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General Information

These notes are based on a course in Metamathematics taught by Professor Thomas
Scanlon at UC Berkeley in the Autumn of 2013. The course will focus on Model
Theory and the course book is Hodges’ a shorter model theory.

As with any such notes, these may contain errors and typos. I take full respon-
sibility for such occurences. If you find any errors or typos (no matter how trivial!)
please let me know at mps@berkeley.edu.

Lecture 4

We carry on where we left off last time.
Let τ be a signature and L (τ) be a language. We shall write L instead of L (τ)

when the context is clear. Let A an L -structure. If T is the collection of all atomic
sentences which hold in A then T has two properties

• If t is a closed term then t = t is in T .

• If ϕ(x) is atomic and s = t is in T then ϕ(s) ∈ T if and only if ϕ(t).

Any set of atomic sentences satisfying these two properties is called =-closed.
We now prove a result about the existence of a model of a theory in much the same
way as with the term algebra. We take a theory where we would like to find a model
and basically just letting the language serve this goal.

Remark. If S is any set of L (τ)-sentences then there is a smallest =-closed set S̃
containing S.

So the following proposition could be applied to any set of L (τ)-sentences by
first passing to the =-closure.

Lemma. If T is an =-closed set of atomic sentences then there exists an L -structure
A such that T is precisely the set of atomic sentences true of A, and such that every
element of A is tA for some closed term t.

Remark. If T = ∅ then A will be the term algebra.

Proof. The domain of A will be T (τ) (closed L (τ)-terms) modulo the equivalence
relation given by s ∼ t if and only if s = t ∈ T . Let us show that this is indeed an
equivalence relation.

• Reflexivity : For all t we have t ∼ t since by assumption t = t ∈ T .
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• Symmetry : Suppose s ∼ t so that s = t ∈ T . Consider the formula ϕ(x) given
by x = s. ϕ is an atomic formula with one free variable, x. Now ϕ(s) is in T
and so by =-closure of T we have ϕ(t) in T , i.e. t = s ∈ T and so t ∼ s.

• Transitivity : Suppose s ∼ t and t ∼ r. Let ϕ(x) be s = x. Then ϕ(t) ∈ T and
so by the =-closure of T we have that ϕ(r) ∈ T so s ∼ r.

Thus, ∼ is an equivalence relation. We now let the domain of A be A := T (τ)/ ∼,
and denote the equivalence class containing t by [t]∼. To define the τ -structure on
A we set

• for c ∈ Cτ , cA = [c]∼
• for f ∈ Fτ of arity n we define fA([t0]∼, . . . , [tn−1]∼) = [f(t0, . . . , tn−1)]∼
• forR ∈ Rτ of arity n then ([t0]∼, . . . , [tn−1]∼) ∈ RA if and only ifR(t0, . . . , tn−1) ∈
T .

We must show that these definitions are well-defined and that A has the desired prop-
erties. For constants there is no problem. But for an n-ary function symbol f ∈ Fτ
we must show that the value af fA does not depend on the choice of representatives.
The same goes for relation symbols. Suppose (t0, . . . , tn−1) is a sequence of terms
which are equivalent, coordinate-wise, to (s0, . . . , sn−1). Then we must show that
fA([t0]∼, . . . , [tn−1]∼) = fA([s0]∼, . . . , [sn−1]∼). To see this we use that

f(s0, . . . , sn−1) = f(s0, . . . , sn−1) ∈ T

and that T is =-closed so since s0 ∼ t0 we have

f(t0, s1, . . . , sn−1) = f(s0, . . . , sn−1) ∈ T

and applying this n-times we get

f(t0, . . . , tn−1) = f(s0, . . . , sn−1) ∈ T.

Similarly, supposeR ∈ Rτ is an n-ary relation symbol, and supposeRA([s0]∼, . . . , [sn−1]∼)

then by succesively substituting ti’s for si’s we will see that RA([t0]∼, . . . , [tn−1]∼)

also holds. So A is now an L -structure.
To show that T is exactly the set of atomic sentences that are satisfied by A

we use induction on the complexity of atomic sentences. For the case t = s we have

A |= s = t iff sA = tA

iff [s]∼ = [t]∼

iff s = t ∈ T
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and similarly, for the case R(t0, . . . , tn−1) we have

A |= R(t0, . . . , tn−1) iff RA(tA0 , . . . , t
A
n−1)

iff R(t0, . . . , tn−1) ∈ T.

Now for the final claim, that all elements of A have the form tA one uses induction
on the complexity of terms to show that [t]∼ = tA. This is clear from the above
construction.

Proposition. Let T be an arbitrary set of atomic sentences. Then there is a struc-
ture A such that

1. A |= T

2. Every x ∈ dom(A) is of the form tA for some L -term.
3. If B |= T then there is a unique homomorphism f : A→ B.

Proof. For (1.) and (2.) take the =-closure of T and apply the above lemma. (3.)
follows from the diagram lemma proved last time.

By (3.) of the proposition, A is an initial object in the category of models of
T .

Example. If T = ∅ and τ = {f} is a binary function, then we cannot form any closed
terms and so cannot form any sentences.

Example. If F is a field and p(x) ∈ F [x] is an irreducible polynomial over F then
considering F [x] as an L (τrings ∪ {ci}i∈F [x])-structure take

T = { equations true in F [x]}.

Then F [x] is the initial structure in the category of T -models. Now consider the
enlarged collection T ∪{p(x) = 0} and take the =-closure. The initial model for this
collection will yield the ring A = F [x]/(p(x)) where we have added a root to p(x).
Moreover we get the quotient map F [x]→ F [x]/(p(x)).

