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General Information

These notes are based on a course in Metamathematics taught by Professor Thomas
Scanlon at UC Berkeley in the Autumn of 2013. The course will focus on Model
Theory and the course book is Hodges’ a shorter model theory.

As with any such notes, these may contain errors and typos. I take full respon-
sibility for such occurences. If you find any errors or typos (no matter how trivial!)
please let me know at mps@berkeley.edu.

Lecture 14

Interpretations

Definition. An interpretation Γ of the ρ-structure B in the τ -structure A is given
by

• a τ -formula ∂Γ(x0, . . . , xl−1)

• for each unnested ρ-atomic formula ϕ(y0, . . . , ym−1) a τ -formula

ϕΓ(x0,0, . . . , xl−1,0;x0,1, . . . , xl−1,1; . . . . . . x0,m−1, . . . , xl−1,m−1)

• and a surjective function
π : ∂Γ(A) −−−→ B

such that for all a, b ∈ ∂Γ(A) then π(a) = π(b) if and only if ϕΓ(a, b) where ϕ
is the ρ-atomic formula y0 = y1.

The condition on the map π is just that it pulls back the equality relation on
B to the interpretation (via Γ) of the equality relation on A.

We give a couple of examples.

Example. A classic example of an interpretation is that of the complex numbers in
the reals. Here we interpret a complex number z ∈ C as a pair of real numbers
(a, b) (which we think of as z = a + ib) with addition and multiplication defined
appropriately.

Formally we interpret (C,+, ·, 0, 1) in (R,+, ·, 0, 1) as follows; Let ∂Γ(x0, x1)

be any true statement for example x0 = x0. Thus ∂Γ(R) = R2. Here are some of the
crucial interpretations of the unnested formulae

• (y = 0)Γ will be (x0 = 0 ∧ x1 = 0).
• (y = 1)Γ will be (x0 = 1 ∧ x1 = 0).
• (y2 = y0 + y1)Γ will be (x0,0 + x0,1 = x0,2 ∧ x1,0 + x1,1 = x1,2)
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• (y2 = y0 · y1)Γ will be (x0,2 = x0,0x0,1 − x1,0x1,1 ∧ x1,0x0,1 + x0,0x1,1)

finally the map π : ∂Γ(R) −−−→ C is given by π(a0, a1) = a0 + a1

√
−1. Here the

usual equality relation in C pulls back to the coordinate-wise equality relation on
∂Γ(R) = R2 as it should!

Example. Set theory is stronger than arithmetic. I.e. we can also interpret arithmetic
inside of set theory.

Let τ = {∈} be the signature of set theory and let V be a model of ZFC. Let
ρ be the language of arithmetic, ρ = {≤,+, ·, 0, 1} and let B = (N,+, ·, 0, 1,≤). We
let ∂Γ(x) be the τ -formula which says “x is a natural number”, this can be formally
expressed in the language L (τ) but we will not do so now. Now addition and
multiplication can be given their usual set-theoretical interpretations (which again
we will not properly write out).

Example. The example of C interpreted in R generalizes to any finite field extension.
I.e. if L/K is a finite field extension then (L,+, ·, 0, 1) is interpretable in (K,+, ·, 0, 1).

In the definition of interpretation we only required there to be interpretations
of unnested atomic formulae, but in fact there is a natural way to associate any
ρ-formula to a τ -formula.

Proposition. Given an interpretation Γ of B in A there is a natural function

(−)Γ : L (ρ) −−−→ L (τ)

such that A |= (ϕ)Γ(ā) if and only if all ai satisfy ∂Γ and B |= ϕ(πā). The associa-
tion is given inductively by

• for ϕ atomic unnested (ϕ)Γ is ϕΓ (as given in the definition of an interpreta-
tion)

• (ϕ ∧ ψ)Γ is (ϕ)Γ ∧ (Ψ)Γ

• (¬ϕ)Γ will be ¬(ϕ)Γ ∧
∧
∂Γ(−)

• (∃xϕ)Γ will be (∃y0, . . . , yl−1)(∂Γ(ȳ) ∧ ϕΓ(ȳ))

Proof. Immediate from the construction of Γ.

Given a collection of formulae in L (τ): ∂Γ and ϕΓ for ϕ an unnested formula in
L (ρ) then we want a theory TΓ which says that these formulae give an interpretation.
I.e. TΓ asserts that for any A which models TΓ then the data ∂Γ and ϕΓ define an
interpretation. More precisely TΓ must say

• If ϕ has n free variables and ∂Γ has m free variables then ϕΓ has mn free
variables.

2



• (y0 = y1)Γ is an equivalence relation ∼ on ∂Γ(−).
• for each f ∈ Fρ if ϕ is f(x) = y then TΓ must say that

∀ū∃v̄ϕΓ(ū, v̄) ∧ ∀ū,∀v, w(ϕΓ(ū, v) ∧ ϕΓ(ū, w) −−−→ v ∼ w)

• For each constant c ∈ Cρ, if ϕ is y = c, then TΓ must say that

∃x̄ϕΓ(x̄) ∧ ∀x̄, ȳϕΓ(x̄) ∧ ϕΓ(ȳ) −−−→ x ∼ y

and
x ∼ y ∧ ϕΓ(x) −−−→ ϕΓ(y)

• For R ∈ Rρ then if ϕ(x) is R(x) we have that TΓ must say that

∀ū, v̄ϕΓ(ū) ∧ ū ∼ v̄ −−−→ ϕΓ(v̄).

