Math 225A — Model Theory

Speirs, Martin

Autumn 2013



General Information

These notes are based on a course in Metamathematics taught by Professor Thomas
Scanlon at UC Berkeley in the Autumn of 2013. The course will focus on Model
Theory and the course book is Hodges’ a shorter model theory.

As with any such notes, these may contain errors and typos. I take full respon-
sibility for such occurences. If you find any errors or typos (no matter how trivial!)
please let me know at mps@berkeley.edu.

Lecture 4

We carry on where we left off last time.

Let 7 be a signature and .Z(7) be a language. We shall write . instead of .Z(7)
when the context is clear. Let 21 an Z-structure. If T is the collection of all atomic
sentences which hold in 2 then 7" has two properties

e If ¢ is a closed term then ¢t =t is in 7.
o If p(x) is atomic and s =t is in T then ¢(s) € T if and only if p(t).

Any set of atomic sentences satisfying these two properties is called =-closed.
We now prove a result about the existence of a model of a theory in much the same
way as with the term algebra. We take a theory where we would like to find a model
and basically just letting the language serve this goal.

Remark. If S is any set of .#(7)-sentences then there is a smallest =-closed set S
containing S.

So the following proposition could be applied to any set of .Z(7)-sentences by

first passing to the =-closure.

Lemma. IfT is an =-closed set of atomic sentences then there exists an £ -structure
A such that T is precisely the set of atomic sentences true of U, and such that every
element of A is t* for some closed term t.

Remark. If T = () then 21 will be the term algebra.

Proof. The domain of 2 will be .7 (1) (closed Z(7)-terms) modulo the equivalence
relation given by s ~ t if and only if s =¢ € T. Let us show that this is indeed an
equivalence relation.

o Reflexivity: For all ¢t we have t ~ t since by assumption t =t € T



e Symmetry: Suppose s ~ t so that s =t € T'. Consider the formula ¢(x) given
by z = s. ¢ is an atomic formula with one free variable, x. Now ¢(s) is in T'
and so by =-closure of T" we have ¢(t) in T, i.e. t =s €T and so t ~ s.

o Transitivity: Suppose s ~t and t ~ 7. Let ¢(z) be s = x. Then ¢(t) € T and
so by the =-closure of T we have that ¢(r) € T'so s ~ .

Thus, ~ is an equivalence relation. We now let the domain of A be A := 7 (1)/ ~,
and denote the equivalence class containing ¢ by [t].. To define the 7-structure on
2 we set

o forceC,, ® =|[c~

e for f € F, of arity n we define f*([to]~, ..., [tn_1]~) = [f(to,- - tn_1)]~
e for R € R, of arity n then ([to]~, ..., [tn—1]~) € R¥ ifand only if R(to, ..., tn_1) €
T.

We must show that these definitions are well-defined and that 2f has the desired prop-
erties. For constants there is no problem. But for an n-ary function symbol f € F;
we must show that the value af f% does not depend on the choice of representatives.

The same goes for relation symbols. Suppose (to,...,t,—1) is a sequence of terms
which are equivalent, coordinate-wise, to (sg,...,Sp—1). Then we must show that
F2([to)~s - - s [tne1]~) = L2([50]~s - - -, [Sn—1]~). To see this we use that

f(307---75n—1):f(s()a---asn—l) eT

and that T is =-closed so since sg ~ tg we have
f(to, 81,y 8n—1) = f(S0y-+.y8p-1) €T
and applying this n-times we get
flto, .- ytn_1) = f(s0y.--,8n-1) € T.

Similarly, suppose R € R, is an n-ary relation symbol, and suppose B> ([so]~, - . ., [Sn_1]~)
then by succesively substituting ¢;’s for s;’s we will see that R¥*([to]~,. .., [tn_1]~)
also holds. So 2l is now an Z-structure.

To show that T is exactly the set of atomic sentences that are satisfied by 21
we use induction on the complexity of atomic sentences. For the case t = s we have

AEs=t iff =12
iff [s]~ = [t]~
iff s=teT



and similarly, for the case R(to,...,t,—1) we have

A= Rltg, ... tn1) iff R, ..., 12 )
iff R(to,...,tnfl) eT.

Now for the final claim, that all elements of 2 have the form t* one uses induction

on the complexity of terms to show that [t]. = t*. This is clear from the above

construction. OJ

Proposition. Let T be an arbitrary set of atomic sentences. Then there is a struc-
ture A such that

1.AET
2. Every x € dom(2l) is of the form t¥ for some £-term.
3. If B =T then there is a unique homomorphism f :2A — B.

Proof. For (1.) and (2.) take the =-closure of T" and apply the above lemma. (3.)
follows from the diagram lemma proved last time. O

By (3.) of the proposition, 2( is an initial object in the category of models of
T.

Ezample. If T = () and 7 = {f} is a binary function, then we cannot form any closed
terms and so cannot form any sentences.

Ezxample. If F is a field and p(x) € F[z] is an irreducible polynomial over F' then
considering F[z] as an £ (Trings U {¢i }icp[s])-structure take

T = { equations true in F[x]}.