Relations defined by atomic formulae

Given an L -structure A with domain A, and ϕ(x0, . . . , xn−1) an atomic L -formula
we define ϕ(An) to be {ā ∈ An : A |= ϕ(ā)}. We can also allow parameters; if ψ(x̄, ȳ)

is an atomic formula and b̄ ∈ Am then

ψ(An, b̄) = {ā ∈ An : A |= ψ(ā, b̄)}.
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Infinitary languages

Given a signature τ we now define the infinitary language L∞ω associated to τ .
Roughly speaking the two subscripts describe how many conjunction/disjuntions we
are allowed to use and how many quantifications we are allow. The first subscript
‘∞’ indicates that we will allow infinitely many conjunctions and disjunctions. The
second subscript ‘ω’ indicates that we will allow only finitely many quantifiers in a
row.

The symbols of L∞ω are all symbols from the signature τ together with the
usual logical symbols:

=,¬,
∧
,
∨
, ∀, ∃.

The terms, atomic formulas, and literals are defined in the same way as before (i.e.
for first-order logic).

Definition. L∞ω is the smallest class such that

• all atomic formulas are in L∞ω
• if ϕ ∈ L∞ω then ¬ϕ ∈ L∞ω
• if Φ ⊆ L∞ω then

∨
Φ and

∧
Φ are in L∞ω

• if ϕ ∈ L∞ω then ∀xϕ and ∃xϕ are in L∞ω

Remark. We are allowing Φ ⊆ L∞ω to be an arbitrary subset, so we are allowing
arbitrary conjunctions and disjunctions, contrary to the case for the usual first-order
logic.

Given an L -structure A (with domain A) we can now extend the notion of
satisfaction “|=” to arbitrary formulas of L∞ω;

• For atomic formulas the |= relation is the same as before.
• Given ϕ(x̄) ∈ L∞ω then A |= ¬ϕ(ā) if and only if it is not the case that
A |= ϕ(ā).

• Given Φ(x̄) ⊆ L∞ω then A |=
∧

Φ(ā) if and only if, for all ϕ(x̄) ∈ Φ(x̄)

A |= ϕ(ā).
• Given Φ(x̄) ⊆ L∞ω then A |=

∨
Φ(ā) if and only if, for at least one of ϕ(x̄) ∈

Φ(x̄) we have A |= ϕ(ā).
• Given ϕ(y, x̄) ∈ L∞ω, then A |= ∀yϕ(y, ā) if and only if for all b ∈ A we have
A |= ϕ(b, ā).

• Given ϕ(y, x̄) ∈ L∞ω, then A |= ∃yϕ(y, ā) if and only if for at least one b ∈ A
we have A |= ϕ(b, ā).

Now we say that first-order logic is the language Lωω where we allow only
finite subsets Φ (in other words we have only finite conjunctions and disjunctions),
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and only finitely many quantifiers. In general for some cardinal κ we get a language
Lκω where we allow the subsets Φ ⊆ Lκω to have size < κ.

In model theory we most often either work within Lωω or with Lω1ω. The
latter language allows countably many conjunctions and disjunctions. There are
however several properties of first-order logic that the infinitary logics fail to have.
Some of these are demonstrated by the following suggested exercises.

Exercise 1. Give an example of an Lω1ω sentence Φ such that every finite subsentence
og Φ is satisfiable, but Φ is not. (So compactness fails).

Exercise 2. Axiomatize the following classes of structures with some single sentence
in some language using Lω1ω:

• Torsion-free abelian groups.
• Finitely generated fields.
• Linear orders isomorphic to (Z, <).
• Connected graphs.
• Finite valence graphs.
• Cycle-free graphs.

Exercise 3. Give an example of a countable language L and an Lω1ω sentence Φ

such that every models of Φ has cardinality at least 2ℵ0 . (So Downward Løwenheim-
Skolem fails).

Axiomatization

Definition. A class of L -structures K is axiomatizable if there is some L -theory
T such that the class of L -structures satisfying T is K. K is L -definable if we can
take T = {ϕ} for some L -sentence ϕ.

The following lemma is important.

Lemma. Let A be an L -structure and X ⊆ dom(A) and Y some relation defined by
a formula with parameters from X. Then if f ∈ Aut(A) (the group of L -structure
automorphisms of A) fixes X point-wise then f fixes Y set-wise (i.e. f(Y ) = Y ).

In other words definable sets are invariant under those automorphisms which
fix the parameter space. For instance if a set Y is definable without parameters then
Y = f(Y ) for every automorphism. This puts restrictions on the definable sets.

The Arithmetical Hierarchy

The theory of arithmetic is the theory of the structure N = (ω, 0, 1,+, ·, <).
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Definition. Let ∃x < y ϕ and ∀x < y ϕ be abbreviations of the formulas ∃x(x <

y ∧ ϕ) and ∀x(x < y → ϕ) respectively. These are called bounded quantifiers.

Definition. The arithmetic hierarchy is the following hierarchy of subsets of ω.

• ϕ is Σ0
0 and Π0

0 if all quantifiers are bounded.

• ϕ is in Σ0
n+1 if ϕ = ∃x̄ψ for some ψ in Π0

n.

• ϕ is in Π0
n+1 if ϕ = ∀x̄ψ where ψ is in Σ0

n.

So the subscript of Σ0
n and Π0

n is the number of alterations of (unbounded)
quantifiers appearing in the formulae. It can in fact be shown that this hierarchy is
proper, i.e. the inclusions Σ0

n ⊆ Σ0
n+1 are proper for all n ∈ ω.
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