Math 225A – Model Theory

Speirs, Martin

Autumn 2013

General Information

These notes are based on a course in *Metamathematics* taught by Professor Thomas Scanlon at UC Berkeley in the Autumn of 2013. The course will focus on Model Theory and the course book is Hodges' *a shorter model theory*.

As with any such notes, these may contain errors and typos. I take full responsibility for such occurences. If you find any errors or typos (no matter how trivial!) please let me know at mps@berkeley.edu.

Lecture 4

We carry on where we left off last time.

Let τ be a signature and $\mathscr{L}(\tau)$ be a language. We shall write \mathscr{L} instead of $\mathscr{L}(\tau)$ when the context is clear. Let \mathfrak{A} an \mathscr{L} -structure. If T is the collection of all atomic sentences which hold in \mathfrak{A} then T has two properties

- If t is a closed term then t = t is in T.
- If $\varphi(x)$ is atomic and s = t is in T then $\varphi(s) \in T$ if and only if $\varphi(t)$.

Any set of atomic sentences satisfying these two properties is called =-closed. We now prove a result about the existence of a model of a theory in much the same way as with the term algebra. We take a theory where we would like to find a model and basically just letting the language serve this goal.

Remark. If S is any set of $\mathscr{L}(\tau)$ -sentences then there is a smallest =-closed set \tilde{S} containing S.

So the following proposition could be applied to any set of $\mathscr{L}(\tau)$ -sentences by first passing to the =-closure.

Lemma. If T is an =-closed set of atomic sentences then there exists an \mathscr{L} -structure \mathfrak{A} such that T is precisely the set of atomic sentences true of \mathfrak{A} , and such that every element of \mathfrak{A} is $t^{\mathfrak{A}}$ for some closed term t.

Remark. If $T = \emptyset$ then \mathfrak{A} will be the term algebra.

Proof. The domain of \mathfrak{A} will be $\mathscr{T}(\tau)$ (closed $\mathscr{L}(\tau)$ -terms) modulo the equivalence relation given by $s \sim t$ if and only if $s = t \in T$. Let us show that this is indeed an equivalence relation.

• Reflexivity: For all t we have $t \sim t$ since by assumption $t = t \in T$.

- Symmetry: Suppose $s \sim t$ so that $s = t \in T$. Consider the formula $\varphi(x)$ given by x = s. φ is an atomic formula with one free variable, x. Now $\varphi(s)$ is in Tand so by =-closure of T we have $\varphi(t)$ in T, i.e. $t = s \in T$ and so $t \sim s$.
- Transitivity: Suppose $s \sim t$ and $t \sim r$. Let $\varphi(x)$ be s = x. Then $\varphi(t) \in T$ and so by the =-closure of T we have that $\varphi(r) \in T$ so $s \sim r$.

Thus, \sim is an equivalence relation. We now let the domain of \mathfrak{A} be $A := \mathscr{T}(\tau) / \sim$, and denote the equivalence class containing t by $[t]_{\sim}$. To define the τ -structure on \mathfrak{A} we set

- for $c \in \mathcal{C}_{\tau}, c^{\mathfrak{A}} = [c]_{\sim}$
- for $f \in \mathcal{F}_{\tau}$ of arity *n* we define $f^{\mathfrak{A}}([t_0]_{\sim}, \ldots, [t_{n-1}]_{\sim}) = [f(t_0, \ldots, t_{n-1})]_{\sim}$
- for $R \in \mathcal{R}_{\tau}$ of arity *n* then $([t_0]_{\sim}, \ldots, [t_{n-1}]_{\sim}) \in R^{\mathfrak{A}}$ if and only if $R(t_0, \ldots, t_{n-1}) \in T$.