Then F[z] is the initial structure in the category of T-models. Now consider the
enlarged collection T'U {p(x) = 0} and take the =-closure. The initial model for this
collection will yield the ring 2 = F[z]/(p(x)) where we have added a root to p(z).
Moreover we get the quotient map F[z] — Flz]|/(p(z)).

Relations defined by atomic formulae

Given an .Z-structure 2 with domain A, and ¢(xg, ..., z,—1) an atomic .Z-formula
we define ¢(A™) to be {a € A" : A = p(a)}. We can also allow parameters; if (Z, y)
is an atomic formula and b € A™ then

(A", B) = {a € A" : A = 4(a, b))}



Infinitary languages

Given a signature 7 we now define the infinitary language %, associated to 7.
Roughly speaking the two subscripts describe how many conjunction/disjuntions we
are allowed to use and how many quantifications we are allow. The first subscript
‘o0’ indicates that we will allow infinitely many conjunctions and disjunctions. The
second subscript ‘w’ indicates that we will allow only finitely many quantifiers in a
row.

The symbols of %, are all symbols from the signature 7 together with the

=\ V.v3.

The terms, atomic formulas, and literals are defined in the same way as before (i.e.

usual logical symbols:

for first-order logic).
Definition. %, is the smallest class such that

e all atomic formulas are in Zu,

if o € Lo then —p € Loow

if & C L, then \/ @ and A @ are in L,
if p € Lo, then Vap and Jxp are in Lo,

Remark. We are allowing & C %, to be an arbitrary subset, so we are allowing
arbitrary conjunctions and disjunctions, contrary to the case for the usual first-order

logic.

Given an .Z-structure 2 (with domain A) we can now extend the notion of

satisfaction “=" to arbitrary formulas of Z;

e For atomic formulas the |= relation is the same as before.

o Given p(z) € Loy then A = —p(a) if and only if it is not the case that
2 p(a).

o Given ®(z) C %y then A = A P(a) if and only if, for all ¢(z) € ®(z)
2 = (a).

e Given ®(z) C %Ly, then A = \/ ®(a) if and only if, for at least one of p(z) €
®(z) we have A = ¢(a).

e Given ¢(y,Z) € Lrow, then A = Yyp(y, a) if and only if for all b € A we have
A p(b,a).

o Given ¢(y,%) € Zoow, then A = Jyp(y, a) if and only if for at least one b € A
we have 2 = ¢(b, a).

Now we say that first-order logic is the language %, where we allow only
finite subsets ® (in other words we have only finite conjunctions and disjunctions),



and only finitely many quantifiers. In general for some cardinal x we get a language
Z.o where we allow the subsets ® C %, to have size < k.

In model theory we most often either work within %, or with .Z,,,. The
latter language allows countably many conjunctions and disjunctions. There are
however several properties of first-order logic that the infinitary logics fail to have.
Some of these are demonstrated by the following suggested exercises.

Ezercise 1. Give an example of an .Z,,,, sentence ® such that every finite subsentence
og ® is satisfiable, but @ is not. (So compactness fails).

Exercise 2. Axiomatize the following classes of structures with some single sentence
in some language using %, .-

Torsion-free abelian groups.
Finitely generated fields.

Linear orders isomorphic to (Z, <).
Connected graphs.

Finite valence graphs.

Cycle-free graphs.

Exercise 3. Give an example of a countable language . and an .., sentence ®
such that every models of ® has cardinality at least 2%. (So Downward Lgwenheim-
Skolem fails).

Axiomatization

Definition. A class of Z-structures K is axiomatizable if there is some Z-theory
T such that the class of .Z-structures satisfying T is K. K is .Z-definable if we can
take T' = {¢} for some .Z-sentence ¢.

The following lemma is important.

Lemma. Let A be an £ -structure and X C dom(A) and Y some relation defined by
a formula with parameters from X. Then if f € Aut(d) (the group of L -structure
automorphisms of A) fizes X point-wise then f fixres Y set-wise (i.e. f(Y)=Y).

In other words definable sets are invariant under those automorphisms which
fix the parameter space. For instance if a set Y is definable without parameters then
Y = f(Y) for every automorphism. This puts restrictions on the definable sets.

The Arithmetical Hierarchy

The theory of arithmetic is the theory of the structure N = (w, 0,1, +, -, <).



Definition. Let 3z < y ¢ and Vx < y ¢ be abbreviations of the formulas Jx(z <
y A ) and Vz(z < y — ¢) respectively. These are called bounded quantifiers.

Definition. The arithmetic hierarchy is the following hierarchy of subsets of w.
e ¢ is ¥J and II) if all quantifiers are bounded.
e pisin X0 if ¢ = 37y for some 1 in IIY.
e pisin Hgﬂ if ¢ = VZv where 1) is in X0.

So the subscript of X0 and IIY is the number of alterations of (unbounded)
quantifiers appearing in the formulae. It can in fact be shown that this hierarchy is
proper, i.e. the inclusions X9 C EEL 41 are proper for all n € w.



