Math 225A – Model Theory

Speirs, Martin

Autumn 2013

General Information

These notes are based on a course in *Metamathematics* taught by Professor Thomas Scanlon at UC Berkeley in the Autumn of 2013. The course will focus on Model Theory and the course book is Hodges' *a shorter model theory*.

As with any such notes, these may contain errors and typos. I take full responsibility for such occurences. If you find any errors or typos (no matter how trivial!) please let me know at mps@berkeley.edu.

Lecture 14

Interpretations

Definition. An interpretation Γ of the ρ -structure \mathfrak{B} in the τ -structure \mathfrak{A} is given by

- a τ -formula $\partial_{\Gamma}(x_0, \ldots, x_{l-1})$
- for each unnested ρ -atomic formula $\varphi(y_0, \ldots, y_{m-1})$ a τ -formula

 $\varphi_{\Gamma}(x_{0,0},\ldots,x_{l-1,0};x_{0,1},\ldots,x_{l-1,1};\ldots,x_{0,m-1},\ldots,x_{l-1,m-1})$

• and a surjective function

$$\pi:\partial_{\Gamma}(\mathfrak{A})\longrightarrow\mathfrak{B}$$

such that for all $a, b \in \partial_{\Gamma}(\mathfrak{A})$ then $\pi(a) = \pi(b)$ if and only if $\varphi_{\Gamma}(a, b)$ where φ is the ρ -atomic formula $y_0 = y_1$.

The condition on the map π is just that it pulls back the equality relation on \mathfrak{B} to the interpretation (via Γ) of the equality relation on \mathfrak{A} .

We give a couple of examples.

Example. A classic example of an interpretation is that of the complex numbers in the reals. Here we interpret a complex number $z \in \mathbb{C}$ as a pair of real numbers (a, b) (which we think of as z = a + ib) with addition and multiplication defined appropriately.

Formally we interpret $(\mathbb{C}, +, \cdot, 0, 1)$ in $(\mathbb{R}, +, \cdot, 0, 1)$ as follows; Let $\partial_{\Gamma}(x_0, x_1)$ be any true statement for example $x_0 = x_0$. Thus $\partial_{\Gamma}(\mathbb{R}) = \mathbb{R}^2$. Here are some of the crucial interpretations of the unnested formulae

- $(y = 0)_{\Gamma}$ will be $(x_0 = 0 \land x_1 = 0)$.
- $(y = 1)_{\Gamma}$ will be $(x_0 = 1 \land x_1 = 0)$.
- $(y_2 = y_0 + y_1)_{\Gamma}$ will be $(x_{0,0} + x_{0,1} = x_{0,2} \land x_{1,0} + x_{1,1} = x_{1,2})$

• $(y_2 = y_0 \cdot y_1)_{\Gamma}$ will be $(x_{0,2} = x_{0,0}x_{0,1} - x_{1,0}x_{1,1} \wedge x_{1,0}x_{0,1} + x_{0,0}x_{1,1})$

finally the map $\pi : \partial_{\Gamma}(\mathbb{R}) \longrightarrow \mathbb{C}$ is given by $\pi(a_0, a_1) = a_0 + a_1 \sqrt{-1}$. Here the usual equality relation in \mathbb{C} pulls back to the coordinate-wise equality relation on $\partial_{\Gamma}(\mathbb{R}) = \mathbb{R}^2$ as it should!

Example. Set theory is stronger than arithmetic. I.e. we can also interpret arithmetic inside of set theory.

Let $\tau = \{\in\}$ be the signature of set theory and let \mathbb{V} be a model of ZFC. Let ρ be the language of arithmetic, $\rho = \{\leq, +, \cdot, 0, 1\}$ and let $\mathfrak{B} = (\mathbb{N}, +, \cdot, 0, 1, \leq)$. We let $\partial_{\Gamma}(x)$ be the τ -formula which says "x is a natural number", this can be formally expressed in the language $\mathscr{L}(\tau)$ but we will not do so now. Now addition and multiplication can be given their usual set-theoretical interpretations (which again we will not properly write out).