We must show that these definitions are well-defined and that \mathfrak{A} has the desired properties. For constants there is no problem. But for an *n*-ary function symbol $f \in \mathcal{F}_{\tau}$ we must show that the value af $f^{\mathfrak{A}}$ does not depend on the choice of representatives. The same goes for relation symbols. Suppose (t_0, \ldots, t_{n-1}) is a sequence of terms which are equivalent, coordinate-wise, to (s_0, \ldots, s_{n-1}) . Then we must show that $f^{\mathfrak{A}}([t_0]_{\sim}, \ldots, [t_{n-1}]_{\sim}) = f^{\mathfrak{A}}([s_0]_{\sim}, \ldots, [s_{n-1}]_{\sim})$. To see this we use that

$$f(s_0, \dots, s_{n-1}) = f(s_0, \dots, s_{n-1}) \in T$$

and that T is =-closed so since $s_0 \sim t_0$ we have

$$f(t_0, s_1, \dots, s_{n-1}) = f(s_0, \dots, s_{n-1}) \in T$$

and applying this n-times we get

$$f(t_0, \ldots, t_{n-1}) = f(s_0, \ldots, s_{n-1}) \in T.$$

Similarly, suppose $R \in \mathcal{R}_{\tau}$ is an *n*-ary relation symbol, and suppose $R^{\mathfrak{A}}([s_0]_{\sim}, \ldots, [s_{n-1}]_{\sim})$ then by successively substituting t_i 's for s_i 's we will see that $R^{\mathfrak{A}}([t_0]_{\sim}, \ldots, [t_{n-1}]_{\sim})$ also holds. So \mathfrak{A} is now an \mathscr{L} -structure.

To show that T is exactly the set of atomic sentences that are satisfied by \mathfrak{A} we use induction on the complexity of atomic sentences. For the case t = s we have

$$\begin{aligned} \mathfrak{A} &\models s = t & \text{iff} & s^{\mathfrak{A}} = t^{\mathfrak{A}} \\ \text{iff} & [s]_{\sim} = [t]_{\sim} \\ \text{iff} & s = t \in T \end{aligned}$$

and similarly, for the case $R(t_0, \ldots, t_{n-1})$ we have

$$\mathfrak{A} \models R(t_0, \dots, t_{n-1}) \qquad \text{iff} \qquad R^{\mathfrak{A}}(t_0^{\mathfrak{A}}, \dots, t_{n-1}^{\mathfrak{A}})$$
$$\text{iff} \qquad R(t_0, \dots, t_{n-1}) \in T.$$

Now for the final claim, that all elements of \mathfrak{A} have the form $t^{\mathfrak{A}}$ one uses induction on the complexity of terms to show that $[t]_{\sim} = t^{\mathfrak{A}}$. This is clear from the above construction.

Proposition. Let T be an arbitrary set of atomic sentences. Then there is a structure \mathfrak{A} such that

1. $\mathfrak{A} \models T$ 2. Every $x \in \operatorname{dom}(\mathfrak{A})$ is of the form $t^{\mathfrak{A}}$ for some \mathscr{L} -term. 3. If $\mathfrak{B} \models T$ then there is a unique homomorphism $f : \mathfrak{A} \to \mathfrak{B}$.

Proof. For (1.) and (2.) take the =-closure of T and apply the above lemma. (3.) follows from the diagram lemma proved last time. \Box

By (3.) of the proposition, \mathfrak{A} is an initial object in the category of models of T.

Example. If $T = \emptyset$ and $\tau = \{f\}$ is a binary function, then we cannot form any closed terms and so cannot form any sentences.

Example. If F is a field and $p(x) \in F[x]$ is an irreducible polynomial over F then considering F[x] as an $\mathscr{L}(\tau_{rings} \cup \{c_i\}_{i \in F[x]})$ -structure take

$$T = \{ \text{ equations true in } F[x] \}.$$

Then F[x] is the initial structure in the category of *T*-models. Now consider the enlarged collection $T \cup \{p(x) = 0\}$ and take the =-closure. The initial model for this collection will yield the ring $\mathfrak{A} = F[x]/(p(x))$ where we have added a root to p(x). Moreover we get the quotient map $F[x] \to F[x]/(p(x))$.

