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General Information

These notes are based on a course in Metamathematics taught by Professor Thomas
Scanlon at UC Berkeley in the Autumn of 2013. The course will focus on Model
Theory and the course book is Hodges’ a shorter model theory.

As with any such notes, these may contain errors and typos. I take full respon-
sibility for such occurences. If you find any errors or typos (no matter how trivial!)
please let me know at mps@berkeley.edu.

Lecture 3

We continue studying the connection between language and signature. Last time we
discussed how one might interpret a language in a structure. Today we will go the
other way and associate to each structure a certain set of formulas which describe
the structure.

We let τ be a signature and A a τ -structure with domain A. Recall that a
sentence in L (τ) is a formula with no free variables.

Definition. The theory of A, written Th(A) (or ThL (τ)(A) to emphasize the
signature), is the set of sentences ψ in L (τ) that such that A |= ψ. I.e.

Th(A) = {ψ ∈ L (τ) : ψ is a sentence and A |= ψ}.

The theory of A contains all that can be said about the structure A using the
language L (τ). There are some subclasses of Th(A) which are also of interest, for
instance we might look at all quantifier-free sentences true in A or all existential
sentences true in A.

If we want to describe the basic structure A itself, (i.e. answer questions such
as; What are the relations? What are the functions? What are the constants inside
of A?) then we look at the diagram of A. To define this object we first need to say
what a literal sentence is.

Definition. A sentence of the form ϕ or ¬(ϕ) where ϕ is atomic is called a literal.

Definition. The diagram of A, written diag(A), is the set of literals that are true
in AA, i.e.

diag(A) = {ϕ ∈ L (τA) : ϕ is a literal and AA |= ϕ}.

The positive diagram of A, written diag+(A) is the set of atomic formulas true in
AA, i.e.

diag+(A) = {ϕ ∈ L (τA) : ϕ is a atomic and AA |= ϕ}.
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The diagram should be thought of as the “multiplication table” of the structure
in analogy with the multiplication table of a group – even though the diagram is not
strictly a generalization of the multiplication table in the case where A is a group.
But it contains the same information. For example, suppose G is a structure in the
language of groups and we have a · b = c in G. Then the sentence a ·G b = c will
be in the diagram. Or suppose A is in the structure of partial orders. Then the
diagram will include information like a < b and a 6< b in the partial order. In this
case the positive diagram will contain different information than the diagram. To see
this, consider two elements of the partial order which are not related, i.e. a 6< b. So
neither a < b nor b < a will be in the positive diagram, but we could have some other
structure B such that B satisfies all sentences of diag+(A) and a < b. In which case
the positive diagram of B will strictly contain diag+(A).

Of course we would like to say that B looks more or less the same as A if
B |= diag(A). Indeed there is a relation. To demonstrate it we first need a lemma,
which states that homomorphisms commute with arbitrary terms.

Lemma. Let ρ : A→ B be a homomorphism of τ -structures, and t(x0, . . . , xn−1) ∈
L (τ{x1,...,xn}) and a0, . . . , an−1 ∈ A. Then t(ρ(a0), . . . , ρ(an−1)) = ρ(t(a0, . . . , an−1)).

Proof. We proceed by induction on the complexity of t.

• if t is c ∈ Cτ then ρ(cA) = cB since ρ is a homomorphism.
• if t is xi (0 ≤ i ≤ n−1) then ρ(t(a0, . . . , an−1)) = ρ(ai) = t(ρ(a0), . . . , ρ(an−1)).
• if t is f(t0, . . . , tn−1) and the statement is true for t0, . . . , tn−1 then

ρ(tA(ā)) = ρ(fA(tA0 (ā), . . . , tAn−1(ā)))

= fB(ρ(tA0 (ā)), . . . , ρ(tAn−1(ā)))

= fB(tB0 (ρā)), . . . , tBn−1(ρā))

= tB(ρā)

With the lemma at hand we can now state the relationship between structures
and satisfying the (positive) diagram.

Proposition. Let A be a τ -structure. The following are equivalent for a τ -structure
B:

• The exists an expansion of B to B′ in τA such that B′ |= diag+(A).
• There exists a homomorphism ρ : A→ B.

Proof. “⇒” Let B′ be an expansion to τA such that B′ |= diag+(A). Define ρ : A→
B by ρ(a) = aB

′ . We check that ρ is a homomorphism.
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• For c ∈ Cτ . We must show that ρ(cA) = cB. By definition ρ(cA) = (cA)B
′ . Now

consider the sentence ϕ which is cA = c (this is an atomic formula in L (τA).
Now AA |= ϕ since (cA)A = cA. So ϕ ∈ diag+(A) which, by assumption, implies
B′ |= ϕ.

• For f ∈ Fτ with arity(f) = n and a1, . . . , an ∈ A then the formula ψ :

f(a1, . . . , an) = b with b := fA(a1, . . . , an). Now AA |= ψ i.e. ψ ∈ diag+(A).
But then by assumption B′ |= ψ i.e. fB′

(aB
′

1 , . . . , aB
′

n ) = bB
′ , thus

fB(ρ(a1), . . . , ρ(an)) = ρ(b) = ρ(fA(a1, . . . , an)).

