Math 225A — Model Theory

Speirs, Martin

Autumn 2013



General Information

These notes are based on a course in Metamathematics taught by Professor Thomas
Scanlon at UC Berkeley in the Autumn of 2013. The course will focus on Model
Theory and the course book is Hodges’ a shorter model theory.

As with any such notes, these may contain errors and typos. I take full respon-
sibility for such occurences. If you find any errors or typos (no matter how trivial!)
please let me know at mps@berkeley.edu.

Lecture 12

Quantifier elimination for Th(Z) as ordered group

Let 7 = {+,—,0,1, <} where + and — are binary function symbols, 0 and 1 are
constants and < is a binary relation. We will consider the theory of the integers as
a discretely ordered group. We claim the the theory, T, need to describe this will
be the theory of discretely ordered abelian groups G having G/nG = Z/nZ for each
n € 7. More precisely we let T' be the theory with axioms

ordered abelian groups axioms as usual
discretely orderede: Va—(0 < x < 1)
0<1

for each n € Z

n—1
Yz \/ Jy(x = j + ny)
j=0
where j is short for 1+ 14 ---+1 (j times) and ny is short for y +y+---+y

(n times).

The last axioms schema does show that G/nG = Z/nZ for all n whenever
G =T, since then G is discretely ordered and so G/nG is generated by 1.

Definition. We define the complexity, c(t) of a 7-term t to by essentially the
number of additions in . More precisely let

o c(0)=c(1)=1

o ¢(z;) =1

o c(—t) =c(t)

o c(t+s)=c(t)+c(s).

Now we define the elimination set.

Definition. Let =, ;. be the set of formulae in n variables zo, ..., 2,_1 of the form



o ¢(Z) > 0 where c(t) < k
e 5(z) =4 (mod k!) where c(s) < k.

Theorem 1 (Presburger). T' is equal to Th(Z,+,—,0,1,<) and Z = |JE,  is an
elimination set.

In particular T" is a complete theory. The proof of the theorem will actually
yield an effective procedure to convert a general formula to an equivalent formula in
=, i.e. we will get decidability for the theory.

Remark. In fact the decidability result for 7" follows (by Gode’s Completeness the-
orem) from the first statement 7' = Th(Z, +,—,0, 1, <) since Th(Z, +, —,0,1,<) is

complete.

The general approach of the proof will be the following: Show that equivalence
relative to = can be used to set up a back-and-forth system. This we know is enough
to determine elementary equivalence, which gives the first statement. We also know
that every formula is equivalent to a disjunction of formulas from the set © = |J ©,,
(constructed in Lecture 10), so if we can show that the “equivalence relation gotten
from Z7 is finer than that gotten from © then every element of © can be expressed
as a disjunction of elements of =. Since © was enough for an elimination set we see
that = will be enough for an elimination set.

Let us first define the “equivalence relation gotten from ="

Definition. For 2 and 8 models of T and for @ € A” and b € B", we say that
(le EL) N% (%7 B)
iff for all £ € Z,, we have 2 |= £(a) < B = £(b).

Now our goal is to show that there is a sequence of numbers (k;)?°,, such that
ko < k1 < --- and such that we can carry out the back-and-forth construction if we
know that we have the NE for all k. More precisely we want

o if (A,a) ~Z (B,5) then (U, a) ~ (B,5), and

o if (A,a) ~ % (B,b) and if ¢ € A then there exists d € B such that (
(B, b, d). Vlce verse: if d € B then there exists ¢ € A such that (
(%B,, ).

,¢) ~

a,c) ~
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The existence of such a sequence (k;) will then imply that ~% is finer than ~;
which is what we want.

We need two technical lemmas. The first will show that kg may be chosen to
be 3.



Lemma. If (A,a) ~5 (B,b) then (A, a) ~o (B,b).

Proof. We must check that all unnested atomic formulae: z; < x;, 1 = x; + x5,
z; =0, z; =1 and 2; = x;. As an example we check A = a =a; +a; <= B =
by, = b; + bj. Using the axioms of ordered abelian groups

ag=a;+a; <= ap—(a;+a;)=0 <= —(ap—(a;+a;)>0) A ~((a;+a;)—ar)>0).

Let t(Z) := xp + —(x; + ;) and u(Z) := —t(Z) be terms. Both have complexity 3.
By hypothesis —(¢(Z) > 0) and so by definition of ~5 we have (8B,b) = =(¢(z) > 0),
and likewise (%B,b) = —(u(Z) > 0) so t(b) = 0 i.e. by = b; + b;.

A similar argument works for the four other unnested atomic formulae and so
(A,a) ~o (B, b). O

So kg = 3. Now to go up a step is a bit more complicated. We shall let
ky, = m?™. This suffices by the following lemma.