Relations defined by atomic formulae

Given an \mathscr{L} -structure \mathfrak{A} with domain A, and $\varphi(x_0, \ldots, x_{n-1})$ an atomic \mathscr{L} -formula we define $\varphi(A^n)$ to be $\{\bar{a} \in A^n : \mathfrak{A} \models \varphi(\bar{a})\}$. We can also allow parameters; if $\psi(\bar{x}, \bar{y})$ is an atomic formula and $\bar{b} \in A^m$ then

$$\psi(A^n, b) = \{ \bar{a} \in A^n : \mathfrak{A} \models \psi(\bar{a}, b) \}.$$

Infinitary languages

Given a signature τ we now define the *infinitary* language $\mathscr{L}_{\infty\omega}$ associated to τ . Roughly speaking the two subscripts describe how many conjunction/disjuntions we are allowed to use and how many quantifications we are allow. The first subscript ' ∞ ' indicates that we will allow infinitely many conjunctions and disjunctions. The second subscript ' ω ' indicates that we will allow only finitely many quantifiers in a row.

The symbols of $\mathscr{L}_{\infty\omega}$ are all symbols from the signature τ together with the usual logical symbols:

$$=, \neg, \bigwedge, \bigvee, \forall, \exists.$$

The terms, atomic formulas, and literals are defined in the same way as before (i.e. for first-order logic).

Definition. $\mathscr{L}_{\infty\omega}$ is the smallest class such that

- all atomic formulas are in $\mathscr{L}_{\infty\omega}$
- if $\varphi \in \mathscr{L}_{\infty\omega}$ then $\neg \varphi \in \mathscr{L}_{\infty\omega}$
- if $\Phi \subseteq \mathscr{L}_{\infty\omega}$ then $\bigvee \Phi$ and $\bigwedge \Phi$ are in $\mathscr{L}_{\infty\omega}$
- if $\varphi \in \mathscr{L}_{\infty\omega}$ then $\forall x\varphi$ and $\exists x\varphi$ are in $\mathscr{L}_{\infty\omega}$

Remark. We are allowing $\Phi \subseteq \mathscr{L}_{\infty\omega}$ to be an *arbitrary* subset, so we are allowing arbitrary conjunctions and disjunctions, contrary to the case for the usual first-order logic.

Given an \mathscr{L} -structure \mathfrak{A} (with domain A) we can now extend the notion of satisfaction " \models " to arbitrary formulas of $\mathscr{L}_{\infty\omega}$;

- For atomic formulas the \models relation is the same as before.
- Given $\varphi(\bar{x}) \in \mathscr{L}_{\infty\omega}$ then $\mathfrak{A} \models \neg \varphi(\bar{a})$ if and only if it is not the case that $\mathfrak{A} \models \varphi(\bar{a})$.
- Given $\Phi(\bar{x}) \subseteq \mathscr{L}_{\infty\omega}$ then $\mathfrak{A} \models \bigwedge \Phi(\bar{a})$ if and only if, for all $\varphi(\bar{x}) \in \Phi(\bar{x})$ $\mathfrak{A} \models \varphi(\bar{a}).$
- Given $\Phi(\bar{x}) \subseteq \mathscr{L}_{\infty\omega}$ then $\mathfrak{A} \models \bigvee \Phi(\bar{a})$ if and only if, for at least one of $\varphi(\bar{x}) \in \Phi(\bar{x})$ we have $\mathfrak{A} \models \varphi(\bar{a})$.
- Given $\varphi(y, \bar{x}) \in \mathscr{L}_{\infty\omega}$, then $\mathfrak{A} \models \forall y \varphi(y, \bar{a})$ if and only if for all $b \in A$ we have $\mathfrak{A} \models \varphi(b, \bar{a})$.
- Given $\varphi(y, \bar{x}) \in \mathscr{L}_{\infty\omega}$, then $\mathfrak{A} \models \exists y \varphi(y, \bar{a})$ if and only if for at least one $b \in A$ we have $\mathfrak{A} \models \varphi(b, \bar{a})$.

