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General Information

These notes are based on a course in Metamathematics taught by Professor Thomas
Scanlon at UC Berkeley in the Autumn of 2013. The course will focus on Model
Theory and the course book is Hodges’ a shorter model theory.

As with any such notes, these may contain errors and typos. I take full respon-
sibility for such occurences. If you find any errors or typos (no matter how trivial!)
please let me know at mps@berkeley.edu.

Lecture 16

Compactness

We shall now prove the compactness theorem. The proof we give is by the so-called
Henkin construction. Later in the course we will give a second proof making use of
ultrafilters.

Definition. A theory T is said to be finitely satisfiable if whenever T0 ⊆ T is a
finite subset of T there exists a model A of T0.

Theorem 1 (The Compactness Theorem). Let τ be a signature and T a τ -theory.
If T is finitely satisfiable then T is satisfiable, i.e. then there exists a model A |= T.

Remark. Compactness, as proved here, is a property of first-order logic, i.e. the
sentences of T are assumed to come from the first-order language Lωω(τ).

We will use the technique of using the language itself to build a structure
satisfying T.

We first prove some lemma’s allowing us to reduce the problem of finding
models of T to that of finding models of a certain nice extension of T.

Definition. A τ -theory T has Henkin constants if for each formula ϕ(x) ∈ L (τ)

with one free variable x, there is a constant symbol c ∈ Cτ such that

T ` ∃x ϕ(x)←→ ϕ(c).

Henkin constants act ass witnesses to all existential sentences, iff they are
implied by T.

Proposition. For any signature τ there is a signature τHen expressible as
⋃∞
i=0 τ

Hen
(i)

and a theory THen in L (τHen) such that

1.) τHen is an expansion by constants of τ .
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2.) THen has Henkin constants.
3.) For each A ∈ Str(τ) there is some non-zero A′ ∈ Str(τHen) such that A′ |= THen

and A is the τ -reduct of A′.

Proof. We define τHen
(n) and THen

n recursively in n. Let τHen
(0) := τ and THen

0 := ∅. At
stage n we expand τHen

(n) by adding constants only, indeed let

CτHen
(n+1)

:= CτHen
(n)
∪ {cϕ : ϕ is in L (τHen

(n) ) with exactly 1 free variable}.

We also expand THen
n to state that the new constants cϕ act as witnesses, i.e. let

THen
n+1 := THen

n ∪ {∃xϕ(x)←→ ϕ(cϕ) : ϕ ∈ L (τHen
(n) ) with exactly 1 free variable}.

Then we define

τHen :=
⋃
n

τHen
(n) and THen :=

⋃
n

THen
n .

Clearly THen has Henkin constants and τHen is an expansion of τ by constants. This
takes care of 1.) and 2.) in the proposition.

Now we show that τHen and THen satisfy property 3.). Let A be non-empty τ -
structure 1. We will find A(n) ∈ Str(τHen

(n) ) such that A(0) = A and A(n) = A(n+1)|τHen
(n)

and such that A(n) |= THen
n .

For n = 0 let A(0) := A, then have A(0) |= THen
0 = ∅.

Given A(n), for each ϕ ∈ L (τHen
(n) ) with free variable x if A(n) |= ∃xϕ let

aϕ ∈ ϕ(A(n)), if A(n) |= ¬∃xϕ(x) then let aϕ be arbitrary. Here we have used the
axiom of choice to pick the witnesses aϕ. We interpret

c
A(n+1)
ϕ := aϕ.

This ensures that A(n+1) |= THen
n+1.

Finally let A′ be the unique τHen structure with A′|τHen
(n)

= A(n). A′ is the
desired structure.

Corollary. If T is a finitely satisfiable τ -theory then T∪THen is a finitely satisfiable
τHen-theory.

Proof. Let S′ ⊆ T∪THen be finite. Then S := S′∩T is finite. By hypothesis there is
some A such that A |= S. By the proposition there is some expansion A′ ∈ Str(τHen)

such that A′ |= THen and such that A′|τ = A. This then implies that A′ |= S. But
since S′ ⊆ S ∪ THen we see that A′ |= S′.

1If A is empty then condition 3.) is vacuously satisfied since it is never the case that ∃ϕ(x) is
true.
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Thus given any finitely satisfiable theory T we can canonically expand the
language and the theory to get a finitely satisfiable theory THen which has Henkin
constants. So in proving the compactness theorem it will suffice to consider only the
case where T has Henkin constants.

We shall make one more reduction of the problem before proving the compact-
ness theorem. This time we show how to extend to complete theories. Recall that
we say a theory T is complete if for every sentence ϕ either ϕ ∈ T or ¬ϕ ∈ T .

Proposition. If T is a finitely satiable τ -theory then there is a complete extension
T̃ ⊇ T which is still finitely satisfiable.

Proof. We use Zorn’s lemma to find a maximal finitely satisfiable extension of T and
then argue by maximality that this extension must be complete.

Indeed let P be the partially ordered (by inclusion) set of extensions T′ ⊇ T

which are finitely satisfiable. P is non-empty since T ∈ P. Taking a non-empty
chain in P then the union of the chain is also an element of P since any finite subset
of the union is contain in one of the elements of the union and therefore satisfiable.
Therefore by Zorn’s lemma there is a maximal finitely satisfiable extension T̃ ⊇ T.

