Math 225A - Model Theory

Speirs, Martin

Autumn 2013

General Information

These notes are based on a course in Metamathematics taught by Professor Thomas Scanlon at UC Berkeley in the Autumn of 2013. The course will focus on Model Theory and the course book is Hodges' a shorter model theory.

As with any such notes, these may contain errors and typos. I take full responsibility for such occurences. If you find any errors or typos (no matter how trivial!) please let me know at mps@berkeley.edu.

Lecture 5

We start with some examples of first-order theories.
Example (Peano Arithmetic). Peano arithmetic is intended as a formalization of the laws of arithmetic on the natural numbers. Let $\tau=\{0,1,+, \cdot,<\}$ where 0 and 1 are constants, + and \cdot are binary function symbols, and $<$ is a binary relation. The axioms of this theory can be presented in many different ways. There are basically two sorts of axioms: the ones describing the algebraic properties of the natural numbers and the ones describing induction. The algebraic axioms basically state (in the formal language $\mathscr{L}(\tau))$ that $(\mathbb{N}, 0,1,+, \cdot,<)$ is a discretely ordered semi-ring. They may be stated as follows.

- $\forall x x+0=x$
- $\forall x \forall y(x+y)+1=x+(y+1)$
- $\forall x \forall y[(x+1=y+1) \rightarrow x=y]$
- $\forall x \neg(x+1=0)$
- $\forall x x \cdot 0=0$
- $\forall x \forall y x \cdot(y+1)=x \cdot y+x$
- $\forall x \neg(x<x)$
- $\forall x \forall y(x<y) \vee(x=y) \vee(y<x)$
- $\forall x \forall y \forall z(x<y \wedge y<z \rightarrow x<y)$
- $\forall x \forall y \forall z x<y \rightarrow x+z<y+z$
- $\forall x \forall y(x<y+1) \rightarrow(x<y \vee x=y)$

This takes care of the algebraic axioms. Note that the above list is a finite list of sentences, and so we could take the conjunction over all of them and write them as a single sentence in $\mathscr{L}(\tau)$. This is not the case for the induction axioms. Induction is given by a schema of axioms. For each formula $\varphi(x, \bar{y})$ in $\mathscr{L}(\tau)$ we have the axiom, $I(\varphi)$:

$$
\forall \bar{y}([\varphi(0, \bar{y}) \wedge \forall z(\varphi(z, \bar{y}) \rightarrow \varphi(z+1, \bar{y}))] \rightarrow \forall x \varphi(x, \bar{y}))
$$

i.e. if $\varphi(x, \bar{y})$ is true of 0 and if each time $\varphi(z, \bar{y})$ is true then so is $\varphi(z+1, \bar{y})$, then $\varphi(x, \bar{y})$ is true for all x.

The collection of all these infinitely many axioms (both the algebraic and the inductive) is called the theory of Peano arithmetic, or $P A$. It is of course meant to axiomatize \mathbb{N}. There are however many other non-standard models of Peano arithmetic. A theorem of Tenenbaum however says that no other models of Peano arithmetic has a recursive presentation. In a sense this means that one will never "see" any of the non-standard models of $P A$.

Example (Orders). Let $\tau=\{<\}$ be the signature of a single binary relation symbol. The partial orders are τ-structures satisfying the axioms

- $\forall x \neg(x<x)$
- $\forall x \forall y \forall z(x<y \wedge y<z) \rightarrow(x<z)$

The theory of linear orders is a sub theory of the theory of partial orders, i.e. it contains the two axioms above and the extra axiom

$$
\forall x \forall y(x<y \vee x=y \vee y<x)
$$

The theory of well-orders is the theory of linear orders together with the statement that
for every nonempty subset X there exists a least element $a \in X$.
This last statement is not a first-order statement since we are quantifying over both subsets and elements of the subsets. So this is a second-order statement and can be made rigorous in second-order logic.

Exercise. Show that the class of well-orders is axiomatizable in $\mathscr{L}_{\omega_{1} \omega_{1}}$. [Hint: $(A,<)$ is well-ordered iff there are no strict descending chains.]

