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General Information

These notes are based on a course in Metamathematics taught by Professor Thomas
Scanlon at UC Berkeley in the Autumn of 2013. The course will focus on Model
Theory and the course book is Hodges’ a shorter model theory.

As with any such notes, these may contain errors and typos. I take full respon-
sibility for such occurences. If you find any errors or typos (no matter how trivial!)
please let me know at mps@berkeley.edu.

Lecture 8

Quantifier elimination continued

We will prove quantifier elimination for Th(N, <). The proof will be very syntactic
and quite heavy-handed. This should in part serve as motivation for the more struc-
tural methods of quantifier elimination that will be developed later in the course.

Theorem 1. In L (<) the set Φ consisting of the atomic formulae together with

for every n ∈ Z+ Bn(x, y) := ∃z̄ x < z1 < · · · < zn < y

and
for every n ∈ Z+ Ln(x) := ∃z̄ x > z1 > · · · > zn,

is an elimination set for Th(N, <). I.e. in the signature τ ′ where Cτ ′ = Fτ ′ = ∅ and

Rτ ′ = {<} ∪ {Bn : n ∈ Z+} ∪ {Ln : n ∈ Z+}.

then the expansion ThL (τ ′)(N, <) has quantifier elimination.

Remark. Bn(x, y) says ‘there are n elements between x and y’. Ln(x) says ‘there are
n elements less than x’.

Proof. By the lemma proved last time it suffices to show that if ϕ(x, y0, . . . , yn−1) ∈
L (τ ′) is quantifier-free with free variables amongst x, ȳ, then ∃xϕ(x, ȳ) is equivalent
to a quantifier-free formula in L (τ ′).

Write ϕ in (the equivalent) disjunctive normal form as
∨
i

∧
j θi,j where each

θi,j is a literal. Now since the operator ∃ distributes over
∨

it suffices to eliminate
quantifiers from the conjuncts. I.e. it suffices to show that ∃x

∧
θi,j is equivalent to

some quantifier-free formula.
So from now on ϕ will be renamed to

∧
θi,j .
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Now we must figure out what the literals θi,j can possibly be. For example they
can be of the following form, Ln(yi), Ln(x),¬Ln(yj),¬Ln(x), Bn(x, yi),¬Bn(x, yi),
x < yi, ¬(x < yi), . . . .

We make another simplifying observation: ϕ is equivalent to a big disjunction
over all possible “order relations” between the elements y0, . . . , yn−1, x of the formula
describing this given “order relation” conjoined with ϕ(x, ȳ). Here “order relation”
means a possible way that the variables y0, . . . , yn−1 and x can be related via the <
relation symbol. For example one such order relation ψ(x, ȳ) could be

y0 = y1 = y2 < y3 < · · · < yi = · · · = yn−1 < x.

There are only finitely many different such order relations. Now the observation is
that ϕ(x, ȳ) is equivalent to∨

{ψ(x, ȳ) ∧ ϕ(x, ȳ) : ψ(x, ȳ)is an order relation} .

So we may assume that we have already pinned down completely the order
relation of y0, . . . , yn−1, x. This means that any other order condition contained in-
side ϕ (for example one of the θi,j could say x < yi or x = yj) will now either be
redundant or explicitly contradictory with the order relation. If one of the literals
θi,j is an explicit contradiction to the order relation then it is easy to find an equiv-
alent quantifier-free formula, namely any false formula. If one of the literals θi,j is
redundant then we need not worry about it.

Now we complete the proof by considering the remaining cases.

• If ϕ −−−→ x=yj for some j ≤ n − 1 then ∃x ϕ(x, ȳ) is equivalent to ϕ(yj , ȳ),
which is quantifier-free.

• So we may assume ϕ −−−→
∧
i x 6= yi. Then there will be a single smallest

interval where x is. I.e. ϕ −−−→ yi < x < yj for some unique i, j such that
ϕ −−−→

∧
k ¬(yi < yk < yj). Of course x could also be smaller than or greater

than all the yi’s. This gives two more cases, but for convenience we shall allow
“yi = ±∞” and “yj = ±∞”. Pictorially we now fix ourselves in the following
generic situation:

yi x yj

Now we must consider the other θi,j ’s in ϕ. I.e. the conditions which make use
of the symbols Ln and Bn (with possible negations). Since we have fixed the
order relation for ϕ we know that ∃xϕ if and only if there exists an x which
satisfies each of the extra conditions individually. Thus it suffices to eliminate
quantifiers from simple formulae of the form ∃xθi,j(x, ȳ) for the cases where θi,j
is one of the Ln or Bn (or negations thereof). Note that we need only concern
ourselves with the θi,j ’s that have instances of x in them. There are four cases:
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– ∃xLr(x) is equivalent to Lr+1(yi).
– ∃x¬Lr(x) is equivalent to ¬Lr−1(yj)
– If x < yk then ∃xBt(x, yk) is equivalent to Bt+1(yi, yk). If yk < x then
Bt(x, yk) is equivalent to Bt+1(yj , yk).