Now we say that **first-order logic** is the language $\mathscr{L}_{\omega\omega}$ where we allow only finite subsets Φ (in other words we have only finite conjunctions and disjunctions),

and only finitely many quantifiers. In general for some cardinal κ we get a language $\mathscr{L}_{\kappa\omega}$ where we allow the subsets $\Phi \subseteq \mathscr{L}_{\kappa\omega}$ to have size $< \kappa$.

In model theory we most often either work within $\mathscr{L}_{\omega\omega}$ or with $\mathscr{L}_{\omega_1\omega}$. The latter language allows *countably* many conjunctions and disjunctions. There are however several properties of first-order logic that the infinitary logics fail to have. Some of these are demonstrated by the following suggested exercises.

Exercise 1. Give an example of an $\mathscr{L}_{\omega_1\omega}$ sentence Φ such that every finite subsentence og Φ is satisfiable, but Φ is not. (So compactness fails).

Exercise 2. Axiomatize the following classes of structures with some single sentence in some language using $\mathscr{L}_{\omega_1\omega}$:

- Torsion-free abelian groups.
- Finitely generated fields.
- Linear orders isomorphic to $(\mathbb{Z}, <)$.
- Connected graphs.
- Finite valence graphs.
- Cycle-free graphs.

Exercise 3. Give an example of a countable language \mathscr{L} and an $\mathscr{L}_{\omega_1\omega}$ sentence Φ such that every models of Φ has cardinality at least 2^{\aleph_0} . (So Downward Løwenheim-Skolem fails).

Axiomatization

Definition. A class of \mathscr{L} -structures \mathcal{K} is **axiomatizable** if there is some \mathscr{L} -theory T such that the class of \mathscr{L} -structures satisfying T is \mathcal{K} . \mathcal{K} is \mathscr{L} -definable if we can take $T = \{\varphi\}$ for some \mathscr{L} -sentence φ .

The following lemma is important.

Lemma. Let \mathfrak{A} be an \mathscr{L} -structure and $X \subseteq \operatorname{dom}(\mathfrak{A})$ and Y some relation defined by a formula with parameters from X. Then if $f \in \operatorname{Aut}(\mathfrak{A})$ (the group of \mathscr{L} -structure automorphisms of \mathfrak{A}) fixes X point-wise then f fixes Y set-wise (i.e. f(Y) = Y).

In other words definable sets are invariant under those automorphisms which fix the parameter space. For instance if a set Y is definable without parameters then Y = f(Y) for *every* automorphism. This puts restrictions on the definable sets.

The Arithmetical Hierarchy

The theory of arithmetic is the theory of the structure $\mathbb{N} = (\omega, 0, 1, +, \cdot, <)$.

Definition. Let $\exists x < y \ \varphi$ and $\forall x < y \ \varphi$ be abbreviations of the formulas $\exists x (x < y \land \varphi)$ and $\forall x (x < y \rightarrow \varphi)$ respectively. These are called **bounded quantifiers**.

Definition. The arithmetic hierarchy is the following hierarchy of subsets of ω .

- φ is Σ_0^0 and Π_0^0 if all quantifiers are bounded.
- φ is in Σ_{n+1}^0 if $\varphi = \exists \bar{x} \psi$ for some ψ in Π_n^0 .
- φ is in Π_{n+1}^0 if $\varphi = \forall \bar{x} \psi$ where ψ is in Σ_n^0 .

So the subscript of Σ_n^0 and Π_n^0 is the number of alterations of (unbounded) quantifiers appearing in the formulae. It can in fact be shown that this hierarchy is proper, i.e. the inclusions $\Sigma_n^0 \subseteq \Sigma_{n+1}^0$ are proper for all $n \in \omega$.