Math 225A - Model Theory

Speirs, Martin

Autumn 2013

General Information

These notes are based on a course in Metamathematics taught by Professor Thomas Scanlon at UC Berkeley in the Autumn of 2013. The course will focus on Model Theory and the course book is Hodges' a shorter model theory.

As with any such notes, these may contain errors and typos. I take full responsibility for such occurences. If you find any errors or typos (no matter how trivial!) please let me know at mps@berkeley.edu.

Lecture 12

Quantifier elimination for $\operatorname{Th}(\mathbb{Z})$ as ordered group

Let $\tau=\{+,-, 0,1,<\}$ where + and - are binary function symbols, 0 and 1 are constants and $<$ is a binary relation. We will consider the theory of the integers as a discretely ordered group. We claim the the theory, T, need to describe this will be the theory of discretely ordered abelian groups G having $G / n G \cong \mathbb{Z} / n \mathbb{Z}$ for each $n \in \mathbb{Z}$. More precisely we let T be the theory with axioms

- ordered abelian groups axioms as usual
- discretely orderede: $\forall x \neg(0<x<1)$
- $0<1$
- for each $n \in \mathbb{Z}$

$$
\forall x \bigvee_{j=0}^{n-1} \exists y(x=j+n y)
$$

where j is short for $1+1+\cdots+1$ (j times) and $n y$ is short for $y+y+\cdots+y$ (n times).

The last axioms schema does show that $G / n G \cong \mathbb{Z} / n \mathbb{Z}$ for all n whenever $G \models T$, since then G is discretely ordered and so $G / n G$ is generated by 1 .

Definition. We define the complexity, $c(t)$ of a τ-term t to by essentially the number of additions in t. More precisely let

- $c(0)=c(1)=1$
- $c\left(x_{i}\right)=1$
- $c(-t)=c(t)$
- $c(t+s)=c(t)+c(s)$.

Now we define the elimination set.
Definition. Let $\Xi_{n, k}$ be the set of formulae in n variables x_{0}, \ldots, x_{n-1} of the form

- $t(\bar{x})>0$ where $c(t) \leq k$
- $s(\bar{x}) \equiv j(\bmod k!)$ where $c(s) \leq k$.

Theorem 1 (Presburger). T is equal to $\operatorname{Th}(\mathbb{Z},+,-, 0,1,<)$ and $\Xi=\bigcup \Xi_{n, k}$ is an elimination set.

In particular T is a complete theory. The proof of the theorem will actually yield an effective procedure to convert a general formula to an equivalent formula in Ξ, i.e. we will get decidability for the theory.
Remark. In fact the decidability result for T follows (by Göde's Completeness theorem) from the first statement $T=\operatorname{Th}(\mathbb{Z},+,-, 0,1,<)$ since $\operatorname{Th}(\mathbb{Z},+,-, 0,1,<)$ is complete.

The general approach of the proof will be the following: Show that equivalence relative to Ξ can be used to set up a back-and-forth system. This we know is enough to determine elementary equivalence, which gives the first statement. We also know that every formula is equivalent to a disjunction of formulas from the set $\Theta=\bigcup \Theta_{n, k}$ (constructed in Lecture 10), so if we can show that the "equivalence relation gotten from Ξ " is finer than that gotten from Θ then every element of Θ can be expressed as a disjunction of elements of Ξ. Since Θ was enough for an elimination set we see that Ξ will be enough for an elimination set.

Let us first define the "equivalence relation gotten from Ξ ".
Definition. For \mathfrak{A} and \mathfrak{B} models of T and for $\bar{a} \in A^{n}$ and $\bar{b} \in B^{n}$, we say that

$$
(\mathfrak{A}, \bar{a}) \sim_{k}^{\Xi}(\mathfrak{B}, \bar{b})
$$

iff for all $\xi \in \Xi_{n, k}$ we have $\mathfrak{A} \models \xi(\bar{a}) \Longleftrightarrow \mathfrak{B} \models \xi(\bar{b})$.
Now our goal is to show that there is a sequence of numbers $\left(k_{i}\right)_{i=0}^{\infty}$ such that $k_{0}<k_{1}<\cdots$ and such that we can carry out the back-and-forth construction if we know that we have the $\sim{ }_{k}^{\Xi}$ for all k. More precisely we want