Example. The example of \mathbb{C} interpreted in \mathbb{R} generalizes to any *finite* field extension. I.e. if L/K is a finite field extension then $(L, +, \cdot, 0, 1)$ is interpretable in $(K, +, \cdot, 0, 1)$.

In the definition of interpretation we only required there to be interpretations of unnested atomic formulae, but in fact there is a natural way to associate any ρ -formula to a τ -formula.

Proposition. Given an interpretation Γ of \mathfrak{B} in \mathfrak{A} there is a natural function

$$(-)_{\Gamma}: \mathscr{L}(\rho) \longrightarrow \mathscr{L}(\tau)$$

such that $\mathfrak{A} \models (\varphi)_{\Gamma}(\bar{a})$ if and only if all a_i satisfy ∂_{Γ} and $\mathfrak{B} \models \varphi(\pi \bar{a})$. The association is given inductively by

- for φ atomic unnested $(\varphi)_{\Gamma}$ is φ_{Γ} (as given in the definition of an interpretation)
- $(\varphi \wedge \psi)_{\Gamma}$ is $(\varphi)_{\Gamma} \wedge (\Psi)_{\Gamma}$
- $(\neg \varphi)_{\Gamma}$ will be $\neg(\varphi)_{\Gamma} \land \bigwedge \partial_{\Gamma}(-)$
- $(\exists x \varphi)_{\Gamma}$ will be $(\exists y_0, \ldots, y_{l-1})(\partial_{\Gamma}(\bar{y}) \land \varphi_{\Gamma}(\bar{y}))$

Proof. Immediate from the construction of Γ .

Given a collection of formulae in $\mathscr{L}(\tau)$: ∂_{Γ} and φ_{Γ} for φ an unnested formula in $\mathscr{L}(\rho)$ then we want a theory T_{Γ} which says that these formulae give an interpretation. I.e. T_{Γ} asserts that for any \mathfrak{A} which models T_{Γ} then the data ∂_{Γ} and φ_{Γ} define an interpretation. More precisely T_{Γ} must say

• If φ has *n* free variables and ∂_{Γ} has *m* free variables then φ_{Γ} has *mn* free variables.

- $(y_0 = y_1)_{\Gamma}$ is an equivalence relation \sim on $\partial_{\Gamma}(-)$.
- for each $f \in \mathcal{F}_{\rho}$ if φ is f(x) = y then T_{Γ} must say that

 $\forall \bar{u} \exists \bar{v} \varphi_{\Gamma}(\bar{u}, \bar{v}) \land \forall \bar{u}, \forall v, w (\varphi_{\Gamma}(\bar{u}, v) \land \varphi_{\Gamma}(\bar{u}, w) \longrightarrow v \sim w)$

• For each constant $c \in \mathcal{C}_{\rho}$, if φ is y = c, then T_{Γ} must say that

$$\exists \bar{x} \varphi_{\Gamma}(\bar{x}) \land \forall \bar{x}, \bar{y} \varphi_{\Gamma}(\bar{x}) \land \varphi_{\Gamma}(\bar{y}) \longrightarrow x \sim y$$

and

$$x \sim y \land \varphi_{\Gamma}(x) \longrightarrow \varphi_{\Gamma}(y)$$

• For $R \in \mathcal{R}_{\rho}$ then if $\varphi(x)$ is R(x) we have that T_{Γ} must say that

$$\forall \bar{u}, \bar{v} \varphi_{\Gamma}(\bar{u}) \land \bar{u} \sim \bar{v} \longrightarrow \varphi_{\Gamma}(\bar{v})$$

Proposition. If $\mathfrak{A} \models T_{\Gamma}$ then Γ is an interpretation of $\Gamma(\mathfrak{A}) := \mathfrak{B}$ where dom $(\mathfrak{B}) := \partial_{\Gamma}(\mathfrak{A}) / \sim$. Here we have

• for constants c we have $c^{\mathfrak{B}} := [\bar{b}]_{\sim}$ for any $\bar{a} \in \partial_{\Gamma}(\mathfrak{A})$ such that $\mathfrak{A} \models (x=c)_{\Gamma}(\bar{a})$.

