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General Information

These notes are based on a course in Metamathematics taught by Professor Thomas
Scanlon at UC Berkeley in the Autumn of 2013. The course will focus on Model
Theory and the course book is Hodges’ a shorter model theory.

As with any such notes, these may contain errors and typos. I take full respon-
sibility for such occurences. If you find any errors or typos (no matter how trivial!)
please let me know at mps@berkeley.edu.

Lecture 5

We start with some examples of first-order theories.

Example (Peano Arithmetic). Peano arithmetic is intended as a formalization of the
laws of arithmetic on the natural numbers. Let τ = {0, 1,+, ·, <} where 0 and 1

are constants, + and · are binary function symbols, and < is a binary relation. The
axioms of this theory can be presented in many different ways. There are basically
two sorts of axioms: the ones describing the algebraic properties of the natural
numbers and the ones describing induction. The algebraic axioms basically state
(in the formal language L (τ)) that (N, 0, 1,+, ·, <) is a discretely ordered semi-ring.
They may be stated as follows.

• ∀x x+ 0 = x

• ∀x∀y (x+ y) + 1 = x+ (y + 1)

• ∀x∀y [(x+ 1=y + 1)→ x = y]

• ∀x ¬(x+ 1 = 0)

• ∀x x · 0 = 0

• ∀x∀y x · (y + 1) = x · y + x

• ∀x ¬(x < x)

• ∀x∀y (x < y) ∨ (x = y) ∨ (y < x)

• ∀x∀y∀z (x < y ∧ y < z → x < y)

• ∀x∀y∀z x < y → x+ z < y + z

• ∀x∀y (x < y + 1)→ (x < y ∨ x = y)

This takes care of the algebraic axioms. Note that the above list is a finite list of
sentences, and so we could take the conjunction over all of them and write them as a
single sentence in L (τ). This is not the case for the induction axioms. Induction is
given by a schema of axioms. For each formula ϕ(x, ȳ) in L (τ) we have the axiom,
I(ϕ):

∀ȳ ([ϕ(0, ȳ) ∧ ∀z (ϕ(z, ȳ)→ ϕ(z + 1, ȳ))]→ ∀x ϕ(x, ȳ))
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i.e. if ϕ(x, ȳ) is true of 0 and if each time ϕ(z, ȳ) is true then so is ϕ(z + 1, ȳ), then
ϕ(x, ȳ) is true for all x.

The collection of all these infinitely many axioms (both the algebraic and the
inductive) is called the theory of Peano arithmetic, or PA. It is of course meant
to axiomatize N. There are however many other non-standard models of Peano
arithmetic. A theorem of Tenenbaum however says that no other models of Peano
arithmetic has a recursive presentation. In a sense this means that one will never
“see” any of the non-standard models of PA.

Example (Orders). Let τ = {<} be the signature of a single binary relation symbol.
The partial orders are τ -structures satisfying the axioms

• ∀x ¬(x < x)

• ∀x∀y∀z (x < y ∧ y < z)→ (x < z)

The theory of linear orders is a sub theory of the theory of partial orders, i.e. it
contains the two axioms above and the extra axiom

∀x∀y(x < y ∨ x = y ∨ y < x).

The theory of well-orders is the theory of linear orders together with the statement
that

for every nonempty subset X there exists a least element a ∈ X.

This last statement is not a first-order statement since we are quantifying over both
subsets and elements of the subsets. So this is a second-order statement and can be
made rigorous in second-order logic.

Exercise. Show that the class of well-orders is axiomatizable in Lω1ω1 . [Hint: (A,<)

is well-ordered iff there are no strict descending chains.]

Example (ZFC). Zermelo-Fraenkel set theory with choice (ZFC) is an axiom-
atization system for doing set theory. As with PA, ZFC is usually given by an
axiom schema. In fact ZFC is not finitely axiomatizable.

