Math 225A - Model Theory

Speirs, Martin

Autumn 2013

General Information

These notes are based on a course in Metamathematics taught by Professor Thomas Scanlon at UC Berkeley in the Autumn of 2013. The course will focus on Model Theory and the course book is Hodges' a shorter model theory.

As with any such notes, these may contain errors and typos. I take full responsibility for such occurences. If you find any errors or typos (no matter how trivial!) please let me know at mps@berkeley.edu.

Lecture 10

We have introduced the Ehrenfeucht-Fraïssé game $\operatorname{EF}_{\omega}(\mathfrak{A}, \mathfrak{B})$ as a way of testing for similarities between the structures \mathfrak{A} and \mathfrak{B}. In particular we saw that if \mathfrak{A} and \mathfrak{B} are isomorphic then \exists has a winning strategy (i.e. then $\mathfrak{A} \sim_{\omega} \mathfrak{B}$). The natural question is then: how similar are \mathfrak{A} and \mathfrak{B} if we know that \exists has a winning strategy for $\mathrm{EF}_{\omega}(\mathfrak{A}, \mathfrak{B})$? The answer is somewhere between elementary equivalence and isomorphism.
Notation. Recall that $\mathfrak{A} \equiv_{\infty} \mathfrak{B}$ means that \mathfrak{A} and \mathfrak{B} agree on all sentence of the infinitary language $\mathscr{L}_{\infty \omega}(\tau)$. In particular $\mathfrak{A} \equiv \equiv_{\infty \omega} \mathfrak{B}$ implies $\mathfrak{A} \equiv \mathfrak{B}$.

Theorem 1. If τ is a countable signature, then $\mathfrak{A} \sim_{\omega} \mathfrak{B}$ if and only if $\mathfrak{A} \equiv_{\infty \omega} \mathfrak{B}$.

Proof.

" \Longrightarrow " We will show by induction on the complexity of an $\mathscr{L}_{\infty}(\tau)$-sentence Φ, for any signature τ, that $\mathfrak{A} \sim_{\omega} \mathfrak{B}$ implies $\mathfrak{A} \models \Phi \Leftrightarrow \mathfrak{B} \models \Phi$.

- If Φ is atomic then since $\mathfrak{A} \sim_{\omega} \mathfrak{B}$ implies $\mathfrak{A} \sim_{0} \mathfrak{B}$ which implies that $\mathfrak{A} \models \Phi \Leftrightarrow$ $\mathfrak{B} \models \Phi$.
- If Φ is $\neg \Psi$ then $\mathfrak{A} \models \Phi$ iff $\mathfrak{A} \not \vDash \Psi$ iff (by Induction Hypothesis) $\mathfrak{B} \not \vDash \Psi$ iff $\mathfrak{B} \models \Phi$.
- If Φ is $\bigvee \Xi$ then $\forall \xi \in \Xi$ we have $\mathfrak{A} \models \xi \Leftrightarrow \mathfrak{B} \models \xi$ which happens iff $\mathfrak{B} \models \Phi$. Likewise if Φ is $\bigwedge \Xi$.
- Suppose Φ is $\exists x \Psi(x)$ and that $\mathfrak{A} \models \Phi$. Then there exists $a \in A$ such that $\mathfrak{A}_{a} \models \Psi(a)$. By hypothesis \exists has a winning strategy for $\mathrm{EF}_{\omega}(\mathfrak{A}, \mathfrak{B})$. Treating a as the 0 th move of \forall let $b \in B$ be the element that \exists picks by way of her winning strategy. Then (a, b) is a winning position for \exists in the game $\mathrm{EF}_{\omega}(\mathfrak{A}, \mathfrak{B})$. This is equivalent to \exists having a winning strategy for the game $\mathrm{EF}_{\omega}\left(\mathfrak{A}_{a}, \mathfrak{B}_{b}\right)$ i.e. $\mathfrak{A}_{a} \sim_{\omega} \mathfrak{B}_{b}$. So by the induction hypothesis $\mathfrak{B}_{b} \models \Psi(b)$ i.e. $\mathfrak{B} \models \exists x \Psi(x)$. Thus $\mathfrak{B} \models \Phi$. Reversing the roles of \mathfrak{A} and \mathfrak{B} we see that $\mathfrak{B} \models \Phi$ also implies that $\mathfrak{A} \models \Phi$.
" $\Longleftarrow ":$ Conversely suppose $\mathfrak{A} \equiv_{\infty \omega} \mathfrak{B}$. We claim that $\mathfrak{A} \sim_{\omega} \mathfrak{B}$. If \forall plays $a \in A$ then \exists will respond $b \in \mathfrak{B}$ such that $\operatorname{tp}(a)=\operatorname{tp}(b)^{1}$ in $\mathscr{L}_{\infty \omega}(\tau)$. More precisely let ${ }^{2}$
$\Phi:=\left\{\varphi(x) \in \mathscr{L}_{\infty \omega}(\tau): \mathfrak{A} \models \varphi(a / x)\right.$ with (number of symbols in $\left.\left.\varphi\right) \leq 2^{|\mathfrak{A}|+|\mathfrak{B}|+\aleph_{0}}\right\}$.
Then $\mathfrak{A} \vDash \bigwedge \Phi(a)$ i.e. $\mathfrak{A} \vDash \exists x \bigwedge \Phi(x)$. By assumption $\mathfrak{B} \vDash \exists x \bigwedge \Phi(x)$. Let $b \in B$ be a witness. Then \exists responds to \forall by choosing the element b. Then $\mathfrak{A}_{a} \equiv \infty \omega \mathfrak{B}_{b}$. Continuing in this way we get a ω-sequence which is a win for \exists. Following this procedure is thus a winning strategy for \exists, so $\mathfrak{A} \sim_{\omega} \mathfrak{B}$.