- $([\bar{a}_0]_{\sim}, \dots, [\bar{a}_{n-1}]_{\sim}) \in R^{\mathfrak{B}}$ iff $\mathfrak{A} \models (R(x))_{\Gamma}(\bar{a})$
- and $f^{\mathfrak{B}}([\bar{a}]_{\sim}) = [b]_{\sim}$ iff $\mathfrak{A} \models (f(\bar{x}) = y)_{\Gamma}(\bar{a}, b)$.

Proof. We defined T_{Γ} so as to say exactly what this proposition is saying.

Example. If \mathfrak{A}' is a definitional expansion on \mathfrak{A} then the definitional expansion *is* an interpretation of \mathfrak{A}' in \mathfrak{A} .

A useful observation (which we will now prove) is that an interpretation Γ preserves elementary substructures.

Proposition. If $(\partial_{\Gamma}, \{\varphi_{\Gamma} : \varphi \text{ unnested } \rho \text{-formula}\})$ is given and $\mathfrak{A} \preccurlyeq \mathfrak{A}'$ where $\mathfrak{A}' \models T_{\Gamma}$ then $\Gamma(\mathfrak{A}) \preccurlyeq \Gamma(\mathfrak{A}')$.

Proof. Since $\mathfrak{A} \preccurlyeq \mathfrak{A}'$ we have $\partial_{\Gamma}(\mathfrak{A}) \subseteq \partial_{\Gamma}(\mathfrak{A}')$. Also ~ the equivalence relation (given by $(x = y)_{\Gamma}$) on ∂_{Γ} is an equivalence relation on both $\partial_{\Gamma}(\mathfrak{A})$ and on $\partial_{\Gamma}(\mathfrak{A}')$. Furthermore, again since $\mathfrak{A} \preccurlyeq A'$ the restriction of ~ on $\partial_{\Gamma}(\mathfrak{A}')$ to $\partial_{\Gamma}(\mathfrak{A})$ is just the old ~.

So the inclusion

$$\partial_{\Gamma}(\mathfrak{A}) \longrightarrow \partial_{\Gamma}(\mathfrak{A}')$$

induces an inclusion

$$\partial_{\Gamma}(\mathfrak{A})/\sim^{\mathfrak{A}} \longrightarrow \partial_{\Gamma}(\mathfrak{A}')/\sim^{\mathfrak{A}'}$$

The rest of the proof now follows from the earlier proposition: For any unnested formula φ in $\mathscr{L}(\rho)$ and tuple \bar{a} from $\partial_{\Gamma}(\mathfrak{A})$ we have

$$\mathfrak{A} \models (\varphi)_{\Gamma}(\bar{a}) \qquad \text{iff} \qquad \Gamma(\mathfrak{A}) \models \varphi([\bar{a}]_{\sim})$$

by the proposition. But by elementary extension we have

$$\mathfrak{A} \models (\varphi)_{\Gamma}(\bar{a})$$
 iff $\mathfrak{A}' \models (\varphi)_{\Gamma}(\bar{a})$

and so again by the proposition we have

$$\mathfrak{A}' \models (\varphi)_{\Gamma}(\bar{a}) \quad \text{iff} \quad \Gamma(\mathfrak{A}') \models \varphi([\bar{a}]_{\sim})$$

so $\Gamma(\mathfrak{A}) \preccurlyeq \Gamma(\mathfrak{A}')$.

If one can interpret a class of ρ structures in some other class of τ -structures, then one can pass elementary embedding from one class to the other.

Interpretations induce continuous homomorphisms between automorphism groups. To prove this we first need a general lemma about topological groups.

Lemma. Let G and H be topological groups and $\alpha : G \longrightarrow H$ a homomorphism. Then α is continuous if and only if α is continuous at the identity.