Example (ZFC). Zermelo-Fraenkel set theory with choice ($Z F C$) is an axiomatization system for doing set theory. As with $P A, Z F C$ is usually given by an axiom schema. In fact $Z F C$ is not finitely axiomatizable.

Example (ACF). Algebraically Closed Fields $(A C F)$. This is again given by a schema of axioms which express that every monic polynomial, of degree m (for each $m \in \omega$) with coefficients in the field, has a solution. $A C F$ is in fact not finitely axiomatizable, but there is an open question which asks whether $A C F$ is finite-variable axiomatizable. I.e. if we allow only finitely many variables in the construction of the language, can we axiomatize $A C F$?

Preservation of formulas

Fix a signature τ. We work in $\mathscr{L}_{\omega \omega}$ although some of the following makes sense in higher-order logics. We start with the \forall_{n} (read: "A n ") and \exists_{n} (read: "E n ") hierarchy
of formulas. The subscripts refer to the number of alterations of quantifiers there are in a given formula.

Definition. The class of \forall_{0} formulae is the same as the class of \exists_{0} formulae and they are the quantifier-free formulae. A formula is \forall_{n+1} if it has the form

$$
\forall \bar{y}(\bigvee \bigwedge \Phi)
$$

where every $\varphi \in \Phi$ is an \exists_{n}-formula.
A formula is \exists_{n+1}-formula if it has the form

$$
\exists \bar{y}(\bigvee \bigwedge \Phi)
$$

where each $\varphi \in \Phi$ is a \forall_{n}-formula.
Note that $\bigcup_{n} \forall_{n}=\bigcup_{n} \exists_{n}$.
Remark. Often one says that a formula which is "equivalent" to a formula in a given class is in that class. I.e. if φ is "equivalent" to a formula ψ which is \forall_{n} then we may say that φ is \forall_{n} as well. Here "equivalent" means equivalence modulo some implicit background theory T. I.e. φ and ψ are equivalent modulo T if for all \mathfrak{A} such that $\mathfrak{A} \models T$ then $\mathfrak{A} \models \varphi \leftrightarrow \psi$.
Remark. The classification given above is similar to the arithmetical hierarchy in recursion theory (see lecture 4), where statements are divided into Σ_{n}^{0} and Π_{n}^{0} classes. However, these hierarchies are different, namely in the lowest level $\Sigma_{0}^{0}=\Pi_{0}^{0}$ allows the use of bounded quantifiers. Bounded quantifiers are not allowed in the \forall_{0} and \exists_{0} formulae.

A formula is prenex if it consists of a (possibly empty) string of quantifiers followed by a quantifier-free formula.

Proposition. For every $\psi \in \mathscr{L}(\tau)$ there exists $\theta \in \bigcup_{n} \forall_{n}=\bigcup \exists_{n}$ such that $\psi \leftrightarrow \theta$. In words; every formula is equivalent to a formula in prenex normal form.
Proof. We work by induction on the complexity of ψ.
If ψ is atomic then it is \forall_{0} (and \exists_{0}) already. If $\psi=\neg \theta$ then by induction θ is in, say, \exists_{n} so θ has the form $\exists \tilde{y} \tilde{\theta}$ with $\tilde{\theta}$ in \forall_{n-1}, so $\neg \theta$ is equivalent to $\forall \bar{y} \neg \tilde{\theta}$.
If $\psi=(\varphi \vee \theta)$ then we may assume $\varphi \in \forall_{n}$ and $\theta \in \forall_{n}$ then by definition ψ is in $\forall_{n} \subseteq \exists_{n+1}$ (since we can always put irrelevant quantifiers in from of a formula).
Likewise for $\psi=\exists \theta$, we may assume $\theta \in \forall_{n}$ then $\psi \in \exists_{n+1}$. By induction we are done.

We shall see later that this hierarchy is in fact proper, in the sense that the inclusions $\forall_{n} \subseteq \exists_{n}$ and $\exists_{n} \subseteq \forall_{n+1}$ are proper.