Example (ACF). Algebraically Closed Fields (ACF ). This is again given by
a schema of axioms which express that every monic polynomial, of degree m (for
each m ∈ ω) with coefficients in the field, has a solution. ACF is in fact not
finitely axiomatizable, but there is an open question which asks whether ACF is
finite-variable axiomatizable. I.e. if we allow only finitely many variables in the
construction of the language, can we axiomatize ACF?

Preservation of formulas

Fix a signature τ . We work in Lωω although some of the following makes sense in
higher-order logics. We start with the ∀n (read: “A n”) and ∃n (read: “E n”) hierarchy
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of formulas. The subscripts refer to the number of alterations of quantifiers there
are in a given formula.

Definition. The class of ∀0 formulae is the same as the class of ∃0 formulae and
they are the quantifier-free formulae. A formula is ∀n+1 if it has the form

∀ȳ
(∨∧

Φ
)

where every ϕ ∈ Φ is an ∃n-formula.
A formula is ∃n+1-formula if it has the form

∃ȳ
(∨∧

Φ
)

where each ϕ ∈ Φ is a ∀n-formula.

Note that
⋃
n ∀n =

⋃
n ∃n.

Remark. Often one says that a formula which is “equivalent” to a formula in a given
class is in that class. I.e. if ϕ is “equivalent” to a formula ψ which is ∀n then we may
say that ϕ is ∀n as well. Here “equivalent” means equivalence modulo some implicit
background theory T . I.e. ϕ and ψ are equivalent modulo T if for all A such that
A |= T then A |= ϕ↔ ψ.

Remark. The classification given above is similar to the arithmetical hierarchy in
recursion theory (see lecture 4), where statements are divided into Σ0

n and Π0
n classes.

However, these hierarchies are different, namely in the lowest level Σ0
0 = Π0

0 allows
the use of bounded quantifiers. Bounded quantifiers are not allowed in the ∀0 and ∃0

formulae.

A formula is prenex if it consists of a (possibly empty) string of quantifiers
followed by a quantifier-free formula.

Proposition. For every ψ ∈ L (τ) there exists θ ∈
⋃
n ∀n =

⋃
∃n such that ψ ↔ θ.

In words; every formula is equivalent to a formula in prenex normal form.

Proof. We work by induction on the complexity of ψ.
If ψ is atomic then it is ∀0 (and ∃0) already. If ψ = ¬θ then by induction θ is in,
say, ∃n so θ has the form ∃ȳθ̃ with θ̃ in ∀n−1, so ¬θ is equivalent to ∀ȳ¬θ̃.
If ψ = (ϕ ∨ θ) then we may assume ϕ ∈ ∀n and θ ∈ ∀n then by definition ψ is in
∀n ⊆ ∃n+1 (since we can always put irrelevant quantifiers in from of a formula).
Likewise for ψ = ∃θ, we may assume θ ∈ ∀n then ψ ∈ ∃n+1. By induction we are
done.

We shall see later that this hierarchy is in fact proper, in the sense that the
inclusions ∀n ⊆ ∃n and ∃n ⊆ ∀n+1 are proper.
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Remark. This is related to Hilbert’s 10th problem; Find an algorithm to decide for
p(x) ∈ Z[x] whether there exists ā ∈ Zn such that p(ā) = 0. The Matiyasevich-Davis-
Putnam-Robinson (MDPR) theorem states that no such algorithm exists. This prob-
lem can then be asked for polynomials over the rational. This is an open problem.
But, a recent theorem of Jochen Koenigsmann states that there is a universal defi-
nition of the integers inside the rationals. I.e. a ∀1-formula θ(x) such that Q |= θ(a)

if and only if a ∈ Z. If there were an ∃1-definition then the MDPR-theorem would
imply that there is no algorithm to decide over Q either.
Later in the course we will prove the following fact: There exist two models A and
B of the theory of the rational, (Q,+, ·, 0, 1), such that A ⊆ B and there is some
polynomial over A which has no solutions over A but does have solutions over B.

We shall now look at what kinds of formulae are preserved by certain types of
maps.

Proposition (Going-up). If ι : A → B is an embedding and ϕ(x̄) is ∃1, then
A |= ϕ(ā) implies that B |= ϕ(ιā). Equivalently if A ⊆ B then B |= (ιā).