- if $(\mathfrak{A}, \bar{a}) \sim_{0}^{\Xi}(\mathfrak{B}, \bar{b})$ then $(\mathfrak{A}, \bar{a}) \approx_{0}(\mathfrak{B}, \bar{b})$, and
- if $(\mathfrak{A}, \bar{a}) \sim \sim_{k_{i+1}}^{\Xi}(\mathfrak{B}, \bar{b})$ and if $c \in A$ then there exists $d \in B$ such that $(\mathfrak{A}, \bar{a}, c) \sim \sim_{k_{i}}^{\Xi}$ $(\mathfrak{B}, \bar{b}, d)$. Vice verse: if $d \in B$ then there exists $c \in A$ such that $(\mathfrak{A}, \bar{a}, c) \sim{\widetilde{k_{i}}}_{\bar{k}_{i}}$ $(\mathfrak{B}, \bar{b}, d)$.

The existence of such a sequence $\left(k_{i}\right)$ will then imply that \sim_{k}^{Ξ} is finer than \approx_{i} which is what we want.

We need two technical lemmas. The first will show that k_{0} may be chosen to be 3 .

Lemma. If $(\mathfrak{A}, \bar{a}) \sim_{3}^{\bar{E}}(\mathfrak{B}, \bar{b})$ then $(\mathfrak{A}, \bar{a}) \approx_{0}(\mathfrak{B}, \bar{b})$.
Proof. We must check that all unnested atomic formulae: $x_{j}<x_{i}, x_{k}=x_{i}+x_{j}$, $x_{i}=0, x_{j}=1$ and $x_{i}=x_{j}$. As an example we check $\mathfrak{A} \models a_{k}=a_{i}+a_{j} \Longleftrightarrow \mathfrak{B} \models$ $b_{k}=b_{i}+b_{j}$. Using the axioms of ordered abelian groups
$\left.a_{k}=a_{i}+a_{j} \Longleftrightarrow a_{k}-\left(a_{i}+a_{j}\right)=0 \quad \Longleftrightarrow \quad \neg\left(a_{k}-\left(a_{i}+a_{j}\right)>0\right) \wedge \neg\left(\left(a_{i}+a_{j}\right)-a_{k}\right)>0\right)$.
Let $t(\bar{x}):=x_{k}+-\left(x_{i}+x_{j}\right)$ and $u(\bar{x}):=-t(\bar{x})$ be terms. Both have complexity 3 . By hypothesis $\neg(t(\bar{x})>0)$ and so by definition of $\sim \bar{\Xi}$ we have ($\mathfrak{B}, \bar{b}) \models \neg(t(\bar{x})>0)$, and likewise $(\mathfrak{B}, \bar{b}) \models \neg(u(\bar{x})>0)$ so $t(\bar{b})=0$ i.e. $b_{k}=b_{i}+b_{j}$.

A similar argument works for the four other unnested atomic formulae and so $(\mathfrak{A}, \bar{a}) \approx_{0}(\mathfrak{B}, \bar{b})$.

So $k_{0}=3$. Now to go up a step is a bit more complicated. We shall let $k_{m}=m^{2 m}$. This suffices by the following lemma.

Lemma. If $(\mathfrak{A}, \bar{b}) \sim_{m^{2 m}}^{\Xi}(\mathfrak{B}, \bar{b})(m \geq 3)$ and $c \in A$ then there exists $d \in B$ such that $(\mathfrak{A}, \bar{a}, c) \sim \sim_{m}^{\Xi}(\mathfrak{B}, \bar{b}, d)$. Similarly if $d \in B$ then there exists $c \in A$ such that $(\mathfrak{A}, \bar{a}, c) \sim_{m}^{\Xi}(\mathfrak{B}, \bar{b}, d)$.