Remark. This is related to Hilbert's 10th problem; Find an algorithm to decide for $p(x) \in \mathbb{Z}[x]$ whether there exists $\bar{a} \in \mathbb{Z}^{n}$ such that $p(\bar{a})=0$. The Matiyasevich-Davis-Putnam-Robinson (MDPR) theorem states that no such algorithm exists. This problem can then be asked for polynomials over the rational. This is an open problem. But, a recent theorem of Jochen Koenigsmann states that there is a universal definition of the integers inside the rationals. I.e. a \forall_{1}-formula $\theta(x)$ such that $\mathbb{Q} \vDash \theta(a)$ if and only if $a \in \mathbb{Z}$. If there were an \exists_{1}-definition then the MDPR-theorem would imply that there is no algorithm to decide over \mathbb{Q} either.
Later in the course we will prove the following fact: There exist two models \mathfrak{A} and \mathfrak{B} of the theory of the rational, $(\mathbb{Q},+, \cdot, 0,1)$, such that $\mathfrak{A} \subseteq \mathfrak{B}$ and there is some polynomial over \mathfrak{A} which has no solutions over \mathfrak{A} but does have solutions over \mathfrak{B}.

We shall now look at what kinds of formulae are preserved by certain types of maps.

Proposition (Going-up). If $\iota: \mathfrak{A} \rightarrow \mathfrak{B}$ is an embedding and $\varphi(\bar{x})$ is \exists_{1}, then $\mathfrak{A} \models \varphi(\bar{a})$ implies that $\mathfrak{B} \models \varphi(\iota \bar{a})$. Equivalently if $\mathfrak{A} \subseteq \mathfrak{B}$ then $\mathfrak{B} \models(\iota \bar{a})$.

Notation. If $\varphi(\bar{x})$ is a formula and \bar{a} is a tuple of the same length as \bar{x} then we write $\varphi(\bar{a} / \bar{x})$ for the formula where we have substituted \bar{a} for \bar{x}.

Proof. Write φ as $\exists \bar{y}(\bigvee \bigwedge \Psi)$ where Ψ is a set of \forall_{0} (i.e. quantifier-free) formulae. Then if $\mathfrak{A}_{\bar{a}} \models \varphi(\bar{a})$ then there exist \bar{b} from \mathfrak{A} such that $\mathfrak{A}_{\bar{a}, \bar{b}} \models \bigvee \bigwedge \Psi(\bar{a} / \bar{x}, \bar{b} / \bar{y})$. We have already shown that if $\theta(\bar{z})$ is quantifier-free and $\mathfrak{A} \subseteq \mathfrak{B}$ then for all \bar{c} in \mathfrak{A} we have $\mathfrak{A} \models \theta(\bar{c})$ if and only if $\mathfrak{B} \models \theta(\bar{c})$. So $\mathfrak{B} \models \bigvee \bigwedge \Psi(\bar{a} / \bar{x}, \bar{b} / \bar{y})$, i.e. $\mathfrak{B} \models \exists \bar{y} \bigvee \bigwedge \Psi(\bar{a} / \bar{x}, \bar{y})$.

If we weaken the hypothesis and assume only that there is a homomorphism between \mathfrak{A} and \mathfrak{B} we can still get a result. We call a formula \exists_{1}^{+}if no negations are involved, i.e. if it has the form $\exists \bar{y}(\bigvee \bigwedge \Phi)$ where all elements of Φ are atomic.

Proposition. If $\rho: \mathfrak{A} \rightarrow \mathfrak{B}$ is a τ-homomorphism and φ is \exists_{1}^{+}, then $\mathfrak{A}_{\bar{a}} \models \varphi(\bar{a})$ implies $\mathfrak{B}_{\rho \bar{a}}=\varphi(\rho \bar{a})$.

Proof. Immediate from the definition of homomorphism.
The "Going-up" proposition has a dual "Going-down" proposition.
Proposition (Going-down). If $\mathfrak{A} \subseteq \mathfrak{B}$ and φ is \forall_{1} then $\mathfrak{B} \models \varphi(\bar{a})$ implies that $\mathfrak{A} \models \varphi(\bar{a})$.

