Math 225A - Model Theory

Speirs, Martin

Autumn 2013

General Information

These notes are based on a course in Metamathematics taught by Professor Thomas Scanlon at UC Berkeley in the Autumn of 2013. The course will focus on Model Theory and the course book is Hodges' a shorter model theory.

As with any such notes, these may contain errors and typos. I take full responsibility for such occurences. If you find any errors or typos (no matter how trivial!) please let me know at mps@berkeley.edu.

Lecture 14

Interpretations

Definition. An interpretation Γ of the ρ-structure \mathfrak{B} in the τ-structure \mathfrak{A} is given by

- a τ-formula $\partial_{\Gamma}\left(x_{0}, \ldots, x_{l-1}\right)$
- for each unnested ρ-atomic formula $\varphi\left(y_{0}, \ldots, y_{m-1}\right)$ a τ-formula

$$
\varphi_{\Gamma}\left(x_{0,0}, \ldots, x_{l-1,0} ; x_{0,1}, \ldots, x_{l-1,1} ; \ldots \ldots x_{0, m-1}, \ldots, x_{l-1, m-1}\right)
$$

- and a surjective function

$$
\pi: \partial_{\Gamma}(\mathfrak{A}) \longrightarrow \mathfrak{B}
$$

such that for all $a, b \in \partial_{\Gamma}(\mathfrak{A})$ then $\pi(a)=\pi(b)$ if and only if $\varphi_{\Gamma}(a, b)$ where φ is the ρ-atomic formula $y_{0}=y_{1}$.

The condition on the map π is just that it pulls back the equality relation on \mathfrak{B} to the interpretation (via Γ) of the equality relation on \mathfrak{A}.

We give a couple of examples.
Example. A classic example of an interpretation is that of the complex numbers in the reals. Here we interpret a complex number $z \in \mathbb{C}$ as a pair of real numbers (a, b) (which we think of as $z=a+i b)$ with addition and multiplication defined appropriately.

Formally we interpret $(\mathbb{C},+, \cdot, 0,1)$ in $(\mathbb{R},+, \cdot, 0,1)$ as follows; Let $\partial_{\Gamma}\left(x_{0}, x_{1}\right)$ be any true statement for example $x_{0}=x_{0}$. Thus $\partial_{\Gamma}(\mathbb{R})=\mathbb{R}^{2}$. Here are some of the crucial interpretations of the unnested formulae

- $(y=0)_{\Gamma}$ will be $\left(x_{0}=0 \wedge x_{1}=0\right)$.
- $(y=1)_{\Gamma}$ will be $\left(x_{0}=1 \wedge x_{1}=0\right)$.
- $\left(y_{2}=y_{0}+y_{1}\right)_{\Gamma}$ will be $\left(x_{0,0}+x_{0,1}=x_{0,2} \wedge x_{1,0}+x_{1,1}=x_{1,2}\right)$

$$
\text { - }\left(y_{2}=y_{0} \cdot y_{1}\right)_{\Gamma} \text { will be }\left(x_{0,2}=x_{0,0} x_{0,1}-x_{1,0} x_{1,1} \wedge x_{1,0} x_{0,1}+x_{0,0} x_{1,1}\right)
$$

finally the map $\pi: \partial_{\Gamma}(\mathbb{R}) \longrightarrow \mathbb{C}$ is given by $\pi\left(a_{0}, a_{1}\right)=a_{0}+a_{1} \sqrt{-1}$. Here the usual equality relation in \mathbb{C} pulls back to the coordinate-wise equality relation on $\partial_{\Gamma}(\mathbb{R})=\mathbb{R}^{2}$ as it should!
Example. Set theory is stronger than arithmetic. I.e. we can also interpret arithmetic inside of set theory.

Let $\tau=\{\in\}$ be the signature of set theory and let \mathbb{V} be a model of ZFC. Let ρ be the language of arithmetic, $\rho=\{\leq,+, \cdot, 0,1\}$ and let $\mathfrak{B}=(\mathbb{N},+, \cdot, 0,1, \leq)$. We let $\partial_{\Gamma}(x)$ be the τ-formula which says " x is a natural number", this can be formally expressed in the language $\mathscr{L}(\tau)$ but we will not do so now. Now addition and multiplication can be given their usual set-theoretical interpretations (which again we will not properly write out).
Example. The example of \mathbb{C} interpreted in \mathbb{R} generalizes to any finite field extension. I.e. if L / K is a finite field extension then $(L,+, \cdot, 0,1)$ is interpretable in $(K,+, \cdot, 0,1)$.