So $\operatorname{EF}_{\omega}(\mathfrak{A}, \mathfrak{B})$ does characterize an equivalence between \mathfrak{A} and \mathfrak{B} but in the very strong infinitary logic of $\mathscr{L}_{\infty \omega}$.

We will now slightly modify the game with the aim of getting a new game that exactly characterizes (for finite signatures) elementary equivalence, i.e. equivalence in first-order logic.

What follows relies heavily on the notion of unnested formulae. For convenience we repeat the definition.

Definition. An unnested atomic formula is one of the form

- $x=c$, for $c \in \mathcal{C}_{\tau}$ and x a variable.
- $F \bar{x}=y$ where $F \in \mathcal{F}_{\tau}$ and \bar{x}, y are variables.
- $R \bar{x}$, where $R \in \mathcal{R}_{\tau}$ and \bar{x} are variables.
- $x=y$, where x and y are variables.

An unnested formula is built from the unnested atomic formulae by the usual rules.

Definition. The unnested Ehrenfeucht-Fraïssé game $\mathrm{EF}_{\alpha}[\mathfrak{A}, \mathfrak{B}]$ (note the square brackets) is the game where at stage $\beta<\alpha, \forall$ chooses en element from either \mathfrak{A} or \mathfrak{B} (i.e. $a_{\beta} \in A$ or $b_{\beta} \in B$) and \exists responds with an element from the other structure. \exists wins if for every unnested atomic formula $\varphi\left(x_{\left.\beta\right|_{\beta<\alpha}}\right)$

$$
\mathfrak{A}=\varphi(\bar{a}) \quad \Longleftrightarrow \quad \mathfrak{B} \models \varphi(\bar{b}) .
$$

We write $\mathfrak{A} \approx_{\alpha} \mathfrak{B}$ when \exists has a winning strategy in $\mathrm{EF}_{\alpha}[\mathfrak{A}, \mathfrak{B}]$.
Remark. Most often the ordinal α in the above definition will either be finite or will be ω.

[^0]Remark. If $\mathfrak{A} \sim_{\alpha} \mathfrak{B}$ then $\mathfrak{A} \approx_{\alpha} \mathfrak{B}$. This is clear since a play in $\mathrm{EF}_{\alpha}[\mathfrak{A}, \mathfrak{B}]$ is in fact a play of the old game $\operatorname{EF}_{\alpha}(\mathfrak{A}, \mathfrak{B})$. So a winning strategy in $\mathrm{EF}_{\alpha}(\mathfrak{A}, \mathfrak{B})$ is also a winning strategy in $\mathrm{EF}_{\alpha}[\mathfrak{A}, \mathfrak{B}]$.