– For x < yk then ∃x¬Bt(x, yk) is equivalent to ¬Bt−1(yj , yk). If yk < x

then ∃x¬Bt(x, yk) is equivalent to ¬Bt+1(yi, yk).

This completes the proof.

Once we have the compactness theorem one can use back-and-forth type ar-
guments to greatly reduce the trouble with proving quantifier elimination results.
The above proof demonstrates somewhat the idea behind proofs to come; we tried
to “complete” the formula ∃xϕ(x, ȳ) as much as possible so that there is only one
formula to think about.

Skolem’s theorem

We now move to more structural ideas. First we prove Skolem’s theorem, showing
that given any model we can find an elementary submodel of size ≤ the cardinality
of the language.

Theorem 2. For any τ -structure A there exists B 4 A with |B| ≤ |L (τ)|.

Proof. Let A = dom(A). We will build an increasing sequence B0 ⊆ B1 ⊆ · · · of
subsets of A such that the union B :=

⋃
iBi will give us the domain of an elementary

substructure of A.
At stage 0 set B0 := ∅. At stage n+ 1 list all ϕ(x) in L (τBn,x) (i.e. ϕ has one

free variable x and parameters from Bn). For each ϕ if ABn |= ∃xϕ(x) then let aϕ
be a witness. Now set

Bn+1 := Bn ∪ {aϕ : ϕ ∈ L (τBn,x) and ABn |= ∃xϕ(x)}

First let us check that |Bn| ≤ |L (τ)|. For n = 0 this is clear. For n + 1 by
have by induction hypothesis that |Bn| ≤ |L (τ)|. Then |L (τBn)| = |L (τ)|, which
implies that

|Bn+1| ≤ |Bn|+ |L (τ)| ≤ |L (τ)|.

So
|B| = |

⋃
n

Bn| ≤ |L (τ)|.1

1Here we are using the theorem from Set Theory that a union of an ω-chain of elements having
cardinality ≤ λ (for λ ≥ ω) has cardinality ≤ λ .
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Finally we claim that B is the domain of an elementary substructure of A. It
is the domain of a substructure because, by construction, it contains witnesses to
statements of the form ∃x x=c for each constant symbol c, and ∃xf(b1, . . . , bn)=x for
each function symbol f and b1, . . . bn ∈ B. Finally it is an elementary substructure
by the Tarski-Vaught Test.

As a simply corollary we have.

Corollary. If A is any τ -structure and λ a cardinal such that |L (τ)| ≤ λ ≤ |A|.
Then there exists B 4 A such that |B| = λ.

Proof. Let Z ⊆ A be a subset with |Z| = λ. Consider the expansion τZ . Then
by Skolem’s theorem we find BZ 4 AZ with |BZ | ≤ |L (τZ)|. But we also have
|Z| ≤ |BZ | and so BZ = |Z| = λ. Now let B := BZ |τ to get B 4 A.

Skolem functions

Skolem himself proved his theorem by using what we shall call Skolemisation. The
process will be used again and again.

Definition. A theory T in a signature τ has Skolem functions if for each for-
mula ϕ(x̄, y) ∈ L (τ) there is a (not necessarily unique) function symbol fϕ with
arity(fϕ) = length(x̄) such that T contains the formula

∀x̄ [∃y ϕ(x̄, y)←→ ϕ(x̄, fϕ(x̄)] .

So the function fϕ finds witnesses (depending on x̄) whenever ∃yϕ(x̄, y) is true.

Remark. Some writers replace function symbols by terms, so that “Skolem functions”
are actually terms of the signature. In this way one can better handle the case where
length(x̄) = 0. We would need a “0-ary function symbol” which our definition does
not allow. In our definition we can simply add dummy variables so that length(x̄) >

0.

Remark. Some people say that T has built in Skolem functions if it has a definitional
expansion with Skolem functions. Our notion of a theory with Skolem functions is
more restrictive.

Example. If τ = ∅ then the “theory of equality” is a theory without Skolem functions.

Example. The theory Th(N,+, ·, 0, 1, <) has built in Skolem functions (in the sense
of the above remark) but does not have Skolem functions in our sense.

Next time we shall show how to add Skolem functions to our theories, a process
called Skolemisation. A Corollary to this will be another proof of the Löwenheim-
Skolem theorem.
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