In the definition of interpretation we only required there to be interpretations of unnested atomic formulae, but in fact there is a natural way to associate any ρ-formula to a τ-formula.

Proposition. Given an interpretation Γ of \mathfrak{B} in \mathfrak{A} there is a natural function

$$
(-)_{\Gamma}: \mathscr{L}(\rho) \longrightarrow \mathscr{L}(\tau)
$$

such that $\mathfrak{A} \models(\varphi)_{\Gamma}(\bar{a})$ if and only if all a_{i} satisfy ∂_{Γ} and $\mathfrak{B} \models \varphi(\pi \bar{a})$. The association is given inductively by

- for φ atomic unnested $(\varphi)_{\Gamma}$ is φ_{Γ} (as given in the definition of an interpretation)
- $(\varphi \wedge \psi)_{\Gamma}$ is $(\varphi)_{\Gamma} \wedge(\Psi)_{\Gamma}$
- $(\neg \varphi)_{\Gamma}$ will be $\neg(\varphi)_{\Gamma} \wedge \wedge \partial_{\Gamma}(-)$
- $(\exists x \varphi)_{\Gamma}$ will be $\left(\exists y_{0}, \ldots, y_{l-1}\right)\left(\partial_{\Gamma}(\bar{y}) \wedge \varphi_{\Gamma}(\bar{y})\right)$

Proof. Immediate from the construction of Γ.
Given a collection of formulae in $\mathscr{L}(\tau): \partial_{\Gamma}$ and φ_{Γ} for φ an unnested formula in $\mathscr{L}(\rho)$ then we want a theory T_{Γ} which says that these formulae give an interpretation. I.e. T_{Γ} asserts that for any \mathfrak{A} which models T_{Γ} then the data ∂_{Γ} and φ_{Γ} define an interpretation. More precisely T_{Γ} must say

- If φ has n free variables and ∂_{Γ} has m free variables then φ_{Γ} has $m n$ free variables.
- $\left(y_{0}=y_{1}\right)_{\Gamma}$ is an equivalence relation \sim on $\partial_{\Gamma}(-)$.
- for each $f \in \mathcal{F}_{\rho}$ if φ is $f(x)=y$ then T_{Γ} must say that

$$
\forall \bar{u} \exists \bar{v} \varphi_{\Gamma}(\bar{u}, \bar{v}) \wedge \forall \bar{u}, \forall v, w\left(\varphi_{\Gamma}(\bar{u}, v) \wedge \varphi_{\Gamma}(\bar{u}, w) \longrightarrow v \sim w\right)
$$

- For each constant $c \in \mathcal{C}_{\rho}$, if φ is $y=c$, then T_{Γ} must say that

$$
\exists \bar{x} \varphi_{\Gamma}(\bar{x}) \wedge \forall \bar{x}, \bar{y} \varphi_{\Gamma}(\bar{x}) \wedge \varphi_{\Gamma}(\bar{y}) \longrightarrow x \sim y
$$

and

$$
x \sim y \wedge \varphi_{\Gamma}(x) \longrightarrow \varphi_{\Gamma}(y)
$$

- For $R \in \mathcal{R}_{\rho}$ then if $\varphi(x)$ is $R(x)$ we have that T_{Γ} must say that

$$
\forall \bar{u}, \bar{v} \varphi_{\Gamma}(\bar{u}) \wedge \bar{u} \sim \bar{v} \longrightarrow \varphi_{\Gamma}(\bar{v}) .
$$

Proposition. If $\mathfrak{A} \models T_{\Gamma}$ then Γ is an interpretation of $\Gamma(\mathfrak{A}):=\mathfrak{B}$ where $\operatorname{dom}(\mathfrak{B}):=$ $\partial_{\Gamma}(\mathfrak{A}) / \sim$. Here we have