Proof. We will deal with congruence issues and then with the order issues.
Let $c \in A$. We want to understand the congruence relations that c might have relative to terms when we plug in \bar{a}. We only consider terms of complexity $m-1$. Consider the set

$$
\begin{aligned}
\Gamma:= & \left\{t(\bar{x})+i x_{n} \equiv j(\bmod m!) \mid\right. \\
& c(t) \leq m-1, i \leq m, 0 \leq j \leq m!\text { and } \mathfrak{A} \models t(\bar{a})+i c \equiv j(\bmod m!)\}
\end{aligned}
$$

As $(\mathfrak{A}, \bar{a}) \sim_{m^{2 m}}^{\Xi}(\mathfrak{B}, \bar{b})$, for each t of complexity $\leq m-1$ we have $t(\bar{a}) \equiv t(\bar{b})$ $(\bmod m!)$. This statement makes sense since $\mathfrak{A} /(\bmod m!) \mathfrak{A} \cong \mathbb{Z} / m!\mathbb{Z}$ and $\mathbb{Z} / m!\mathbb{Z} \cong$ $\mathfrak{B} / m!\mathfrak{B}$ so we can identify elements of \mathfrak{A} and \mathfrak{B} with their image under the isomorphisms. Let $\alpha: \mathfrak{A} / m!\mathfrak{A} \longrightarrow \mathbb{Z} / m!\mathbb{Z}$ and $\beta: \mathfrak{B} / m!\mathfrak{B} \longrightarrow \mathbb{Z} / m!\mathbb{Z}$ be the isomorphisms. Now since $\alpha(c)$ satisfies all formulae of Γ we have that $e:=\beta^{-1}(\alpha(c)) \in \mathfrak{B}$ also satisfies all formulae in Γ. So we have found e which looks like c up to congruence $(\bmod m!)$. Without loss of generality we can assume $0 \leq e<m!$.

Our final goal is to modify e, while preserving its congruence $\bmod m!$ so that it also looks like c in relation to the ordering. I.e. we must find $f \in \mathfrak{B}$ such that $d=e+f(m!)$ works.

We must deal with assertions of the form

$$
t(\bar{a})+i c>0
$$

where the complexity of t is $\leq m-1$ and $0<i \leq m$. By multiplying through by $\frac{m!}{i}$ we reduce to assertions of the form

$$
\frac{m!}{i} t(\bar{a})+m!c>0 .
$$

Setting $u(\bar{a}):=\frac{m!}{i} t(\bar{a})+m!c$ we have that the complexity of u is $\leq(m-1) m!<m^{2 m}$. Consider the set

$$
\{t(\bar{a}) \mid c(t) \leq(m-1) m!\}
$$

This is a finite set. Let $t(\bar{a})$ chosen from this set so that $t(\bar{a})<m!c$ maximally so (i.e. there is no other term $t^{\prime}(\bar{a})$ such that $\left.t(\bar{a})<t^{\prime}(\bar{a})<m!c\right)$. Similarly let $u(\bar{a})$ be chosen so that $u(\bar{a}) \geq m!c$ minimally so. If one of t or u doesn't exist, then we just ignore the corresponding part of the following argument. Now we have

$$
t(\bar{a})<m!c \leq u(\bar{a})
$$

Since $(\mathfrak{A}, \bar{a}) \sim_{m^{2 m}}^{\Xi}(\mathfrak{B}, \bar{b})$ we have that

$$
\begin{aligned}
& t(\bar{a}) \equiv t(\bar{b}) \quad\left(\bmod (m!)^{2}\right) \\
& u(\bar{a}) \equiv u(\bar{b})\left(\bmod (m!)^{2}\right)
\end{aligned}
$$

and

$$
m!c \equiv m!e\left(\bmod (m!)^{2}\right)
$$

since $c \equiv e(\bmod (m!))$. Thus there exists $g \in \mathfrak{B}$ such that

$$
g \equiv m!e \equiv m!c\left(\bmod (m!)^{2}\right)
$$

Now letting $d=\frac{g}{m!}$ gives the desired element of \mathfrak{B}, so that $(\mathfrak{A}, \bar{a}, c) \sim_{m}^{\Xi}(\mathfrak{B}, \bar{b}, d)$. This completes the proof.

The theorem now follows from the lemmas and the remarks above.

Automorphisms

We move on to discuss the relationship between reducts (and expansions), and automorphisms.

We will need a topology on our automorphism groups.
Definition. Given a set X let $\operatorname{Sym}(X):=\{\sigma: \sigma: X \rightarrow X$ is a bijection $\}$ by the group of permutations of X.