Proof. We note that φ is equivalent to a formula of form $\neg \exists \neg$. Then apply the "going-up" proposition.

As a nice consequence of this propositions, suppose T is a theory where all axioms of T are \forall_{1}. Then the class of models is closed under formation of substructures. I.e. if $\mathfrak{A} \models T$ then all substructures of \mathfrak{A} also model T. Dually, if T is a theory all of whose sentences are \exists_{1} then, by the going-up proposition, the class of models of T is closed under formation of superstructures. I.e. if $\mathfrak{A} \models T$ and \mathfrak{B} is some superstructure of \mathfrak{A} then $\mathfrak{B}=T$ as well.
We shall in fact see that these characterizations of universal and existential theories have converses. That is, if a theory T has the property that whenever $\mathfrak{A} \vDash T$ then for all substructures $\mathfrak{B} \subseteq \mathfrak{A}, \mathfrak{B} \models T$, then T is universal. Similarly if T has the property that whenever $\mathfrak{A} \mid=T$ and $\mathfrak{B} \supseteq \mathfrak{A}$ then $\mathfrak{B} \models T$, then T is existential.

We now turn to situations where we can preserve \forall_{2}-sentences.
Definition. A chain of models is a sequence $\left(\mathfrak{A}_{i}\right)_{i \in I}$ of τ-structures such that $(I,<)$ is totally ordered and such that

$$
i<j \Rightarrow \mathfrak{A}_{i} \subseteq \mathfrak{A}_{j}
$$

Given a chain $\left(\mathfrak{A}_{i}\right)_{i \in I}$ of τ-structures we can form the direct limit ${ }^{1}$

$$
\tilde{\mathfrak{A}}=\bigcup_{i \in I} \mathfrak{A}_{i} .
$$

The domain of $\tilde{\mathfrak{A}}$ will be the union $\bigcup_{i \in I} \operatorname{dom}\left(\mathfrak{A}_{i}\right)$. The interpretations of the symbols will be as follows.

- for $c \in \mathcal{C}_{\tau}$ let $c^{\tilde{\mathfrak{A}}}=c^{\mathfrak{A}_{i}}$ for any choice of \mathfrak{A}_{i}
- for $f \in \mathcal{C}_{\tau}$ then $f^{\tilde{\mathfrak{A}}}=\bigcup_{i \in I} f^{\mathfrak{A}_{i}}$
- for $R \in \mathcal{R}_{\tau}$ then $R^{\tilde{\mathfrak{A}}}=\bigcup_{i \in I} f^{\mathfrak{A}_{i}}$.

All these choices are well-defined and since $\mathfrak{A}_{i} \subseteq \mathfrak{A}_{j}$ whenever $i<j$ we get that $\mathfrak{A}_{i} \subseteq \tilde{\mathfrak{A}}$ for all $i \in I$.
\forall_{2} sentences "go up" in chains.
Proposition. If φ is \forall_{2} and if for all $i \in I \mathfrak{A}_{i} \models \varphi$ then $\tilde{\mathfrak{A}} \models \varphi$.
Proof. We can write φ as $\forall \bar{x} \exists \bar{y} \theta$ with θ quantifier-free. Let \bar{a} be a sequence from $\tilde{\mathfrak{A}}$. Since \bar{a} is finite there exists $i \in I$ such that \bar{a} comes from $\operatorname{dom}\left(\mathfrak{A}_{i}\right)$. Now since $\mathfrak{A}_{i} \models \varphi$ we have

$$
\mathfrak{A}_{i, \bar{a}}=\exists \bar{y} \theta(\bar{a} / x)
$$

[^0]and so by the going-up for \exists_{1},
$$
\tilde{\mathfrak{A}}_{\bar{a}} \models \exists \bar{y} \theta(\bar{a} / x)
$$
and since this was true for any choice of \bar{a} it follows that
$$
\tilde{\mathfrak{A}} \models \varphi .
$$

The converse is also true, i.e. a theory T admits an \forall_{2}-axiomatization if and only if it is preserved under unions of chains.

[^0]: ${ }^{1}$ It is in fact a direct limit in the category theoretic sense.