- for constants c we have $c^{\mathfrak{B}}:=[\bar{b}]_{\sim}$ for any $\bar{a} \in \partial_{\Gamma}(\mathfrak{A})$ such that $\mathfrak{A} \models(x=c)_{\Gamma}(\bar{a})$.
- $\left(\left[\bar{a}_{0}\right]_{\sim}, \ldots,\left[\bar{a}_{n-1}\right]_{\sim}\right) \in R^{\mathfrak{B}}$ iff $\mathfrak{A} \models(R(x))_{\Gamma}(\bar{a})$
- and $f^{\mathfrak{B}}\left([\bar{a}]_{\sim}\right)=[b]_{\sim}$ iff $\mathfrak{A} \models(f(\bar{x})=y)_{\Gamma}(\bar{a}, b)$.

Proof. We defined T_{Γ} so as to say exactly what this proposition is saying.
Example. If \mathfrak{A}^{\prime} is a definitional expansion on \mathfrak{A} then the definitional expansion is an interpretation of \mathfrak{A}^{\prime} in \mathfrak{A}.

A useful observation (which we will now prove) is that an interpretation Γ preserves elementary substructures.

Proposition. If ($\partial_{\Gamma},\left\{\varphi_{\Gamma}: \varphi\right.$ unnested ρ-formula $\}$) is given and $\mathfrak{A} \preccurlyeq \mathfrak{A}^{\prime}$ where $\mathfrak{A}^{\prime} \models$ T_{Γ} then $\Gamma(\mathfrak{A}) \preccurlyeq \Gamma\left(\mathfrak{A}^{\prime}\right)$.

Proof. Since $\mathfrak{A} \preccurlyeq \mathfrak{A}^{\prime}$ we have $\partial_{\Gamma}(\mathfrak{A}) \subseteq \partial_{\Gamma}\left(\mathfrak{A}^{\prime}\right)$. Also \sim the equivalence relation (given by $(x=y)_{\Gamma}$) on ∂_{Γ} is an equivalence relation on both $\partial_{\Gamma}(\mathfrak{A})$ and on $\partial_{\Gamma}\left(\mathfrak{A}^{\prime}\right)$. Furthermore, again since $\mathfrak{A} \preccurlyeq A^{\prime}$ the restriction of \sim on $\partial_{\Gamma}\left(\mathfrak{A}^{\prime}\right)$ to $\partial_{\Gamma}(\mathfrak{A})$ is just the old \sim.

So the inclusion

$$
\partial_{\Gamma}(\mathfrak{A}) \longrightarrow \partial_{\Gamma}\left(\mathfrak{A}^{\prime}\right)
$$

induces an inclusion

$$
\partial_{\Gamma}(\mathfrak{A}) / \sim^{\mathfrak{A}} \longrightarrow \partial_{\Gamma}\left(\mathfrak{A}^{\prime}\right) / \sim^{\mathfrak{A}^{\prime}} .
$$

The rest of the proof now follows from the earlier proposition: For any unnested formula φ in $\mathscr{L}(\rho)$ and tuple \bar{a} from $\partial_{\Gamma}(\mathfrak{A})$ we have

$$
\mathfrak{A} \models(\varphi)_{\Gamma}(\bar{a}) \quad \text { iff } \quad \Gamma(\mathfrak{A}) \models \varphi\left([\bar{a}]_{\sim}\right)
$$

by the proposition. But by elementary extension we have

$$
\mathfrak{A} \models(\varphi)_{\Gamma}(\bar{a}) \quad \text { iff } \quad \mathfrak{A}^{\prime} \models(\varphi)_{\Gamma}(\bar{a})
$$

and so again by the proposition we have

$$
\mathfrak{A}^{\prime} \models(\varphi)_{\Gamma}(\bar{a}) \quad \text { iff } \quad \Gamma\left(\mathfrak{A}^{\prime}\right) \models \varphi\left([\bar{a}]_{\sim}\right)
$$

so $\Gamma(\mathfrak{A}) \preccurlyeq \Gamma\left(\mathfrak{A}^{\prime}\right)$.
If one can interpret a class of ρ structures in some other class of τ-structures, then one can pass elementary embedding from one class to the other.

Interpretations induce continuous homomorphisms between automorphism groups. To prove this we first need a general lemma about topological groups.