Notation. If ϕ(x̄) is a formula and ā is a tuple of the same length as x̄ then we write
ϕ(ā/x̄) for the formula where we have substituted ā for x̄.

Proof. Write ϕ as ∃ȳ(
∨∧

Ψ) where Ψ is a set of ∀0 ( i.e. quantifier-free) formulae.
Then if Aā |= ϕ(ā) then there exist b̄ from A such that Aā,b̄ |=

∨∧
Ψ(ā/x̄, b̄/ȳ).

We have already shown that if θ(z̄) is quantifier-free and A ⊆ B then for all c̄
in A we have A |= θ(c̄) if and only if B |= θ(c̄). So B |=

∨∧
Ψ(ā/x̄, b̄/ȳ), i.e.

B |= ∃ȳ
∨∧

Ψ(ā/x̄, ȳ).

If we weaken the hypothesis and assume only that there is a homomorphism
between A and B we can still get a result. We call a formula ∃+

1 if no negations are
involved, i.e. if it has the form ∃ȳ(

∨∧
Φ) where all elements of Φ are atomic.

Proposition. If ρ : A → B is a τ -homomorphism and ϕ is ∃+
1 , then Aā |= ϕ(ā)

implies Bρā |= ϕ(ρā).

Proof. Immediate from the definition of homomorphism.

The “Going-up” proposition has a dual “Going-down” proposition.

Proposition (Going-down). If A ⊆ B and ϕ is ∀1 then B |= ϕ(ā) implies that
A |= ϕ(ā).

Proof. We note that ϕ is equivalent to a formula of form ¬∃¬. Then apply the
“going-up” proposition.
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As a nice consequence of this propositions, suppose T is a theory where all
axioms of T are ∀1. Then the class of models is closed under formation of substruc-
tures. I.e. if A |= T then all substructures of A also model T . Dually, if T is a
theory all of whose sentences are ∃1 then, by the going-up proposition, the class of
models of T is closed under formation of superstructures. I.e. if A |= T and B is
some superstructure of A then B |= T as well.
We shall in fact see that these characterizations of universal and existential theories
have converses. That is, if a theory T has the property that whenever A |= T then
for all substructures B ⊆ A, B |= T , then T is universal. Similarly if T has the
property that whenever A |= T and B ⊇ A then B |= T , then T is existential.

We now turn to situations where we can preserve ∀2-sentences.

Definition. A chain of models is a sequence (Ai)i∈I of τ -structures such that (I,<)

is totally ordered and such that

i < j ⇒ Ai ⊆ Aj .

Given a chain (Ai)i∈I of τ -structures we can form the direct limit1

Ã =
⋃
i∈I

Ai.

The domain of Ã will be the union
⋃
i∈I dom(Ai). The interpretations of the symbols

will be as follows.

• for c ∈ Cτ let cÃ = cAi for any choice of Ai
• for f ∈ Cτ then f Ã =

⋃
i∈I f

Ai

• for R ∈ Rτ then RÃ =
⋃
i∈I f

Ai .

All these choices are well-defined and since Ai ⊆ Aj whenever i < j we get that
Ai ⊆ Ã for all i ∈ I.

∀2 sentences “go up” in chains.

Proposition. If ϕ is ∀2 and if for all i ∈ I Ai |= ϕ then Ã |= ϕ.

Proof. We can write ϕ as ∀x̄∃ȳ θ with θ quantifier-free. Let ā be a sequence from
Ã. Since ā is finite there exists i ∈ I such that ā comes from dom(Ai). Now since
Ai |= ϕ we have

Ai,ā |= ∃ȳ θ(ā/x)

1It is in fact a direct limit in the category theoretic sense.
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and so by the going-up for ∃1,

Ãā |= ∃ȳ θ(ā/x)

and since this was true for any choice of ā it follows that

Ã |= ϕ.

The converse is also true, i.e. a theory T admits an ∀2-axiomatization if and
only if it is preserved under unions of chains.
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