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General Information

These notes are based on a course in Metamathematics taught by Professor Thomas
Scanlon at UC Berkeley in the Autumn of 2013. The course will focus on Model
Theory and the course book is Hodges’ a shorter model theory.

As with any such notes, these may contain errors and typos. I take full respon-
sibility for such occurences. If you find any errors or typos (no matter how trivial!)
please let me know at mps@berkeley.edu.

Lecture 6

We discuss the basic idea of comparing different structures and ways of regarding
the same structure in different languages. At one level this allows us to completely
forget about syntax and focus on the definable sets. On another level it brings the
syntax back to the fore because we will have specific ways of referring, to specific
sets which might appear, as though they are actually part of the language. Hodges
calls this atomisation although most people call it Morleyisation. As Hodges points
out Skolem introduced the method before Morley.

Last Time

Let us first recall briefly the chain construction. We have a chain (Ai)i∈I of τ -
structures indexed by a totally ordered set (I,<). This is a functor from the category
(I,<) to the category Str(τ) of τ -structures. The content of this rephrasing is just
that and arrow i < j is mapped to an arrow Ai ⊆ Aj . Given this chain we may form
the union

⋃
Ai which as its domain is the union of the domains of Ai and which is

given the natural τ -structure.
We proved last time that if ϕ is an ∀2 sentence in L (τ) and if for all i we have

Ai |= ϕ then
⋃
Ai |= ϕ. This proposition is a slight elaboration on the proposition

that ∃1 sentence “go up”.

Theories and Models

Definition. If K is a class of τ -structures, then Th(K) is the set of all τ sentences
ϕ such that for all A ∈ K we have A |= ϕ. I.e.

Th(K) := {ϕ ∈ L (τ) : ϕ is a sentence ∀A ∈ K A |= ϕ}

Definition. If T is a set of τ -sentences, then Mod(T ) is the class of τ -structures A
such that A |= T . I.e.

Mod(T ) := {A ∈ Str(τ) : A |= T}

1



classes of τ -structures sets of τ -sentences

Th(−)

Mod(−)

One immediately asks whether Th(−) and Mod(−) are each others inverses? They
are not. But they are connected1. Indeed we have, by definition, that

Th(Mod(T )) ⊇ T (1)

and

Mod(Th(K)) ⊇ K. (2)

Both inclusions may be strict.

Definition. Given a theory T and a sentence ϕ we say that T semantically implies
ϕ, written T |= ϕ iff any model of T is also a model of ϕ.

Given a theory T the set Th(Mod(T )) is the set of semantic consequences
of T . It is the set of sentences that are satisfied by all models of T , i.e.

Th(Mod(T )) = {ϕ : T |= ϕ}.

Similarly Mod(Th(K)) is the smallest definable class of structures containing K.

Notation. If K is the singleton class {A}, then we write Th(A) instead of Th({A}).

Definition. We say two structures A and B are elementarily equivalent, written
A ≡ B, if Th(A) = Th(B).

Definition. If A ⊆ B then A is an elementary substructure of B, written A 4 B

if the inclusion map preserves all formulas of L (τ). Such an inclusion map is called
an elementary inclusion.

See lecture 7 for an example where A ⊆ B and A ≡ B but A 64 B.

Definition. We say two theories S and T are equivalent if Mod(T ) = Mod(S).
1They form a Galois connection between the “posets” (P(Str(τ)),⊇) and (P(L (τ)),⊆), except

that Str(τ) is not a set and so neither is P(Str(τ))!
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We may often find that Mod(Th(K)) strictly contains K. For instance if K
is a singleton {A} where A is some τ -structure, then Mod(Th(K)) will contain all
those τ -structures which are elementarily equivalent to A. So if there exist models,
B, that are elementarily equivalent to A, i.e. Th(A) = Th(B) but such that A 6∼= B

then Mod(Th(A)) will properly contain {A}. In fact, given τ , there always exist A
and B that are not isomorphic yet elementarily equivalent.

Proposition. There exist A and B two τ -structures such that A 6∼= B but A ≡ B.

Proof. Consider the restricted functor Th : Str(τ) −→ P(L (τ)). Now Str(τ) is a
class (there are as many τ -structures as there are sets) and P(L (τ)) is a set of
cardinality at most 2|L (τ)|. By the Pigeon-hole-principle this is not injective. Even
considering Str(τ) up to isomorphism it is still a class since isomorphism preserves
cardinality. Thus there are A and B such that A 6∼= B and yet Th(A) = Th(B).