The converse is not true. For example take $\tau=\{0,1\}$ where 0 and 1 are constant symbols. Let \mathfrak{A} be a τ-structure where A has one element and where $0^{\mathfrak{A}}=1^{\mathfrak{A}}$ and let \mathfrak{B} be τ-structure with B having two elements where $0^{\mathfrak{B}} \neq 1^{\mathfrak{B}}$. Then $\mathfrak{A} \approx_{0} \mathfrak{B}$ but $\mathfrak{A} \not \chi_{0} \mathfrak{B}$. To see that $\mathfrak{A} \approx_{0} \mathfrak{B}$ we must see that \mathfrak{A} and \mathfrak{B} agree on all unnested atomic sentences. But there are none! So they vacuously agree. In the other game however, the (nested) atomic sentence $0=1$ is satisfied by \mathfrak{A} but not by \mathfrak{B}. Note however, that the unnested Ehrenfeucht-Fraïssé game can tell \mathfrak{A} and \mathfrak{B} apart at level 1 , i.e. $\mathfrak{A} \not \chi_{1} \mathfrak{B}$. To see this suppose \forall picks $a \in A$ then \exists must pick $b \in B$. But then thinking of the formula $x=0$ we see that $\mathfrak{A} \vDash a=0$ and $\mathfrak{B} \not \vDash b=0$. So \exists cannot win $\mathrm{EF}_{1}[\mathfrak{A}, \mathfrak{B}]$.

Question. What is the relation between \approx_{ω} and \sim_{ω} ? I.e. do there exist \mathfrak{A} and \mathfrak{B} such that $\mathfrak{A} \approx_{\omega} \mathfrak{B}$ and $\mathfrak{A} \not \chi_{\omega} \mathfrak{B}$?

Remark. There do exist \mathfrak{A} and $\mathfrak{B} \tau$-structures (for finite signature τ) such that $\forall k<\omega \mathfrak{A} \approx_{k} \mathfrak{B}$ but $\mathfrak{A} \not \approx \omega \mathfrak{B}$.

Here is an example. Let $\mathfrak{A}=(\mathbb{N},<)$ and $\mathfrak{B}=(\mathbb{N} \oplus \mathbb{Z},<)$ (where $\mathbb{N} \oplus \mathbb{Z}$ is the order gotten by adding a copy of \mathbb{Z} after \mathbb{N}). Then $\mathfrak{A} \approx_{k} \mathfrak{B}$ for all $k<\omega$, but $\mathfrak{A} \not \approx \omega \mathfrak{B}$. To see that $\mathfrak{A} \not \approx \omega \mathfrak{B}$ imagine the case where \forall picks all elements of \mathbb{Z} (from \mathfrak{B}) doing down, then \exists will run out of elements in \mathbb{N} (from \mathfrak{A}) to pick.

Definition. For φ a formula, the quantifier rank $\operatorname{qr}(\varphi)$ is the number of nested quantifiers in φ. I.e.:

- If φ is atomic, then $\operatorname{qr}(\varphi)=0$
- $\operatorname{qr}(\varphi \wedge \psi)=\operatorname{qr}(\varphi \vee \psi)=\max \{\operatorname{qr}(\varphi), \operatorname{qr}(\psi)\}$
- $\operatorname{qr}(\neg \varphi)=\operatorname{qr}(\varphi)$
- $\operatorname{qr}(\exists \varphi)=\operatorname{qr}(\varphi)+1$.

Theorem 2. Let \mathfrak{A} and \mathfrak{B} be τ-structures. Then $\mathfrak{A} \equiv \mathfrak{B}$ if and only if for all finite $\tau^{\prime} \subseteq \tau$ we have $\left.\left.\mathfrak{A}\right|_{\tau^{\prime}} \approx_{k} \mathfrak{B}\right|_{\tau^{\prime}}$ for all $k<\omega$.

Remark. Clearly $\mathfrak{A} \equiv \mathfrak{B}$ iff for all finite $\left.\left.\tau^{\prime} \subseteq \tau \mathfrak{A}\right|_{\tau^{\prime}} \equiv \mathfrak{B}\right|_{\tau^{\prime}}$. Thus it suffices to prove the theorem in the case where τ is finite. The statement then becomes that $\mathfrak{A} \equiv \mathfrak{B}$ iff $\mathfrak{A} \approx_{k} \mathfrak{B}$ for all $k<\omega$.

Before giving a proof of this theorem we need an important lemma. Hodges calls it the Fraïssé-Hintikka theorem and notes that it is "the fundamental theorem about the equivalence relations \approx_{k} ". The theorem will follow as a corollary of the lemma.