Remark. $\operatorname{Sym}(X)$ may be regarded as the automorphism group of the structure \mathfrak{X} in the empty signature, with $\operatorname{dom}(\mathfrak{X})=X$.
$\operatorname{Sym}(X)$ has a topology on it.
Notation. For $\sigma \in \operatorname{Sym}(X)$ and $\bar{a} \in X^{n}$ we write $\sigma \bar{a}$ for $\left(\sigma\left(a_{0}\right), \ldots, \sigma\left(a_{n-1}\right)\right)$.
Definition. The basic open set $U_{\bar{a}, \bar{b}}$ in $\operatorname{Sym}(X)$ have the form

$$
U_{\bar{a}, \bar{b}}:=\{\sigma \in \operatorname{Sym}(X): \sigma \bar{a}=\bar{b}\}
$$

for $\bar{a}, \bar{b} \in X^{n}$. The open sets of the topology are unions of the basic open sets.
Remark. $U_{\bar{a}, \bar{b}}$ are actually closed since

$$
\operatorname{Sym}(X) \backslash U_{\bar{a}, \bar{b}}=\bigcup_{\bar{c} \neq \bar{b}} U_{\bar{a}, \bar{c}} .
$$

So the sets $U_{\bar{a}, \bar{b}}$ are clopen.
Remark. $U_{\bar{a}, \bar{b}}$ is a coset of the stabilizer subgroup $\operatorname{Sym}(X)_{\bar{a}}$ (and also a coset of $\left.\operatorname{Sym}(X)_{\bar{b}}\right)$.
Remark. The point sets are closed. I.e. for any $\sigma \in \operatorname{Sym}(X)$

$$
\{\sigma\}=\bigcap_{a \in X} U_{a, \sigma(a)}
$$

is closed.
Remark. The topology we have given makes the action

$$
\mu: \operatorname{Sym}(X) \times X \longrightarrow X
$$

continuous when X is given the discrete topology. In fact it is the coarsest such topology. To see this let $V \subseteq X$ be a basic open set, i.e. $V=\{x\}$ for some $x \in X$. Then

$$
\mu^{-1}(V):=\{(\sigma, y) \mid \sigma(y)=x\}=\bigcup_{y \in X} U_{y, x} \times\{y\}
$$

which is open in the product topology $\operatorname{Sym}(X) \times X$.
If \mathfrak{A} is a τ-structure then $\operatorname{Aut}(\mathfrak{A})$ is a subgroup of $\operatorname{Sym}(A)$. More generally if \mathfrak{A}^{\prime} is a τ^{\prime}-structure and $\tau \subseteq \tau^{\prime}$ then $\operatorname{Aut}\left(\mathfrak{A}^{\prime}\right)$ is a subgroup of $\operatorname{Aut}\left(\left.\mathfrak{A}^{\prime}\right|_{\tau}\right)$.

Theorem 2. Aut (\mathfrak{A}) is a closed subgroup of $\operatorname{Sym}(A)$.
Proof. Let $\sigma \in \overline{\operatorname{Aut}(\mathfrak{A})}$. We want to show that $\sigma \in \operatorname{Aut}(\mathfrak{A})$. Let $\varphi(\bar{x})$ be any $\mathscr{L}(\tau)$-formula. We must show that for any \bar{a} from \mathfrak{A}

$$
\mathfrak{A} \models \varphi(\bar{a}) \quad \Longleftrightarrow \quad \mathfrak{A} \models \varphi(\sigma \bar{a}) .
$$

Suppose $\mathfrak{A} \vDash \varphi(\bar{a})$. Let $\bar{b}:=\sigma \bar{a}$. Since $\sigma \in \overline{\operatorname{Aut}(\mathfrak{A})}$ we have that $U_{\bar{a}, \bar{b}} \cap$ $\operatorname{Aut}(\mathfrak{A}) \neq \emptyset$ so there is some $\delta \in \operatorname{Aut}(\mathfrak{A})$ such that $\delta \in U_{\bar{a}, \bar{b}}$ i.e. $\delta(\bar{a})=\bar{b}=\sigma(\bar{a})$. So

$$
\mathfrak{A} \models \varphi(\bar{a}) \quad \Longleftrightarrow \quad \mathfrak{A} \models \varphi(\delta(\bar{a})) \quad \Longleftrightarrow \quad \mathfrak{A} \models \varphi(\sigma(\bar{a})) .
$$

Thus $\sigma \in \operatorname{Aut}(\mathfrak{A})$.

