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General Information

These notes are based on a course in Metamathematics taught by Professor Thomas
Scanlon at UC Berkeley in the Autumn of 2013. The course will focus on Model
Theory and the course book is Hodges’ a shorter model theory.

As with any such notes, these may contain errors and typos. I take full respon-
sibility for such occurences. If you find any errors or typos (no matter how trivial!)
please let me know at mps@berkeley.edu.

Lecture 2

Last time we introduced closed τ -terms. Before we start trying to make sense of how
to interpret terms we must define the notions of expansions and reducts. Given two
signatures τ and σ we write τ ⊆ σ when Cτ ⊆ Cσ, Fτ ⊆ Fσ and Rτ ⊆ Rσ.

Definition. Given signatures τ and σ with τ ⊆ σ and a σ-structure B we may
define a τ -structure A = B|τ . A is the τ -structure given by dom(A) = dom(B) and
for x ∈ Cτ ∪ Fτ ∪ Rτ we set xA = xB. We call A the τ-reduct of B and say that
B is an expansion of A to σ.

This gives a functor from Str(σ) (the category of σ-structures) to Str(τ)1.
As long as either dom(A) 6= ∅ or Cσ = ∅ then the τ -structure A admits some

expansion to σ.

Example. We may think of R as an ordered field (R,+, ·,≤, 0, 1)2. Then the signature
of this structure is {+, ·,≤, 0, 1}. Now we may form the reduct to, say, the language
of groups {+, 0}. This yields the structure (R,+, 0). Of course there are many ways
to expand the group structure on the reals.

Recall that for a signature τ , the set T (τ) of all closed τ-terms is the smallest
set of finite sequences from Cτ ∪ Fτ ∪ {(} ∪ {, } ∪ {)}, such that for all c ∈ Cτ then
c ∈ T (τ) and such that if t1, . . . , tn ∈ T (τ) and f ∈ Fτ (with arity(f) = n) then
f(t1, . . . , tn) ∈ T (τ).

Remark. To show that T (τ) is actually a set one uses weak recursion: given a set
X an element a ∈ X and a function I : X → X then there is a unique function
f : ω → X such that f(0) = a and for all n ∈ ω we have f(n + 1) = I(f(n)). This
is a theorem, which will be proven in the homework.

1morphisms of σ-structures respect of the σ-structure and so they will also respect all the τ -
structure.

2This notation for a structure means that R is the domain, + and · are the interpretations of the
function symbols, ≤ is the interpretation of the relation symbol, and 0, 1 are the interpretations of
the constant symbols.
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Definition. For τ a signature we define the free term τ-structure T̃ (τ) to be the
τ -structure with domain T (τ) and with interpretations as follows:

• for c ∈ Cτ we set cT̃ (τ) = c

• for f ∈ Fτ with arity(f) = n and with a1, . . . , an ∈ T (τ), we set

f T̃ (τ)(a1, . . . , an) = f(a1, . . . , an).

• for R ∈ Rτ we let RT̃ (τ) = ∅.

It is clear that T̃ (τ) is in fact a τ -structure. The real content of this fact is
just the fact that T (τ) actually forms a set.

Furthermore T̃ (τ) has a universal property.

Proposition. For any τ -structure A then there exists a unique homomorphism of
τ -structures ρ : T̃ (τ)→ A.

Proof. We first define the map ρ : T̃ (τ) → A by recursion on the construction on
T (τ).

• for c ∈ Cτ we let ρ(cT̃ (τ)) = cA.
• if t ∈ T (τ) has the form f(t1, . . . , tn) then ρ(t) = fA(ρ(t1), . . . , ρ(tn)).

This is well-defined since we have a unique parsing lemma for terms [Hodges Problem
5, of Section 1.3]. Furthermore ρ is clearly a homomorphism. On constant and
function symbols it is defined as is should be and for relation symbols the claim is
vacuous since RT̃ (τ) = ∅. This takes care of the existence.

For the uniqueness we use induction on the complexity of terms. Suppose
ρ, ξ : T̃ (τ)→ A are homomorphisms. Then

• for all c ∈ Cτ we have ρ(c) = cA = ξ(c),
• if t ∈ T (τ) has the form f(t1, . . . , tn) then ρ(t) = fA(ρ(t1), . . . , ρ(tn)) =

fA(ξ(t1), . . . , ξ(tn)) = ξ(t) since the ti’s have lower complexity than t.

Thus ρ = ξ and this finishes the proof.

The proposition shows that the free term structure, T̃ (τ), is an initial object
in Str(τ). [As such it is the unique (up to isomorphism) τ -structure which satisfies
the property of the proposition.].

This way of constructing structures out of their own names will be done several
times during the course. If one wants to show that certain sentences are consistent
or that it is possible to have some specific kind of structure, then one can try to
write down what one wants to exist and then the description is itself the structure.

We now introduce one of the most important kinds of expansions.
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Definition. Given a τ -structure M and a subset A ⊆ dom(M), then τA is the
signature with

CτA = Cτ ∪̇A (disjoint union)

and with FτA = Fτ , and RτA = Rτ . We define MA to be the expansion of M to τA
by interpreting a ∈ A ⊆ CτA as aMA = a.

The expansion MA has names (in the form of constant symbols) for all the
elements of A.

We sometimes want to talk about having variables. Variables should be thought
of as constant symbols that we don’t know how to interpret yet.

Definition. Given a signature τ , a term over τ is an element of T (τX) where
X = {xi : i ∈ ω}.

[strictly speaking we have not defined what τX means in the context where
there is no τ -structure, i.e. no domain.]