Lemma. Let G and H be topological groups and $\alpha: G \longrightarrow H$ a homomorphism. Then α is continuous if and only if α is continuous at the identity.

Proof. The forward direction is clear.
Suppose α is continuous at the identity $1_{G} \in G$. Let $g \in G$ and let $U \subseteq H$ be an open subset containing $\alpha(g)$. Then translating U by $\alpha(g)^{-1}$ we see that $1_{H} \in \alpha(g)^{-1} U$. Now $\alpha(g)^{-1} U$ is also open since translation is a homeomorphism $H \rightarrow H$. Now by assumption there is some V open in G such that $1_{G} \in V$ and $\alpha(V) \subseteq \alpha(g)^{-1} U$. Thus $g V$ contains g (and is open) and $\alpha(g V) \subseteq U$.

Proposition. To an interpretation Γ of \mathfrak{B} in \mathfrak{A} there is an associated continuous homomorphism

$$
\Gamma: \operatorname{Aut}(\mathfrak{A}) \longrightarrow \operatorname{Aut}(\mathfrak{B})
$$

Proof. We first define the homomorphism.
Let σ be an automorphism of \mathfrak{A}. First note that σ must preserve $\partial_{\Gamma}(\mathfrak{A})$. I.e. $\mathfrak{A} \models \partial_{\Gamma}(\bar{a})$ if and only if $\mathfrak{A} \models \partial_{\Gamma}(\sigma \bar{a})$.

Now the equivalence relation \sim is also defined by some formula, so σ also preserves this. I.e. $a \sim b$ iff $\sigma a \sim \sigma b$.

Thus σ induces a function, $\hat{\sigma}$ of equivalence classes $\partial(\mathfrak{A}) / \sim$. Now the by the isomorphism $(\partial(\mathfrak{A}) / \sim) \cong \mathfrak{B}$ we get a (bijective) function $\Gamma(\sigma): \mathfrak{B} \rightarrow \mathfrak{B}$.

We must check that it is also an automorphism. It suffices to check that $\Gamma(\sigma)$ preserves unnested ρ-formulae. Let φ be an unnested ρ-formula and $\mathfrak{B} \models \varphi(\bar{b})$. This is equivalent to $\mathfrak{A} \models(\varphi)_{\Gamma}(\bar{a})$ (where $\bar{a}=\pi(\bar{b})$) which is equivalent to $\mathfrak{A} \models(\varphi) \Gamma(\sigma \bar{a})$ and finally this is equivalent to $\mathfrak{B} \models \varphi(\Gamma(\sigma)(\bar{b})$.

Finally we must also check the continuity of $\Gamma: \operatorname{Aut}(\mathfrak{A}) \longrightarrow \operatorname{Aut}(\mathfrak{B})$. For this we use the lemma: It suffices to check continuity at the identity. Let U be open subset of $\operatorname{Aut}(\mathfrak{B})$ containing $\Gamma\left(i d_{\mathfrak{A}}\right)$. Without loss of generality we may assume that
U is a basic open set around $i d_{\mathfrak{B}}$, i.e. take U to be the stabilizer of \bar{b} for some \bar{b} from \mathfrak{B}. Let \bar{a} be a finite tuple of \mathfrak{A} such that $\bar{b}=\pi \bar{a}$ (which is possible since π is surjective). Then $\Gamma(\sigma)\left(U_{\bar{a}, \bar{a}}\right) \subseteq U_{\bar{b}, \bar{b}}$. So Γ is continuous.

Question. Suppose that Γ is an interpretation of \mathfrak{B} in \mathfrak{A} and Δ is an interpretation of \mathfrak{A} in \mathfrak{B}. Must $\Delta \circ \Gamma: \operatorname{Aut}(\mathfrak{A}) \longrightarrow \operatorname{Aut}(\mathfrak{A})$ be an automorphism?

These and many other related questions have been heavily studied, see for example [1] and [2].

Bibliography

[1] Matatyahu Rubin, The Reconstruction of Trees from Their Automorphism Groups. American Mathematical Society, 1991.
[2] Peter J. Cameron, Oligomorphic Permutation Groups. Cambridge University Press, 1990.

