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General Information

These notes are based on a course in Metamathematics taught by Professor Thomas
Scanlon at UC Berkeley in the Autumn of 2013. The course will focus on Model
Theory and the course book is Hodges’ a shorter model theory.

As with any such notes, these may contain errors and typos. I take full respon-
sibility for such occurences. If you find any errors or typos (no matter how trivial!)
please let me know at mps@berkeley.edu.

Lecture 12

Quantifier elimination for Th(Z) as ordered group

Let τ = {+,−, 0, 1, <} where + and − are binary function symbols, 0 and 1 are
constants and < is a binary relation. We will consider the theory of the integers as
a discretely ordered group. We claim the the theory, T , need to describe this will
be the theory of discretely ordered abelian groups G having G/nG ∼= Z/nZ for each
n ∈ Z. More precisely we let T be the theory with axioms

• ordered abelian groups axioms as usual
• discretely orderede: ∀x¬(0 < x < 1)

• 0 < 1

• for each n ∈ Z

∀x
n−1∨
j=0

∃y(x = j + ny)

where j is short for 1 + 1 + · · ·+ 1 (j times) and ny is short for y+ y+ · · ·+ y

(n times).

The last axioms schema does show that G/nG ∼= Z/nZ for all n whenever
G |= T , since then G is discretely ordered and so G/nG is generated by 1.

Definition. We define the complexity, c(t) of a τ -term t to by essentially the
number of additions in t. More precisely let

• c(0) = c(1) = 1

• c(xi) = 1

• c(−t) = c(t)

• c(t+ s) = c(t) + c(s).

Now we define the elimination set.

Definition. Let Ξn,k be the set of formulae in n variables x0, . . . , xn−1 of the form

1



• t(x̄) > 0 where c(t) ≤ k
• s(x̄) ≡ j (mod k!) where c(s) ≤ k.

Theorem 1 (Presburger). T is equal to Th(Z,+,−, 0, 1, <) and Ξ =
⋃

Ξn,k is an
elimination set.

In particular T is a complete theory. The proof of the theorem will actually
yield an effective procedure to convert a general formula to an equivalent formula in
Ξ, i.e. we will get decidability for the theory.

Remark. In fact the decidability result for T follows (by Göde’s Completeness the-
orem) from the first statement T = Th(Z,+,−, 0, 1, <) since Th(Z,+,−, 0, 1, <) is
complete.

The general approach of the proof will be the following: Show that equivalence
relative to Ξ can be used to set up a back-and-forth system. This we know is enough
to determine elementary equivalence, which gives the first statement. We also know
that every formula is equivalent to a disjunction of formulas from the set Θ =

⋃
Θn,k

(constructed in Lecture 10), so if we can show that the “equivalence relation gotten
from Ξ” is finer than that gotten from Θ then every element of Θ can be expressed
as a disjunction of elements of Ξ. Since Θ was enough for an elimination set we see
that Ξ will be enough for an elimination set.

Let us first define the “equivalence relation gotten from Ξ”.

Definition. For A and B models of T and for ā ∈ An and b̄ ∈ Bn, we say that

(A, ā) ∼Ξ
k (B, b̄)

iff for all ξ ∈ Ξn,k we have A |= ξ(ā)⇐⇒ B |= ξ(b̄).

Now our goal is to show that there is a sequence of numbers (ki)
∞
i=0 such that

k0 < k1 < · · · and such that we can carry out the back-and-forth construction if we
know that we have the ∼Ξ

k for all k. More precisely we want

• if (A, ā) ∼Ξ
0 (B, b̄) then (A, ā) ≈0 (B, b̄), and

• if (A, ā) ∼Ξ
ki+1

(B, b̄) and if c ∈ A then there exists d ∈ B such that (A, ā, c) ∼Ξ
ki

(B, b̄, d). Vice verse: if d ∈ B then there exists c ∈ A such that (A, ā, c) ∼Ξ
ki

(B, b̄, d).

The existence of such a sequence (ki) will then imply that ∼Ξ
k is finer than ≈i

which is what we want.
We need two technical lemmas. The first will show that k0 may be chosen to

be 3.
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Lemma. If (A, ā) ∼Ξ
3 (B, b̄) then (A, ā) ≈0 (B, b̄).

Proof. We must check that all unnested atomic formulae: xj < xi, xk = xi + xj ,
xi = 0, xj = 1 and xi = xj . As an example we check A |= ak = ai + aj ⇐⇒ B |=
bk = bi + bj . Using the axioms of ordered abelian groups

ak=ai+aj ⇐⇒ ak−(ai+aj)=0 ⇐⇒ ¬(ak−(ai+aj)>0) ∧ ¬((ai+aj)−ak)>0).

Let t(x̄) := xk + −(xi + xj) and u(x̄) := −t(x̄) be terms. Both have complexity 3.
By hypothesis ¬(t(x̄) > 0) and so by definition of ∼Ξ

3 we have (B, b̄) |= ¬(t(x̄) > 0),
and likewise (B, b̄) |= ¬(u(x̄) > 0) so t(b̄) = 0 i.e. bk = bi + bj .

A similar argument works for the four other unnested atomic formulae and so
(A, ā) ≈0 (B, b̄).

So k0 = 3. Now to go up a step is a bit more complicated. We shall let
km = m2m. This suffices by the following lemma.

Lemma. If (A, b̄) ∼Ξ
m2m (B, b̄) (m ≥ 3) and c ∈ A then there exists d ∈ B such

that (A, ā, c) ∼Ξ
m (B, b̄, d). Similarly if d ∈ B then there exists c ∈ A such that

(A, ā, c) ∼Ξ
m (B, b̄, d).