We shall prove much stronger results than this later in the course.
The kinds of classes of structures that we will be most interested in will be

those that appear as the classes of models of some theory T .

Definition. A class of τ -structures, K, is an elementary class if K = Mod(T ) for
some T . In this case we say that T axiomatizes K.

Definition. Let K be a class of τ -structures. Then A ∈ K is existentially closed
in K (or “e.c. in K”) if; given any B ∈ K with A ⊆ B then, for every ∃1 sentence ψ
in L (τA), if B |= ψ then A |= ψ.

So a structure is existentially closed if you have already put in all the witnesses.

Theorem 1. If K = Mod(T ) where T is ∀2-axiomatizable, then for all A ∈ K there
exists some B ∈ K such that A ⊆ B and B is existentially closed.

Proof. Given A ∈ K we build a chain of models (An)n∈ω in K and then take the union.
Let A0 := A. We construct A1 as follows. Let {ϕi ∈ L (τA0) : ϕi is ∃1-sentence} be
an enumeration of the existential sentences with parameters from A0 = A. Now let
A1,0 := A1 and for ϕ0 we ask whether there exists any B ∈ K with B |= ϕ0(ā) and
A1,0 6|= ϕ0, if so then let A1,1 := B. Now at stage i we ask the same question for
ϕi and if A1,i is not existentially closed with respect to ϕi then pick some B ∈ K
that witnesses this and let A1,i+1 := B. Thus we get a chain of order type equal to
the order type of L (τA0). We take the union of this chain. This union is A1. Now
A1 ∈ K since ∀2 sentences are preserved in unions of chains. Likewise at stage n we
construct An+1 by going through all sentences ϕi(ā) with parameters from An. At
each stage we have An ∈ K and An ⊆ An+1 by construction. Now we take the union
of the ω-chain (An)n∈ω

B :=
⋃
n∈ω

An
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Then B is again in K by the preservation of ∀2-sentences in chains. Also B is
existentially closed since given any ∃1 sentence ϕ with parameters from B then
since there are only finitely many of these parameters occurring in ϕ we have that
ϕ = ϕi for some ϕi ∈ L (An) for some n. At stage n we ensured that An+1 ⊆ B is
existentially closed with respect to ϕ. This finishes the proof.

Example (Linear orders). Let τ be the signature Cτ = Fτ = ∅ and Rτ = {<}. Let T
be the theory of linear orders.

• Let A = (ω,<) is not existentially closed. To see this let ψ be ∃x(0 < x < 1)

then take the natural extension of A by adding 1
2 to the set. Call this τ -

structure B then B |= ψ, and A ⊆ B but A 6|= ψ.
• Let Ã have domain { a2n : a ∈ N, n ∈ N}, with the natural order. Then Ã is not

existentially closed. For instance (R, <) |= ∃x x < 0 and Ã 6|= ∃x x < 0.
• (R, <) is existentially closed. This requires a bit of work to show.

Example (Fields). Let τ be the signature of fields. An existentially closed field is
E.C. if and only if it is algebraically closed

Example (Groups). It is difficult to describe explicitly the E.C. groups. Of course one
can give examples of equations that are necessarily true in E.C. groups, for instance
∀x∃y yn = x.

In fact the class of E.C. groups cannot be axiomatized. We can however ax-
iomatize the class of E.C. fields and the class of E.C. linear orders.

Unnested formulae

Definition. An unnested atomic formula is one of the form

• x = c, for c ∈ Cτ and x a variable.
• Fx̄ = y where F ∈ Fτ and x̄, y are variables.
• Rx̄, where R ∈ Rτ and x̄ are variables.
• x = y, where x and y are variables.

An unnested formula is built from the unnested atomic formulae by the usual
rules.

Lemma. Every formula ϕ ∈ L (τ) is equivalent to some unnested formula ϕ̃. In
fact if ϕ is atomic then ϕ̃ may be take to be either ∃1 or ∀1, and if ϕ is ∀n or ∃n
then ϕ̃ may be taken to have the same quantifier complexity.

