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General Information

These notes are based on a course in Metamathematics taught by Professor Thomas
Scanlon at UC Berkeley in the Autumn of 2013. The course will focus on Model
Theory and the course book is Hodges’ a shorter model theory.

As with any such notes, these may contain errors and typos. I take full respon-
sibility for such occurences. If you find any errors or typos (no matter how trivial!)
please let me know at mps@berkeley.edu.

Lecture 13

Last time we defined a topology on Sym(X). We showed that the automorphism
group of a structure, Aut(A), is a closed subgroup of the permutation group of the
domain, Sym(A). It follows that if A+ is an expansion of A then Aut(A+) is a closed
subgroup of Aut(A) with respect to the subspace topology on Aut(A). This has a
converse. Any closed subgroup of Aut(A) can be realized as the automorphism group
of an extension of A.

Proposition. Let A be a τ -structre and H a closed subgroup of Aut(A). Then there
is an extension of signatures τ+ ⊇ τ and an extension A+ of A to τ+, such that
H = Aut(A+).

Proof. The action of H on the set A = dom(A) is used to determine some new
relation symbols. For each n ∈ ω and for each H-orbit X ⊆ An let RX ∈ Rτ+ be a
new relation symbol of arity n. We let A+ be the extension of A where

RA+

X := X.

We claim H = Aut(A+).
First let h ∈ H. Let RX ∈ τ+ be one of the new relation symbols, and let

a ∈ An such that A+ |= RX(a). Then X = H.a ⊆ An. So h.a ∈ X, i.e. A+ |=
RX(ha). Conversely if A |= RX(ha) then ha ∈ X and so a = h−1(ha) ∈ X as well.
Since h ∈ Aut(A) and h fixes all new relation symbols we have that h ∈ Aut(A+).
So H ≤ Aut(A+).

Now let σ ∈ Aut(A+). We will show that σ is in H and so by assumption in
H (since H is closed). Let U 3 σ be an open set. We may assume U = Ua,b for some
a, b ∈ An so that σa = b. Let X = Ha be the H-orbit of a. Since σ ∈ Aut(A+) we
have

A+ |= RX(a) =⇒ A+ |= RX(σa)
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so A+ |= RX(b) i.e. b ∈ X. So there is some h ∈ H such that ha = b. But this
means that h ∈ H ∩Ua,b. In particular H ∩Ua,b 6= ∅, so every open set containing σ
meets H, so σ ∈ H = H.

Remark. As previously mentioned, for a τ -structure A and a ∈ An the type of a
written tp(a) is defined to be

tp(a) := Th(Aa) = {ϕ(x̄) ∈ L (τ) : A |= ϕ(ā)}

i.e. all formulae which are true (in A) of the tuple a.
If there is some σ ∈ Aut(A) and a, b ∈ An with σa = b then tp(a) = tp(b).
The converse is true in the structure A+ constructed in the above proof. I.e.

tp(a) = tp(b) if and only if there is some σ ∈ Aut(A+) such that σa = b. For general
τ -structures, B, this is not the case. There may be tuples a and b with tp(a) = tp(b)

and yet Aut(B)a 6= Aut(B)b.

Example. Let τ = {E} be the theory of a single equivalence relation. Let A be a
τ -structure such that there are exactly two equivalence classes, one of size ℵ0 and
the other of size ℵ1. Let a and b be elements of A which are in distinct equivalence
classes. Then tp(a) = tp(b). Yet there can be no automorphism carrying a to b,
since such an automorphism would have to carry one equivalence class to the other.

Remark. In the expansion A+ constructed in the proof of the proposition the relation
a ∼ b iff tp(a) = t(b) is definable. This is a very unusual property for a structure.

Question. What does it mean about the theory T if in every model of T (for all
n ∈ ω), the equivalence relation a ∼ b iff tp(a) = tp(b) is definable?

For example in the theory of equality this is true. Also in the theory of dense
linear orders it is true. The condition fails for the theory of the reals as a field.

This question will be answered later in the course.

In the following we need a general lemma about topological groups.

Lemma. Let be G a topological group and H ≤ G a subgroup and U ≤ G an open
subset. If U ⊆ H then H is open.

Proof. H is the union of cosets of U , i.e.

H =
⋃
h∈H

hU

and since multiplication by h ∈ H is a homeomorphism of H it follows that hU is
open. Thus H is open.

In the case where the structures under consideration are countable there is a
tighter connection between structure and automorphisms.
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Notation. For b ∈ An we shall denote the stabilizer Aut(A)(b) by Aut(A/b).

Theorem 1. Let A be a countable τ -structure, and H ≤ Aut(A) a closed subgroup.
The following are equivalent.

i) H is open.
ii) |Aut(A)/H| ≤ ℵ0.
iii) |Aut(A)/H| < 2ℵ0.

Remark. Note that there are at most 2ℵ0 elements of |Aut(A)/H|.

Proof. i) ⇒ ii). If H is open then it contains a basic open set, i.e. there exists
a, b ∈ An such that Ua,b ⊆ H. Now as observed last time Ua,b is a coset of the
stabilizer of b. Since H is a group it must contain the stabilizer itself. Thus

Aut(A/b) ≤ H.

So
Aut(A).b ∼= Aut(A)/Aut(A/b)

as Aut(A)-sets. So

|Aut(A).b| = |Aut(A)/Aut(A/b)| ≥ |Aut(A)/H|.

But An ⊇ Aut(A).b so |Aut(A)/H| ≤ |An| ≤ ℵ0.
ii) ⇒ iii). Clear.
iii) ⇒ i). This step will require some work. We shall prove the contrapositive.

We assume that H is not open and use this to show that the index of H in Aut(A)

has size 2ℵ0 . We build a tree inside of Aut(A) which remains a tree when we mod
out by H.