Lemma. For a finite signature τ and $k, n<\omega$, there is a finite set $\Theta_{n, k}$ of unnested formulae of quantifier rank $\leq k$ in n free variables x_{0}, \ldots, x_{n-1}, such that
0. Distinct elements of $\Theta_{n, k}$ are inconsistent, i.e. for any $\eta, \theta \in \Theta_{n, k}$ then

$$
\vDash \forall \bar{x}(\eta \rightarrow \neg \theta) .^{3}
$$

1. If $\varphi \in \mathscr{L}(\tau)$ has quantifier rank $\leq k$ and free variables x_{0}, \ldots, x_{n-1} then there is some subset $\Phi \subseteq \Theta_{n, k}$ such that $\vDash \forall \bar{x}(\varphi \leftrightarrow \bigvee \Phi)$.
2. Given $\mathfrak{A}, \mathfrak{B} \in \operatorname{Str}(\tau)$ then for any n-tuples $\bar{a} \in A^{n}$ and $\bar{b} \in B^{n}$, we have $\mathfrak{A}_{\bar{a}} \approx_{k} \mathfrak{B}_{\bar{b}}$ if and only if for each $\theta \in \Theta_{n, k}$,

$$
\mathfrak{A} \models \theta(\bar{a}) \quad \Longleftrightarrow \quad \mathfrak{B} \models \theta(\bar{b}) .
$$

Notation. For φ a formula define $\varphi^{[0]}:=\varphi$ and $\varphi^{[1]}:=\neg \varphi$.
Proof. We first construct $\Theta_{n, k}$ by recursion on k. [Note: this does not mean that we fix n. In the induction step we will use the $n+1$ level]

Let Φ be the set of unnested atomic formulae in $\mathscr{L}(\tau)$ in variables x_{0}, \ldots, x_{n-1}. This set is finite. This is because τ is finite and to construct an unnested atomic formulae we are only allowed to introduce one symbol from τ.

To get $\Theta_{n, 0}$ we will go through every way one might choose to make each instance of $\varphi \in \Phi$ either true or false, and then take conjunctions of these formulae. More precisely we let

$$
\Theta_{n, 0}:=\left\{\bigwedge_{\varphi \in \Phi} \varphi^{[s(\varphi)]} \mid s: \Phi \longrightarrow\{0,1\}\right\}
$$

and then
$\Theta_{n, k+1}:=\left\{\bigwedge_{\varphi \in Y} \exists x_{n} \varphi\left(\bar{x}, x_{n}\right) \wedge \bigwedge_{\psi \in Z} \forall x_{n} \neg \psi\left(\bar{x}, x_{n}\right) \mid\right.$ for Y, Z a partition of $\left.\Theta_{n+1, k}\right\}$.
This finishes the construction of the sets $\Theta_{n, k}$ for arbitrary $n, k<\omega$.
Now we must check that conditions 0), 1), and 2) are satisfied. First note that $\Theta_{n, k}$ is indeed finite and all elements are unnested and have quantifier rank $\leq k$.
0. Condition 0) is reasonably clear. For $k=0$ and $s, t: \Phi \longrightarrow\{0,1\}$ with $s \neq t$ there is some φ such that $s(\varphi) \neq t(\varphi)$ then

$$
\left(\bigwedge_{\psi \in \Phi} \psi^{[s(\psi)]}\right) \longrightarrow \varphi^{[s(\varphi)]}
$$

[^1]and
$$
\left(\bigwedge_{\psi \in \Phi} \psi^{[t(\psi)]}\right) \longrightarrow \varphi^{[t(\varphi)]}
$$

Since $\varphi^{[s(\varphi)]}$ and $\varphi^{[t(\varphi)]}$ are explicitly inconsistent we see that $\Lambda \psi^{[s(\psi)]}$ and $\bigwedge \psi^{[t(\psi)]}$ are inconsistent as well.
For the level $k+1$, suppose $Y \neq Y^{\prime}$ and let $\eta \in Y \backslash Y^{\prime}$. Now consider two formulas from $\Theta_{n, k+1}$. Then

$$
\left(\bigwedge_{\varphi \in Y} \exists x_{n} \varphi \wedge \bigwedge_{\psi \in Y^{c}} \forall x_{n} \neg \psi\right) \longrightarrow \exists x_{n} \eta
$$

whereas

$$
\left(\bigwedge_{\varphi \in Y^{\prime}} \exists x_{n} \varphi \wedge \bigwedge_{\psi \in\left(Y^{\prime}\right)^{c}} \forall x_{n} \neg \psi\right) \longrightarrow \forall x_{n} \neg \eta
$$

and since $\forall x_{n} \neg \eta \leftrightarrow \neg \exists x_{n} \eta$ we have an explicit inconsistency. By induction condition 0) holds for all the sets $\Theta_{n, k}$.

1. To see that 1) holds, note that if φ is an unnested formula of quantifier rank 0 in n free variables, then φ is a boolean combination of elements of Φ and so equivalent to some element of $\Theta_{n, 0}$.
[Case $\operatorname{qr}(\varphi) \leq k+1$?????]
2. We show that condition 2) holds by induction on k.

