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General Information

These notes are based on a course in Metamathematics taught by Professor Thomas
Scanlon at UC Berkeley in the Autumn of 2013. The course will focus on Model
Theory and the course book is Hodges’ a shorter model theory.

As with any such notes, these may contain errors and typos. I take full respon-
sibility for such occurences. If you find any errors or typos (no matter how trivial!)
please let me know at mps@berkeley.edu.

Lecture 7

Definitional expansions continued

Let τ ′ be an extension of the signature τ . Let T be an τ -theory and T ′ be an τ ′-
theory, such that every model of T ′ has a reduct back to a model of T . Furthermore
assume that for each new symbol in τ ′ we have a definition of that symbol in terms
of L (τ). I.e.

• For each c ∈ Cτ ′ \ Cτ we have θc(x) ∈ L (τx),
• For each f ∈ Fτ ′ \ Fτ we have γf (x̄, y),
• For each R ∈ Rτ ′ \ Rτ we have ψR(x̄),

and such that T says

• ∃=1x θc(x) for each c ∈ Cτ ′ \ Cτ .
• ∀x̄∃=1y γf (x̄, y) for each f ∈ Fτ ′ \ Fτ ,

and such that T ′ says that these formulas formally define the constants, functions
and relations, i.e.

• ∀xθc(x)↔ x = c for each c ∈ Cτ ′ \ Cτ
• ∀x̄∀y [γf (x̄, y)↔ f(x̄) = y] for each f ∈ Fτ ′ \ Fτ ,
• ∀x̄ [ψR(x̄)↔ R(x̄)] for each R ∈ Rτ ′ \ Rτ .

Given τ ⊆ τ ′, T and T ′ as above, then we have the restriction map

Resτ : Str(τ ′) −−−→ Str(τ).

Now by assumption we can restrict the restriction map to Mod(T ′). The induced
map on Mod(T ′) has range inside Mod(T ) by assumption. With this setup we state
the following proposition.
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Proposition. Given τ ⊆ τ ′, T and T ′ as above, the induced map Mod(T ′) −−−→ Mod(T )

is a bijection (of classes).

Proof. Suppose A |= T ′. We check that A|T |= T . Let ϕ ∈ T . There are two cases.

• ϕ is ∃=1x θc(x) for some constant c. For any a ∈ dom(A) then Aa |= θc(a) if
and only if a = cA thus A |= ∃=1x θc(x) so A|τ |= ϕ as well.

• ϕ is ∀x̄∃=1y γf (x̄, y) for some function symbol f . Now A |= ∀x̄∃=1y f(x̄) = y

so
A |= ∀x̄∀y [f(x̄) = y ↔ γf (x̄, y)]

so A |= ∀x̄∃=1y γf (x̄, y) which implies that A|τ |= ϕ.

Thus A|τ |= T .
Conversely, suppose A |= T . We want to expand A to some τ ′-structure A′ which is
a model of T ′.

• For c ∈ C′τ \ Cτ define cA′ to be the unique a ∈ dom(A) such that Aa |= θc(a).
• For f ∈ F ′

τ \ Fτ then we define fA′ by

fA
′
(ā) = b⇔ A |= γf (ā, b).

Note that this actually defines a function because of what γf says.
• For R ∈ R′

τ \ Rτ we let

RA′
:= {ā ∈ dom(A)arity(R) : Aā |= ψR(ā)}.

This makes A′ into an τ ′-structure which is a model of T ′ and A′|τ = A. This
completes the proof.

Atomisation/Morleyisation

The following construction is usually called Morleyisation. Hodges however, calls
it Atomisation. He points out that Thoralf Skolem used this construction before
Morley did. Since the term “Skolemisation” has a different meaning, Hodges decides
that “atomisation” is both more correct and more descriptive.
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Given a signature τ we build a new signature τ ′ (which will not be an expansion).
Let Cτ ′ = Fτ ′ = ∅ and

Rτ ′ := {R(ϕ,n) : ϕ ∈ L (τ{xi:i<n})}

with arity(R(ϕ,n)) = n1.
We now make a definitional expansion from a theory in τ to a theory in τ ′∪ τ .

Consider T = ∅ the empty theory in L (τ), and T ′ a theory in L (τ ∪ τ ′) given by

T ′ := {∀x̄[R(ϕ,n)(x̄)↔ ϕ(x̄)] : ϕ ∈ L (τ{xi:i<n})}.