Now let A be a τ -structure. We shall interpret the terms in L (τX) in A. Let
t be a term in which only the variables xi for i < n occur, so that t ∈ L (τ{xi:i<n}).
Then tA : An → A is the function given by sending, for each ā = (a0, . . . , an−1) ∈ An

to the image of t under the unique τ{xi:i<n}-homomorphism

˜T (τ{xi:i<n}) −→ Aā

where xAA
i = ai.

Remark. If A = ∅ then there are no n-tuples ā ∈ An and so we interpret t as the
empty function.

Logic

Definition. Given a signature τ , an atomic formula is a finite sequence from the
set

Cτ ∪ Fτ ∪Rτ ∪ {(} ∪ {, } ∪ {)} ∪ {=}

of the form

• t = s, or
• R(t1, . . . , tn)

where t, s and t1, . . . , tn are τ -terms, and R ∈ Rτ .
The set of all τ -formulae, L (τ), is the smallest set of finite sequences in

Cτ ∪Fτ ∪Rτ ∪{(}∪{, }∪{)}∪{=}∪{∨}∪{∧}∪{→}∪{↔}∪{∀}∪{∃}∪{xi : i ∈ ω}

(where all unions are disjoint) such that
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• every atomic formula belongs to L (τ),
• if ϕ is in L (τ), then ¬(ϕ) is in L (τ),
• if ϕ and ψ are in L (τ), then (ϕ ∨ ψ), (ϕ ∧ ψ), (ϕ → ψ) and (ϕ ↔ ψ) are in

L (τ)

• if ϕ is in L (τ) and i ∈ ω then (∃xi)ϕ and (∀xi)ϕ are in L (τ).

an element of L (τ) is called a formula, and L (τ) is called the language of τ .

Remark. Each of the four conditions on the set L (τ) may be thought of as closure
properties of L (τ). For instance L (τ) is closed under taking negation, i.e. if ϕ ∈
L (τ) then ¬(ϕ) ∈ L (τ). By the way we have defined L (τ) it is clear that the
set actually exists. This is since there is at least one set satisfying all the closure
properties (namely the set of all sequences in the given symbols) and since each
condition in the definition is such that for any collection of sets of sequences satisfying
the given condition, their intersection will also satisfy it. Thus taking the intersection
of all sets satisfying the conditions we get the smallest set, namely L (τ).

This construction of L (τ) is “from above”. A more useful way to construct
L (τ) would be “from below” namely using weak recursion as in the above construc-
tion of the closed τ -terms.

Free and bound variables

We would like to say that a variable is free (or bound) in a formula ϕ but really we
can only say that a particular instance of the given variable is free (or bound).

We define free and bound variables by recursion on the construction of formu-
las.

• In an atomic formula all variables are free, including variables not appearing
in the atomic formula.

• In ¬(ϕ), (ϕ∧ψ) and (ϕ∨ψ) the free (respectively bound) instances of variables
are what they where in the constituent formulas. For clarity let us be more
precise in the case (ϕ∧ψ). Now (ϕ∧ψ) is a sequence of length, 3+length(ϕ)+

length(ψ). For i < length(ϕ) + 1 then the ith coordinate is a free (respectively
bound) variable if the (i − 1)th coordinate of ϕ is free (respectively bound).
For 2 + length(ϕ) ≤ j < 3 + length(ϕ) + length(ψ) then the jth coordinate is
a free (respectively bound) variable if the (j − (2 + length(ϕ)))th coordinate is
free (respectively bound) in ψ.

• In (∀xi)ϕ and (∃xi)ϕ no instance of xi is free (i.e. all such instances are bound)
and all other variables remain how they were (free or bound) in ϕ.

Warning!. The same variable can appear twice in the same formula as both a free
and bound variable! For example in the formula (∃x1(¬(x1 = x2)) ∧ x1 = x3), the
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variable x1 is bound in the first instance and free in the second. Of course it is not
a good idea to do this, but it is allowed.

We can now understand how to interpret formulas. Given a τ -structure A

(with domain A) and ϕ a formula we interpret ϕ as follows

• If ϕ is atomic and equal to t = s then ϕ(A) := {a ∈ Aω : tA(a) = sA(a)}.

• If ϕ is atomic and equal toR(t1, . . . , tn) then ϕ(A) := {a ∈ Aω : (tA1 (a), . . . , tAn(a)) ∈
RA}.

• If ϕ is ¬(ψ) then ϕ(A) := Aω \ ϕ(A).

• If ϕ is (ψ ∧ θ) then ϕ(A) := ψ(A) ∩ θ(A).

• If ϕ is (ψ ∨ θ) then ϕ(A) := ψ(A) ∪ θ(A).

• If ϕ is (∃xi)ψ then

ϕ(A) := {a ∈ Aω : ∃bi ∈ A such that ã ∈ ψ(A) where (ã)j = bi if j = i and (ã)j = aj otherwise}

• If ϕ is (∀xi)ψ then

ϕ(A) := {a ∈ Aω : ∀bi ∈ A such that ã ∈ ψ(A) where (ã)j = bi if j = i and (ã)j = aj otherwise}

Remark. Often when ϕ ∈ L (τ) is a formula and the free variables of ϕ are taken
from {xi : i < n}, we think of ϕ(A) as a subset of An. This is a mistake. By the
above definition ϕ(A) is a subset of Aω.

Definition. A formula ϕ ∈ L (τ) is a sentence if no free variables appear in ϕ

Note that all variables not appearing in ϕ are free. So for a formula to be a
sentence we only care about the variables actually appearing.

Definition. For ϕ a sentence we say that A models ϕ, written A |= ϕ, if ϕ(A) = Aω.
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