We will construct a sequence (ai)i∈ω of finite sequences from A, and a sequence
(σi)i∈ω from Aut(A). For each T ⊆ {0, 1, . . . , n − 1}, say T = {i1 < i2 < · · · < il}
we define

σT :=
∏
i∈T

σi = σi1σi2 · · ·σil .

We shall arrange that the following hold for the sequences (ai)i∈ω and (σi)i∈ω:

• for i > j we have σi(aj) = aj .
• for each n ∈ ω and S, T ⊆ {0, 1, . . . , n − 1} if S 6= T then σS 6≡ σT (mod H)

on {a0, . . . , an−1}.

Remark. If the first condition is satisfied then it does make sense to define σT even
for infinite T ⊆ ω, as long as we restrict to the ai’s. I.e. the map σT : {ai} → A∗

defined by σT (x) =
∏
i∈T σi(x) is well-defined. Since Aut(A) is closed in Sym(A)
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then for each T ⊆ ω there is some σ̃T ∈ Aut(A) such that σ̃T |{ai} = σT . So if we
succeed in constructing the sequences (ai) and (σi) to satisfy the two conditions then
we can find 2ℵ0 many automorphisms which are different mod H.

We define the sequences by induction. The 0 case and the n+ 1 cases are the
same. So we just do the n+ 1 step.

Suppose that (ai)i<n and (σi)i<n have been obtained (for n = 0 this just means
the sequences are empty). We look for an and σn.

By hypothesis H is not open. By the lemma H does not contain any open sub-
groups. In particular H does not contain the stabilizer of the sequence constructed
thus far. I.e.

Aut(A/(a0, . . . , an−1)) 6⊆ H

so there is some σn ∈ Aut(A/(a0, . . . , an−1)) \H.
We now claim that there is some an ∈ Am such that for all h ∈ H we have

h(an) 6= σn(an). This is true since if not, then for all a, b ∈ Am (and all m ∈ ω) if

σn ∈ Ua,b

then there is some h ∈ Ua,b∩H so that σn is in the closure of H. But H was assumed
closed! So σn ∈ H, which is a contradiction. So we can find an such that σn and h
disagree on an (for all h ∈ H).

By induction we have defined the sequences (ai)i<ω and (σi)i<ω. We must
check that they satisfy the two conditions. The first property is clear since σn ∈
Aut(A/(a0, . . . , an−1)) so σn acts trivially on ai for i < n.

To check the second property suppose S, T ⊆ {0, . . . , n} with S 6= T . Let j be
the first place they differ. With out loss of generality assume j ∈ S.

If j < n then

σS(aj) = σS\{n}(aj) and σT (aj) = σT\{n}(aj)

since σn acts on aj trivially for j < n. By induction we may assume σS\{n} and
σT\{n} are inequivalent mod H on the set {a0, . . . , an−1}.

Now suppose j = n. Then S = T ∪ {n}. Suppose there is some h ∈ H such
that σS = σTh on {a0, . . . , an}. Then

σTh(an) = σS(an) = σTσn(an)

so multiplying by σ−1T we have h(an) = σn(an) which is a contradiction with the
construction og σn.

By the earlier remarks we have now shown that |Aut(A)/H| ≥ 2ℵ0 . Since A is
countable we must therefore have that |Aut(A)/H| = 2ℵ0 .
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The above result has a more model-theoretic interpretation which we now
develop.

We have seen that closed subgroups of automorphism groups come from ex-
pansions. Suppose τ ⊆ τ+ is an extension of signatures and A is a τ -structure and
A+ is an expansion. For each τ -automorphism σ of A we can find an extension A+σ

of A such that σ : A+ −−−→ A+σ is an isomorphism of τ+ structures. To define A+σ

let

• RA+σ
:= σ(RA+

) for all R ∈ Rτ+ .
• cA

+σ
:= σ(cA

+
) for all c ∈ Cτ+ .

• fA
+σ

(b) := σ(fA
+

(σ−1(b))) for all f ∈ Fτ+ .

Conversely if Ã is an expansion of A to τ+ such that A+ ∼= Ã then there is
some σ ∈ Aut(A) such that Ã = A+σ (just pick an isomorphism A+ ∼= Ã).

Moreover A+ = A+σ if and only if σ ∈ Aut(A+). So we can identify the set of
expansions of A which are isomorphic to A+, with the set of cosets Aut(A)/Aut(A+).

So now restating the theorem in these terms we get.

Theorem 2. Let τ ⊆ τ+ be an expansion of signatures and A a countable τ -structure,
and A+ and expansion to τ+. The following are equivalent.

i) Aut(A+) is an open subgroup of Aut(A).
ii) There are at most ℵ0 expansions of A which are isomorphic to A+.
iii) There are strictly less than 2ℵ0 expansions which are isomorphic to A+.

furthermore if these conditions are satisfied then there exists m ∈ ω and a ∈ Am such
that

Aut(A/a) ⊆ Aut(A+).

As a corollary we get.

Corollary. For A a countable τ -structure the following are equivalent.

i) |Aut(A)| < ℵ0.
ii) |Aut(A)| < 2ℵ0.
iii) There is some m and b ∈ Am such that Ab is rigid, i.e. Aut(Ab) = {id}.

Proof. We have seen the equivalence between i) and ii).
Let τ+ := τA and A+ := AA, then Aut(A+) = {id}. If |Aut(A)| < 2ℵ0 then by

the theorem {id} ≤ Aut(A+) ≤ Aut(A) is open! So, again by the theorem, there is
some b ∈ Am such that Aut(A/b) ≤ Aut(A+) = {id}, os Ab is rigid.
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