Then T and T ′ trivially satisfy the conditions for the definitional expansions as in the
above section, since there are no new constant symbols and no new function symbols.
By the proposition we proved for definitional expansions, each τ -structure A (i.e. and
model of T = ∅) admits a unique definitional expansion to a τ ∪ τ ′-structure A′ such
that A′ |= T ′.

Definition. With the setup as describe above, the atomisation of A is the reduct
of A′ down to τ ′, i.e. AAtom := A′|τ ′ .

Proposition. Let AAtom be the atomisation of A. Then every definable set in AAtom

is defined by an atomic τ ′-formula

Proof. This is true by definition of definitional expansions. Since any subset X ⊆
dom(AAtom)n = dom(A)n is L (τ ′)-definable if and only if it is L (τ)-definable.

Remark. Depending on the definition one has of atomic formula we may need to
assume that the definable sets in the propostion are defined in at least one variable.
This is a necessary assumption if one does not count true (>) and false (⊥) as atomic
sentences.

Corollary. If A′ ⊆ B′ and A′,B′ |= T ′ then A′ 4 B′ and A 4 B where A := A′|τ
and B := B|τ .

Proof. We use the Tarski-Vaught Criterion, namely that A′ 4 B′ if and only if, for
any formula θ(x) ∈ L (τA′) A′ |= ∃xθ(x) iff B′ |= ∃xθ. The forward direction is
immediate. The backwards direction we may prove by induction on the complexity
of our formula. Suppose ϕ is the τ -formula. We must show that Aā |= ϕ(ā) iff
Bā |= ϕ(ā).

• For ϕ is atomic A ⊆ B

• For ϕ ≡ ¬ψ note that negation preserves the biimplication.
1Many authors do not include the subscript n. They simply write Rϕ without specifying the

arity.
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• The conjunction and disjunction are immidiate.
• For ϕ ≡ ∃xψ this is exactly our hypothesis.

Remark. The above corollary only holds if we allow > and ⊥ as atomic formulas.
Otherwise we must assume that A ≡L (τ) B.

The atomisation process is useful for simplifying some arguments. Further-
more if one is only interested in the class of definable sets of a given structure then
the atomisation is also useful since it has the same class, only this time each set
is defined by atomic formulas. But if one actually wants to determine what these
definable sets are, then the atomisation is completely useless.

We now give some examples and non-examples of elementary substructures.

Example. Let τ = {<}. Let B = (Q, <) and A = (Z[1
2 ], <). Then A 4 B. We will

not prove this now.

Example. Let τ = {<}. Let 2Z = (2Z, <) and Z = (Z, <). Then 2Z ⊆ Z as τ -
structures. Furthermore 2Z |= ∀x¬(x < 4 ∧ 2 < x) and Z |= ∃x(x < 4 ∧ 2 < x) so
2Z 64 Z. However, since 2Z and Z are isomorphic as L (τ)-structures we do have
that 2Z ≡L (τ) Z.

Question. Does there exists B a τ -structure and A ⊆ B and f : B −−−→ A a
definable isomorphism (i.e. the graph of f is a definable set) such that A 64 B?
[Hint: S : ω −−−→ Z+ the succesor map.]

Question. Is it true that given B and A ⊆ B and a definable isomorphism f :

B −−−→ A such that A 4 B then we must have A = B?

In some sense the notion of an extension of a structure is the right notion from
the level of the atomic formulas. But if one is interested in the definable sets and how
to interpret the formulae from one structure to another, then elementary extension
is the right notion.

Quantifier Elimination

In practice one does not use the atomisation procedure to gain information about
the definable sets. To actually gain information one can hope to find a reasonable
class of formulae from which every definable set can be defined.

Definition. Given a signature τ and a class K of τ -structures. A set Φ ⊆ L (τ) of
τ -formulae is an elimination set for K if

4



• for every formula ψ(x̄) ∈ L (τ) (with at least one free variable) there exists a
boolean combination ϕ(x̄) of formulae from Φ such that for all A ∈ K we have
A |= ∀x̄(ϕ↔ ψ).

We say that K has quantifier elimination if we can take the elimination set Φ to
be the collection of atomic formulae.

Remark. For any τ and any K there always exists an elimination set, namely L (τ)

itself.

Remark. Relativising the atomisation construction to Φ ⊆ L (τ), then Φ is an elim-
ination set for K if and only if each definable expansion of structures of K to the
relative atomisation has quantifier elimination.

Definition. For a structure A, we say that A eliminates quantifiers if K does
so. Similarly if K = Mod(T ) then we say T eliminates quantifiers.
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