Lemma. If (2,b)

~Zom (B,b) (m > 3) and ¢ € A then there exists d € B such
that (A,a,c) ~Z, (B,b,d). Similarly if d € B then there exists ¢ € A such that
(A, a,¢) ~5, (B,b,d).

Proof. We will deal with congruence issues and then with the order issues.

Let ¢ € A. We want to understand the congruence relations that ¢ might have
relative to terms when we plug in a. We only consider terms of complexity m — 1.
Consider the set

.= {t(z)+iz, =j (mod m!) }
ct)<m—=1,i<m, 0<j<m!and A E=t(a)+ic=j (mod m!)}

As (A,a) ~Z,, (B,b), for each t of complexity < m — 1 we have t(a) = t(b)
(mod m!). This statement makes sense since A/ (mod m!)A = Z/m!Z and Z/m!Z =
B/m!B so we can identify elements of 2 and B with their image under the isomor-
phisms. Let o : A/m!A —— Z/m!Z and B : B/m!B —— Z/m!Z be the isomor-
phisms. Now since a(c) satisfies all formulae of I' we have that e := 3~ (a(c)) € B
also satisfies all formulae in I'. So we have found e which looks like ¢ up to congruence
(mod m!). Without loss of generality we can assume 0 < e < ml.

Our final goal is to modify e, while preserving its congruence mod m! so that
it also looks like ¢ in relation to the ordering. I.e. we must find f € B such that
d = e+ f(m!) works.

We must deal with assertions of the form

t(a) +ic>0



where the complexity of ¢ is <m — 1 and 0 < ¢ < m. By multiplying through by MT'
we reduce to assertions of the form
ml
t(a) + mlec > 0.

Setting u(a) := ™'t(a)+mlc we have that the complexity of u is < (m—1)m! < m?™
Consider the set

{t(@) | c(t) < (m —1)m!}.
This is a finite set. Let t(a) chosen from this set so that ¢(a) < mlc maximally so
(i.e. there is no other term t'(a) such that ¢(a) < t/(a) < m!c). Similarly let u(a) be

chosen so that u(a) > m!c minimally so. If one of ¢ or u doesn’t exist, then we just
ignore the corresponding part of the following argument. Now we have

t(a) < mle <wu(a).

Since (A, a) ~ mQ,,L (B, b) we have that

and
mlec = mle (mod (m!)?)

since ¢ = e (mod (m!)). Thus there exists g € B such that
g =mle =mlc (mod (m!)?).

Now letting d = %4 gives the desired element of B, so that (A, a,c) ~
This completes the proof. O

The theorem now follows from the lemmas and the remarks above.

Automorphisms

We move on to discuss the relationship between reducts (and expansions), and au-
tomorphisms.

We will need a topology on our automorphism groups.

Definition. Given a set X let Sym(X) := {0 : 0 : X — X is a bijection } by the
group of permutations of X.

Remark. Sym(X) may be regarded as the automorphism group of the structure X
in the empty signature, with dom(X) = X.



Sym(X) has a topology on it.
Notation. For o € Sym(X) and a € X" we write oa for (o(agp),...,o0(apn-1)).
Definition. The basic open set U, ; in Sym(X) have the form
Usp = {0 € Sym(X) : 0a = b}
for a,b € X™. The open sets of the topology are unions of the basic open sets.

Remark. Ugj are actually closed since

Sym(X)\ Uz p = U Ua.c.
b

So the sets Uy are clopen.
Remark. U,y is a coset of the stabilizer subgroup Sym(X); (and also a coset of
Sym(X)g).
Remark. The point sets are closed. Le. for any o € Sym(X)

{o} = () Vsoa)

a€X

is closed.

Remark. The topology we have given makes the action
e Sym(X) x X —— X

continuous when X is given the discrete topology. In fact it is the coarsest such
topology. To see this let V' C X be a basic open set, i.e. V = {z} for some = € X.
Then

p V)=o) [ oly) = 2} = | Uy x {1}

yeX
which is open in the product topology Sym(X) x X.
If 2 is a 7-structure then Aut(2() is a subgroup of Sym(A). More generally if
A" is a 7/-structure and 7 C 7 then Aut(2l) is a subgroup of Aut(’|,).

Theorem 2. Aut(2) is a closed subgroup of Sym(A).

Proof. Let ¢ € Aut(). We want to show that ¢ € Aut(2). Let ¢(Z) be any
Z(1)-formula. We must show that for any a from 2

AEp@) <<= AREyp(oa).

Suppose 2 = ¢(a). Let b := oa. Since o € Aut(A) we have that Uap N
Aut(2) # 0 so there is some § € Aut(2) such that § € U, j i.e. 6(a) = b= o(a). So

AEpla) = Akp@a) <= ARplo(a)
Thus o € Aut(2). O