Now we claim that T̃ is complete. Suppose by way of contradiction that ϕ is
a L (τ)-sentence and such that both ϕ and ¬ϕ are not in T̃. Then both

T̃ ∪ {ϕ} ) T̃ ⊇ T

and
T̃ ∪ {¬ϕ} ) T̃ ⊇ T

so neither T̃ ∪ {ϕ} nor T̃ ∪ {¬ϕ} are elements of P. Since they both contain T, the
only way they can avoid being in P is if they are not finitely satisfiable. So there
is some U, V ⊆ T̃ such that U ∪ {ϕ} and V ∪ {¬ϕ} are not satisfiable. But now
U ∪V ⊆ T̃ is finite hence satisfiable. Let A be a model of U ∪V . Now either ϕ or ¬ϕ
holds in A, either way we have a contradiction since one of U ∪ {ϕ} and V ∪ {¬ϕ}
will be satisfied by A.

So starting with any finitely satisfiable theory T in any signature τ we can
expand the signature and the theory to get a τ ′ ⊇ τ and T′ ⊇ T which has Henkin
constants. We can now extend further to another τ ′-theory T′′ ⊇ T′ which is com-
plete. Then T′′ still has Henkin constants and is also complete. If T′′ is satisfiable
then we can take a reduction back to τ to see that T is also satisfiable.

Proposition. If T is a finitely satisfiable theory with Henkin constants, then there
exists a model A of T. In fact we may take dom(A) to be {cA : c ∈ Cτ}.
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Proof. Let C := Cτ be the set of constant symbols. We define a relation ∼ on C by
c ∼ d iff the sentence c=d is in T. We will show that ∼ is an equivalence relation
and then let dom(A) be the set of equivalence classes.

First, to see that ∼ is an equivalence relation we check the three axioms. They
all follow the same pattern so let us just show the reflexivity: Let c ∈ C. Since T is
complete either c=c or c6=c is in T. But T is also finitely satisfiable and since there
is no model satisfying c6=c we must have c=c ∈ T, and so c ∼ c.

We now define a τ -structure A with domain C/ ∼. For c ∈ Cτ let cA := [c]∼.
For f ∈ Fτ of arity n, then given c0, . . . , cn−1 ∈ Cτ then

fA([c0]∼, . . . , [cn−1]∼) = [d]∼

if T ` f(c0, . . . , cn−1) = d for d ∈ Cτ . For R ∈ Rτ of arity n and c0, . . . , cn−1 ∈ Cτ
then

([c0]∼, . . . , [cn−1]∼) ∈ RA iff R(c0, . . . , cn−1) ∈ T.

Of course we must check that f is actually a function, and that it is well-defined.
Likewise we must also show that RA is well-defined.

To see that f is a function consider the formula ϕ(x) given by f(c0, . . . , cn−1) =
x. Since T has Henkin constants we have

T ` ∃xϕ(x)←→ ϕ(d)

for some d ∈ Cτ . Since T is complete and finitely satisfiable it must be the case that
T ` ∃xf(c0, . . . , cn−1) = x. Thus T ` ϕ(d) and so fA is defined. To show that fA

and RA are well -defined uses the same style of arguments.
We now have a τ -structure A. Finally we show that A is a model of T. We

work by induction on the complexity of the sentence ϕ to show that A |= ϕ if and
only if ϕ ∈ T. Without loss of generality we may assume ϕ is unnested.

If ϕ is an unnested atomic sentence then by construction of A we see that
A |= ϕ if and only if ϕ ∈ T.

If ϕ is θ ∧ ψ, then A |= ϕ iff A |= θ and A |= ψ which by the inductive
hypothesis happens iff θ ∈ T and ψ ∈ T. But θ ∈ T and ψ ∈ T iff θ ∧ ψ ∈ T since
otherwise we violate the assumption that T is finitely satisfiable and complete. A
similar argument works for the other boolean combinations.

Now suppose ϕ is ∃xθ. Then

A |= ϕ iff ∃a ∈ A, A |= θ(a) (1)

iff ∃c ∈ Cτ , A |= θ(c) (2)

iff ∃c ∈ C, θ(c) ∈ T (3)
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So if A |= ϕ then since T is complete and finitely satisfiable we must have ϕ ∈ T.
Furthermore if ϕ ∈ T then by the above biimplications and using that T has Henkin
constants we see that A |= ϕ.

Thus, A is a model of T.

Exercise. Let τ = {E} where E is a binary relation symbol. Use the compactness
theorem to show that A 4 B where A and B are τ -structures such that EA and EB

are both equivalence relations. In A there is exactly one equivalence class of size n
for each n ∈ ω, and B extends A by having one new infinite equivalence class.

Corollary (Upward Löwenheim-Skolem). If A is infinite and λ any infinite cardinal
and |A| ≤ λ, then there exists B such that A 4 B and |B| = λ.

Proof. Let τ ′ ⊇ τ be an expansion by constants

Cτ ′ := Cτ ∪ {cα : α < λ}.

Consider the theory
T := Th(AA) ∪ {cα 6= cβ : α < β}.

We claim that T is finitely satisfiable: Let S ⊆ T be finite. Then S mentions only
finitely many cα’s say, {cα1 , . . . , cαm}. Let A′ be the τ ′A-structure with A′|τA = AA
and cA′

αi
:= ai where we pick distinct elements a1, . . . , am from A (which is possible

since A is infinite). Then A′ |= S.
By compactness there exists B′ a model of T. By construction B′|τA ≡ AA

so A 4 B′|τ (by the elementary diagram lemma). Now {cBα : α < λ} ⊆ B and so
|B| ≥ λ. If |B| is too big we can use the Downward Löwenheim-Skolem theorem to
get the right size.

5