Proof. We will deal with congruence issues and then with the order issues.
Let c ∈ A. We want to understand the congruence relations that c might have

relative to terms when we plug in ā. We only consider terms of complexity m − 1.
Consider the set

Γ := {t(x̄) + ixn ≡ j (mod m!)
∣∣

c(t) ≤ m− 1, i ≤ m, 0 ≤ j ≤ m! and A |= t(ā) + ic ≡ j (mod m!)}

As (A, ā) ∼Ξ
m2m (B, b̄), for each t of complexity ≤ m − 1 we have t(ā) ≡ t(b̄)

(mod m!). This statement makes sense since A/ (mod m!)A ∼= Z/m!Z and Z/m!Z ∼=
B/m!B so we can identify elements of A and B with their image under the isomor-
phisms. Let α : A/m!A −−−→ Z/m!Z and β : B/m!B −−−→ Z/m!Z be the isomor-
phisms. Now since α(c) satisfies all formulae of Γ we have that e := β−1(α(c)) ∈ B

also satisfies all formulae in Γ. So we have found e which looks like c up to congruence
(mod m!). Without loss of generality we can assume 0 ≤ e < m!.

Our final goal is to modify e, while preserving its congruence mod m! so that
it also looks like c in relation to the ordering. I.e. we must find f ∈ B such that
d = e+ f(m!) works.

We must deal with assertions of the form

t(ā) + ic > 0
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where the complexity of t is ≤ m− 1 and 0 < i ≤ m. By multiplying through by m!
i

we reduce to assertions of the form

m!

i
t(ā) +m!c > 0.

Setting u(ā) := m!
i t(ā)+m!c we have that the complexity of u is ≤ (m−1)m! < m2m.

Consider the set
{t(ā)

∣∣ c(t) ≤ (m− 1)m!}.

This is a finite set. Let t(ā) chosen from this set so that t(ā) < m!c maximally so
(i.e. there is no other term t′(ā) such that t(ā) < t′(ā) < m!c). Similarly let u(ā) be
chosen so that u(ā) ≥ m!c minimally so. If one of t or u doesn’t exist, then we just
ignore the corresponding part of the following argument. Now we have

t(ā) < m!c ≤ u(ā).

Since (A, ā) ∼Ξ
m2m (B, b̄) we have that

t(ā) ≡ t(b̄) (mod (m!)2)

u(ā) ≡ u(b̄) (mod (m!)2).

and
m!c ≡ m!e (mod (m!)2)

since c ≡ e (mod (m!)). Thus there exists g ∈ B such that

g ≡ m!e ≡ m!c (mod (m!)2).

Now letting d = g
m! gives the desired element of B, so that (A, ā, c) ∼Ξ

m (B, b̄, d).
This completes the proof.

The theorem now follows from the lemmas and the remarks above.

Automorphisms

We move on to discuss the relationship between reducts (and expansions), and au-
tomorphisms.

We will need a topology on our automorphism groups.

Definition. Given a set X let Sym(X) := {σ : σ : X → X is a bijection } by the
group of permutations of X.

Remark. Sym(X) may be regarded as the automorphism group of the structure X

in the empty signature, with dom(X) = X.
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Sym(X) has a topology on it.

Notation. For σ ∈ Sym(X) and ā ∈ Xn we write σā for (σ(a0), . . . , σ(an−1)).

Definition. The basic open set Uā,b̄ in Sym(X) have the form

Uā,b̄ := {σ ∈ Sym(X) : σā = b̄}

for ā, b̄ ∈ Xn. The open sets of the topology are unions of the basic open sets.

Remark. Uā,b̄ are actually closed since

Sym(X) \ Uā,b̄ =
⋃
c̄6=b̄

Uā,c̄.

So the sets Uā,b̄ are clopen.

Remark. Uā,b̄ is a coset of the stabilizer subgroup Sym(X)ā (and also a coset of
Sym(X)b̄).

Remark. The point sets are closed. I.e. for any σ ∈ Sym(X)

{σ} =
⋂
a∈X

Ua,σ(a)

is closed.

Remark. The topology we have given makes the action

µ : Sym(X)×X −−−→ X

continuous when X is given the discrete topology. In fact it is the coarsest such
topology. To see this let V ⊆ X be a basic open set, i.e. V = {x} for some x ∈ X.
Then

µ−1(V ) := {(σ, y)
∣∣ σ(y) = x} =

⋃
y∈X

Uy,x × {y}

which is open in the product topology Sym(X)×X.

If A is a τ -structure then Aut(A) is a subgroup of Sym(A). More generally if
A′ is a τ ′-structure and τ ⊆ τ ′ then Aut(A′) is a subgroup of Aut(A′|τ ).

Theorem 2. Aut(A) is a closed subgroup of Sym(A).

Proof. Let σ ∈ Aut(A). We want to show that σ ∈ Aut(A). Let ϕ(x̄) be any
L (τ)-formula. We must show that for any ā from A

A |= ϕ(ā) ⇐⇒ A |= ϕ(σā).

Suppose A |= ϕ(ā). Let b̄ := σā. Since σ ∈ Aut(A) we have that Uā,b̄ ∩
Aut(A) 6= ∅ so there is some δ ∈ Aut(A) such that δ ∈ Uā,b̄ i.e. δ(ā) = b̄ = σ(ā). So

A |= ϕ(ā) ⇐⇒ A |= ϕ(δ(ā)) ⇐⇒ A |= ϕ(σ(ā)).

Thus σ ∈ Aut(A).
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