• For R ∈ Rτ with arity(R) = n and a1, . . . , an ∈ A such that RA(a1, . . . , an).
Now let θ : R(a1, . . . , an) ∈ L (τA). Then θ ∈ diag+(A) and so B′ |= θ so
RB′

(aB
′

1 , . . . , aB
′

n ) which by definition isRB′
(ρ(a1), . . . , ρ(an)) soRB(ρ(a1), . . . , ρ(an)).

Thus ρ is indeed a homomorphism.
“⇐” Let ρ : A → B be a homomorphism. We expand B to B′ in τA by

setting aB′
= ρ(a). This is clearly an expansion of B to τA. We must show that

B′ |= diag+(A). We do this by induction on atomic formulas.

• Suppose t, s ∈ T (τA) and AA |= s=t. Now both s and t are closed terms in
τA so there are s̃ and t̃ in T (τ{xi:i∈ω}) such that sAA = s̃A(ā) and tAA = t̃A(ā)

for some ā ∈ An. By assumption s̃A(ā) = t̃A(ā). Now by the lemma preceding
this proposition, ρ commutes with terms and so

ρ(s̃A(ā)) = s̃B(ρā) = s̃B(āB
′
).

but this is the same as s̃B′
(āB

′
) since the interpretation of function symbols

in B doesn’t change under the extension to B′. Likewise ρ(t̃A(ā)) = t̃B
′
(āB

′
).

Now since ρ is a function and s̃A(ā) = t̃A(ā) we have s̃B′
(āB

′
) = t̃B

′
(āB

′
), i.e.

sB
′

= tB
′ , so B′ |= s=t as well.

• Similar reasoning applies to atomic formulas given by relation symbols and so
by induction B′ |= diag+(A).

We have a similar but stronger relationship for the diagram. First we define
the notion of embedding to be a morphism which respects negations of relations.

Definition. A homomorphism ι : A → B is an embedding if it is injective and if
(a1, . . . , an) ∈ RA if and only if (ι(a1), . . . , ι(an)) ∈ RB.

Proposition. Let A be a τ -structure. The following are equivalent for a τ -structure
B.
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1. There exists an expansion B′ of B to τA such that B′ |= diag(A).
2. There exists an embedding ι : A→ B.
3. There exists a substructure A′ ⊆ B such that A ∼= A′.

Proof. First note that 2 ⇔ 3 by definition. Most of the rest of the proof is done
exactly as before when looking at the positive diagram. In going from 1 to 2 we take
B′ |= diag(A) and define ρ : A → B by a 7→ aB

′ and check (like above) that this is
a homomorphism. Now ρ will be injective since, if a 6= b in A then it follows that
AA |= ¬(a = b), i.e. ¬(a = b) ∈ diag(A) . Thus, B′ |= ¬(a = b) and so ρ(a) 6= ρ(b).
The rest of the proof is much the same as before.

These propositions show the first steps of how model theory works by going
between syntax and semantics. We can convert properties which are purely structural
into statements about satisfying certain sorts of formulas and sentences.

What we have called the diagram might also be called the quantifier-free
diagram, since we only include sentences without quantifiers. If we want more
information about the structure we can also look at the elementary diagram,
el−diag(A) which by definition is Th(AA).

We now prove a result about the existence of a model of a theory in much the
same way as with the term algebra. We take a theory where we would like to find a
model and basically just letting the language serve this goal.

Definition. A set T of L (τ)-sentences is =-closed if

• for all closed terms t, s in T (τ) and for all formulas ϕ with one free variable
x, if ϕ(t) ∈ T and if t = s ∈ T then ϕ(s) ∈ T ,

• for all closed terms t we have t = t ∈ T .

Remark. If S is any set of L (τ)-sentences then there is a smallest =-closed set S̃
containing S.

So the following proposition could be applied to any set of L (τ)-sentences by
passing to the =-closure of the given set first.

Proposition. If T is an =-closed set of atomic sentences then there exists a struc-
ture A such that A |= T and such that for any B with B |= T there is a unique
homomorphism A −→ B.

Remark. If T = ∅ then A will be the term algebra.

Proof. The domain of A will be T (τ) modulo the equivalence relation given by s ∼ t
if and only if s = t ∈ T . Let us show that this is indeed an equivalence relation.

• Reflexivity : For all t we have t ∼ t since by assumption t = t ∈ T .
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• Symmetry : Suppose s ∼ t so that s = t ∈ T . Consider the formula ϕ(x) given
by x = s. ϕ is an atomic formula with one free variable, x. Now ϕ(s) is in T
and so by =-closedness of T we have ϕ(t) in T , i.e. t = s ∈ T and so t ∼ s.

• Transitivity : Suppose s ∼ t and t ∼ r. Let ϕ(x) be x = r. Then ϕ(t) ∈ T and
since t ∼ s by symmetry we have that ϕ(s) ∈ T so s ∼ r.

Thus, ∼ is an equivalence relation. We now let the domain of A be A := T (τ)/ ∼,
and denote the equivalence class containing t by [t]∼. To define the τ -structure on
A we set

• for c ∈ Cτ , cA = [c]∼
• for f ∈ Fτ of arity n we define fA([t0]∼, . . . , [tn−1]∼) = [f(t0, . . . , tn−1]∼
• forR ∈ Rτ of arity n then ([t0]∼, . . . , [tn−1]∼) ∈ RA if and only ifR(t0, . . . , tn−1) ∈
T .

We must show that these definitions are well-defined and that A has the desired
property. We shall do this next time.
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