Proposition. If A |= TΓ then Γ is an interpretation of Γ(A) := B where dom(B) :=

∂Γ(A)/ ∼. Here we have

• for constants c we have cB := [b̄]∼ for any ā ∈ ∂Γ(A) such that A |= (x=c)Γ(ā).
• ([ā0]∼, . . . , [ān−1]∼) ∈ RB iff A |= (R(x))Γ(ā)

• and fB([ā]∼) = [b]∼ iff A |= (f(x̄) = y)Γ(ā, b).

Proof. We defined TΓ so as to say exactly what this proposition is saying.

Example. If A′ is a definitional expansion on A then the definitional expansion is an
interpretation of A′ in A.

A useful observation (which we will now prove) is that an interpretation Γ

preserves elementary substructures.

Proposition. If (∂Γ, {ϕΓ : ϕ unnested ρ-formula}) is given and A 4 A′ where A′ |=
TΓ then Γ(A) 4 Γ(A′).

Proof. Since A 4 A′ we have ∂Γ(A) ⊆ ∂Γ(A′). Also ∼ the equivalence relation
(given by (x = y)Γ) on ∂Γ is an equivalence relation on both ∂Γ(A) and on ∂Γ(A′).
Furthermore, again since A 4 A′ the restriction of ∼ on ∂Γ(A′) to ∂Γ(A) is just the
old ∼.

So the inclusion
∂Γ(A) −−−→ ∂Γ(A′)

induces an inclusion
∂Γ(A)/ ∼A −−−→ ∂Γ(A′)/ ∼A′

.

The rest of the proof now follows from the earlier proposition: For any unnested
formula ϕ in L (ρ) and tuple ā from ∂Γ(A) we have

A |= (ϕ)Γ(ā) iff Γ(A) |= ϕ([ā]∼)
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by the proposition. But by elementary extension we have

A |= (ϕ)Γ(ā) iff A′ |= (ϕ)Γ(ā)

and so again by the proposition we have

A′ |= (ϕ)Γ(ā) iff Γ(A′) |= ϕ([ā]∼)

so Γ(A) 4 Γ(A′).

If one can interpret a class of ρ structures in some other class of τ -structures,
then one can pass elementary embedding from one class to the other.

Interpretations induce continuous homomorphisms between automorphism groups.
To prove this we first need a general lemma about topological groups.

Lemma. Let G and H be topological groups and α : G −−−→ H a homomorphism.
Then α is continuous if and only if α is continuous at the identity.

Proof. The forward direction is clear.
Suppose α is continuous at the identity 1G ∈ G. Let g ∈ G and let U ⊆ H

be an open subset containing α(g). Then translating U by α(g)−1 we see that
1H ∈ α(g)−1U . Now α(g)−1U is also open since translation is a homeomorphism
H → H. Now by assumption there is some V open in G such that 1G ∈ V and
α(V ) ⊆ α(g)−1U . Thus gV contains g (and is open) and α(gV ) ⊆ U .

Proposition. To an interpretation Γ of B in A there is an associated continuous
homomorphism

Γ : Aut(A) −−−→ Aut(B)

Proof. We first define the homomorphism.
Let σ be an automorphism of A. First note that σ must preserve ∂Γ(A). I.e.

A |= ∂Γ(ā) if and only if A |= ∂Γ(σā).
Now the equivalence relation ∼ is also defined by some formula, so σ also

preserves this. I.e. a ∼ b iff σa ∼ σb.
Thus σ induces a function, σ̂ of equivalence classes ∂(A)/ ∼. Now the by the

isomorphism (∂(A)/ ∼) ∼= B we get a (bijective) function Γ(σ) : B→ B.
We must check that it is also an automorphism. It suffices to check that Γ(σ)

preserves unnested ρ-formulae. Let ϕ be an unnested ρ-formula and B |= ϕ(b̄). This
is equivalent to A |= (ϕ)Γ(ā) (where ā = π(b̄)) which is equivalent to A |= (ϕ)Γ(σā)

and finally this is equivalent to B |= ϕ(Γ(σ)(b̄).
Finally we must also check the continuity of Γ : Aut(A) −−−→ Aut(B). For

this we use the lemma: It suffices to check continuity at the identity. Let U be open
subset of Aut(B) containing Γ(idA). Without loss of generality we may assume that
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U is a basic open set around idB, i.e. take U to be the stabilizer of b̄ for some b̄
from B. Let ā be a finite tuple of A such that b̄ = πā (which is possible since π is
surjective). Then Γ(σ)(Uā,ā) ⊆ Ub̄,b̄. So Γ is continuous.

Question. Suppose that Γ is an interpretation of B in A and ∆ is an interpretation
of A in B. Must ∆ ◦ Γ : Aut(A) −−−→ Aut(A) be an automorphism?

These and many other related questions have been heavily studied, see for
example [1] and [2].
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