Proof. The forward direction is clear.

Suppose α is continuous at the identity $1_G \in G$. Let $g \in G$ and let $U \subseteq H$ be an open subset containing $\alpha(g)$. Then translating U by $\alpha(g)^{-1}$ we see that $1_H \in \alpha(g)^{-1}U$. Now $\alpha(g)^{-1}U$ is also open since translation is a homeomorphism $H \to H$. Now by assumption there is some V open in G such that $1_G \in V$ and $\alpha(V) \subseteq \alpha(g)^{-1}U$. Thus gV contains g (and is open) and $\alpha(gV) \subseteq U$.

Proposition. To an interpretation Γ of \mathfrak{B} in \mathfrak{A} there is an associated continuous homomorphism

$$\Gamma: \operatorname{Aut}(\mathfrak{A}) \longrightarrow \operatorname{Aut}(\mathfrak{B})$$

Proof. We first define the homomorphism.

Let σ be an automorphism of \mathfrak{A} . First note that σ must preserve $\partial_{\Gamma}(\mathfrak{A})$. I.e. $\mathfrak{A} \models \partial_{\Gamma}(\bar{a})$ if and only if $\mathfrak{A} \models \partial_{\Gamma}(\sigma\bar{a})$.

Now the equivalence relation \sim is also defined by some formula, so σ also preserves this. I.e. $a \sim b$ iff $\sigma a \sim \sigma b$.

Thus σ induces a function, $\hat{\sigma}$ of equivalence classes $\partial(\mathfrak{A})/\sim$. Now the by the isomorphism $(\partial(\mathfrak{A})/\sim) \cong \mathfrak{B}$ we get a (bijective) function $\Gamma(\sigma) : \mathfrak{B} \to \mathfrak{B}$.

We must check that it is also an automorphism. It suffices to check that $\Gamma(\sigma)$ preserves unnested ρ -formulae. Let φ be an unnested ρ -formula and $\mathfrak{B} \models \varphi(\bar{b})$. This is equivalent to $\mathfrak{A} \models (\varphi)_{\Gamma}(\bar{a})$ (where $\bar{a} = \pi(\bar{b})$) which is equivalent to $\mathfrak{A} \models (\varphi)_{\Gamma}(\sigma\bar{a})$ and finally this is equivalent to $\mathfrak{B} \models \varphi(\Gamma(\sigma)(\bar{b}))$.

Finally we must also check the continuity of $\Gamma : \operatorname{Aut}(\mathfrak{A}) \longrightarrow \operatorname{Aut}(\mathfrak{B})$. For this we use the lemma: It suffices to check continuity at the identity. Let U be open subset of $\operatorname{Aut}(\mathfrak{B})$ containing $\Gamma(id_{\mathfrak{A}})$. Without loss of generality we may assume that U is a basic open set around $id_{\mathfrak{B}}$, i.e. take U to be the stabilizer of \bar{b} for some \bar{b} from \mathfrak{B} . Let \bar{a} be a finite tuple of \mathfrak{A} such that $\bar{b} = \pi \bar{a}$ (which is possible since π is surjective). Then $\Gamma(\sigma)(U_{\bar{a},\bar{a}}) \subseteq U_{\bar{b},\bar{b}}$. So Γ is continuous.

Question. Suppose that Γ is an interpretation of \mathfrak{B} in \mathfrak{A} and Δ is an interpretation of \mathfrak{A} in \mathfrak{B} . Must $\Delta \circ \Gamma : \operatorname{Aut}(\mathfrak{A}) \longrightarrow \operatorname{Aut}(\mathfrak{A})$ be an automorphism?

These and many other related questions have been heavily studied, see for example [1] and [2].

Bibliography

- [1] Matatyahu Rubin, The Reconstruction of Trees from Their Automorphism Groups. American Mathematical Society, 1991.
- [2] Peter J. Cameron, Oligomorphic Permutation Groups. Cambridge University Press, 1990.