.

• If an ∈ dom(fn) then fn+ 1
2

= fn

• If ∀a ∈ dom(fn) an < a then since B |= DLO there exists b′ ∈ B such that
∀b ∈ range(fn) b′ < b (here we are using that range(fn) is finite). Then set
fn+ 1

2
(an) = b′.

• If ∀a ∈ dom(fn) a < an then since B |= DLO there exists b′ ∈ B such that
∀b ∈ range(fn) b < b′ (again since range(fn) is finite). Set fn+ 1

2
(an) = b′.

• If there is a, b ∈ dom(fn) with a < b and (a, b) ∩ dom(fn) = ∅ and a < an < b

then ∀c ∈ range(fn) we have ¬(fn(a) < c < fn(b)) since fn is an isomorphism.
Now since B is dense there is some d such that fn(a) < d < fn(b). Pick such
a d and define fn+ 1

2
(an) = d.

This tells us how to map an forward. Now dual arguments show how to extend f−1n
to f−1

n+ 1
2

so that f−1
n+ 1

2

is defined on bn. Putting both directions together we get the

maps fn+1 and f−1n+1.
The sequence (fn)n∈ω clearly satisfies the requirements 1. 2. and 3.. Now letting

f =
⋃
n

fn

we get that f is an isomorphism between A = dom(f) and B = range(f).

Remark. An alternative formulation of the theorem is that DLO is an ℵ0-categorical
theory.

The Ehrenfeucht-Fraïssé game

The proof of Cantor’s theorem is an example of the back and forth method. We can
formalize this argument in terms of a game namely the Ehrenfeucht-Fraïssé game of
length ω.

There are two players; ∀ (Abelard) and ∃ (Heloise). Let γ be an ordinal. The
Ehrenfeucht-Fraïssé game of length γ between τ -structures A and B, denoted
EFγ(A,B), has γ moves. At move α, ∀ picks an element from either A or B. ∃
responds with an element from the other model. A play of the EFγ(A,B)-game is a
γ-tuple (aα, bα)α<γ where aα ∈ A and bα ∈ B.
Player ∃ wins the play (aα, bα)α<γ if the map aα 7−→ bα has the property that for
every for atomic formula ϕ(x̄) we have

A |= ϕ(ā) ⇐⇒ B |= ϕ(b̄)
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where ā is a tuple from (aα)α<γ and b̄ is the image of ā under the map aα 7−→ bα.
A winning strategy for EFγ(A,B) is a function from the set of partial plays to
plays up through stage α together with ∀’s play are stage α, which returns a play
for ∃, such that if ∃ follows this function then she always wins.

Definition. We say that A is γ-equivalent to B, written A ∼γ B, if ∃ has a
winning strategy for EFγ(A,B).

Remark. Note that if A ∼= B then A ∼γ B for any ordinal γ. The winning strategy
is given simply by the isomorphism.

Remark. A ∼0 B if and only if for all atomic sentences ϕ we have A |= ϕ iff B |= ϕ.

Example. (Q, <) ∼ω (R, <). This follows from the Back and Forth method demon-
strated in the proof of Cantors theorem.

Example. (Q, <) 6∼ω+1 (R, <). To see this we must show that ∀ can force a win in the
EFω+1((Q, <), (R, <))-game. To do this ∀ may start with an enumeration (qn)n<ω
of Q. At each stage n < ω+ 1 in the game, ∀ picks an element of R corresponding to
the rational number qn sitting inside of R. Then ∃ must always pick elements from
Q. Now at the ω’th play ∀ picks some irrational element of R. ∃ must now pick one
of its previous choices from Q and looses the game since the resulting function will
not be an isomorphism.
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