Proof. Whenever some term contains a function symbol applied to something unnested
we will strip of the function symbol and replace it by a new variable.
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Let us start with ϕ an atomic formula. We will show that there is an equivalent
existential formula where each of the sub-formulae have terms that are no more
complicated than the one we had before (and at least one has complexity strictly
less than before). Suppose for instance that ϕ is

R(t0, . . . , tn−1)

and suppose t0 = F (s0, . . . , sk) where si are simpler terms. Then ϕ is equivalent to

∃x0, . . . , xn−1, y (y=F (x̄) ∧
∧

(xi = si) ∧R(y, t2, . . . , tn−1)).

ϕ is also equivalent to the formula

∀x0, . . . , xn−1, y (y=F (x̄) ∧
∧

(xi = si) −→ R(y, t2, . . . , tn−1)).

then we complete the proof by induction. Of course one needs to do a similar
reduction in the case that ϕ is an equality of terms, or a more general formula.

Remark. The above procedure (as described in the proof of the lemma) is analogous
to a procedure in the theory of differential equations. Here one can turn an order n
differential equation in one variable into an equivalent first-order differential equation
in n variables. For instance given the equation

n∑
i=0

ai
di

dti
f = 0.

Then by defining ȳ = (f, ddtf,
d2

dt2
f, . . . , d

n−1

dtn−1 f) we get an equivalent system of first-
order differential equations

n−1∑
i=0

aiyi + an
d

dt
yn−1 = 0

where
yi+1 =

d

dt
yi.

Unnested formulae are useful when dealing with an interpretation of one lan-
guage in another language where they allow us to deal with just the basic structure.

Definitional expansions

There are cases where, when extending the language in some sense gives no further
structure, i.e. whatever new structure we get in the new language, was already there
in the old language. An example will make this clear.
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Example. Let (R, 0, 1,+, ·) be R in the signature of rings, τ = {0, 1,+, ·}. In this
structure the ordinary relation x ≤ y on R is already definable! For instance we
could set

x ≤ y iff ∃z (x+ z2 = y).

Now ≤ is not in the signature, but the set (in R2) given by the relation x ≤ y is
definable in (R, 0, 1,+, ·). Thus extending the signature to the signature of ordered
rings, i.e. τ+ = τ ∪ {≤} seems not to give us any new definable sets2.

Definition. If τ ⊆ τ ′ is an extension of signatures, and A′ is a τ ′-structure and
A := A′|τ we say that A′ is a definitional expansion of A if every τ ′-definable set
is already τ -definable.

This definition requires us to look at all τ ′-definable sets. The following equiv-
alent criterion allows us to focus on the definitions of the symbols of τ ′ in terms of
the simpler language L (τ).

Theorem 2. Let τ ⊆ τ ′ be an extension of signatures and let A = A′|τ . If

• for each c ∈ Cτ ′ there is some θc(x) ∈ L (τ) such that

A |= θc(a) iff a = cA
′

• for each f ∈ Fτ ′ of arity n there is some θf (x̄, y) such that

A |= θf (ā, b) iff fA
′
(ā) = b

• and for each R ∈ Rτ ′ of arity n there is some θR(x̄) such that

A |= θR(ā) iff ā ∈ RA′ .

Then A′ is a definitional expansion of A.

Proof. Let χ(x̄) be a formula in L (τ ′). We want a formula χ̃(x̄) in L (τ) such that
χ̃(A′) = χ(A′). Since every formula is equivalent to an unnested formula we may
assume that χ is unnested. Now we work by induction on the complexity of χ.

• The case where χ is atomic is covered immediately by the assumptions of the
theorem.

• If χ is χ1 ∧ χ2 then by induction hypothesis χ1 and χ2 have equivalent forms,
and so χ̃ = χ̃1 ∧ χ̃2. Similarly for disjunctions and negations.

• If χ is ∃x ξ then χ̃ is just ∃x ξ̃. In this last step we must be careful not to
reuse variables.

2This is of course not a rigorous statement since there could a priori be some strange new
definable sets when we introduce ≤ into the signature.
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By induction we are done.

Remark. The fact that we can assume that χ is unnested makes the above proof
much easier since we do not need to look carefully at all possible nested terms that
occur in the formulas.

Example. From the theorem it is now clear that (R, 0, 1,+, ·,≤) is in fact a definable
expansion of (R, 0, 1,+, ·).
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