- For $k=0 . \quad(\mathfrak{A}, \bar{a}) \approx_{0}(\mathfrak{B}, \bar{b})$ means that for ψ an unnested atomic τ formula, $\mathfrak{A} \models \psi(\bar{a}) \Longleftrightarrow \mathfrak{B} \models \psi(\bar{b})$. But the formulae in $\Theta_{n, 0}$ are exactly the atoms in the boolean algebra generated by unnested atomic formulae. So if (\mathfrak{A}, \bar{a}) and (\mathfrak{B}, \bar{b}) agree on the unnested atomic formulae then they will agree on all elements of $\Theta_{n, 0}$, and vice versa.
- At stage $k+1$ we will take one implication at a time. First suppose $(\mathfrak{A}, \bar{a}) \approx_{k+1}(\mathfrak{B}, \bar{b})$. We show that for all $\varphi \in \Theta_{n, k+1}, \mathfrak{A} \models \varphi(\bar{a})$ implies $\mathfrak{B} \models \varphi(\bar{b})$. By symmetry we will also get that $\mathfrak{B} \models \varphi(\bar{b})$ implies $\mathfrak{A} \models \varphi(\bar{a})$. Let $\varphi \in \Theta_{n, k+1}$. By construction φ is

$$
\bigwedge_{\eta \in Y} \exists x_{n} \eta \wedge \bigwedge_{\xi \in Y^{c}} \forall x_{n} \neg \xi
$$

for some subset $Y \subseteq \Theta_{n+1, k}$. Suppose $\mathfrak{A} \models \varphi(\bar{a})$. For $\eta \in Y$ this implies that $\mathfrak{A} \models \exists x_{n} \eta\left(\bar{a}, x_{n}\right)$. Let $c \in A$ be a witness to this, i.e. $\mathfrak{A} \models \eta(\bar{a}, c)$. By hypothesis there exists some $d \in \mathfrak{B}$ such that $(\mathfrak{A}, \bar{a}, c) \approx_{k}(\mathfrak{B}, \bar{b}, d)$. Then by the induction hypothesis $\mathfrak{B} \models \eta(\bar{b}, d)$ so $\mathfrak{B} \models \exists x_{n} \eta\left(\bar{b}, x_{n}\right)$. So for each $\eta \in Y$ we have $\mathfrak{B} \models \exists x_{n} \eta\left(\bar{b}, x_{n}\right)$. Likewise for $\xi \in Y^{c}$, if $\mathfrak{B} \not \vDash$
$\forall x_{n} \neg \xi\left(\bar{b}, x_{n}\right)$ then $\mathfrak{B} \models \exists x_{n} \xi\left(\bar{b}, x_{n}\right)$ and by same argument we have that $\mathfrak{A} \models \exists x_{n} \xi\left(\bar{a}, x_{n}\right)$. Since this is not true by assumption we must have $\mathfrak{B} \models \forall x_{n} \neg \xi\left(\bar{b}, x_{n}\right)$. Thus $\mathfrak{B} \models \varphi(b)$. By symmetry of the roles of \mathfrak{A} and \mathfrak{B} we have that $\mathfrak{A} \models \varphi(\bar{a})$ iff $\mathfrak{B} \models \varphi(\bar{b})$ for all $\varphi \in \Theta_{n, k+1}$.
Now for the converse implication. Suppose (\mathfrak{A}, \bar{a}) and (\mathfrak{B}, \bar{b}) agree on all of the $\Theta_{n, k+1}$ formulae. We must show $\mathfrak{A} \approx_{k+1} \mathfrak{B}$, i.e. that \exists has a winning strategy in $\mathrm{EF}_{k+1}[\mathfrak{A}, \mathfrak{B}]$. Suppose \forall plays $c \in A$. As $\Theta_{n+1, k}$ partitions A^{n+1} (by property 1) of this lemma), there is exactly one formula $\eta \in$ $\Theta_{n+1, k}$ such that $\mathfrak{A} \models \eta(\bar{a}, c)$. Now as $\Theta_{n, k+1}$ partitions A^{n} there is exactly one formula $\varphi \in \Theta_{n, k+1}$ such that $\mathfrak{A} \models \varphi(\bar{a})$. Then

$$
\varphi(\bar{x}) \longrightarrow \exists x_{n} \eta\left(\bar{x}, x_{n}\right)
$$

since φ either implies $\exists x_{n} \eta\left(\bar{x}, x_{n}\right)$ or $\forall x_{n} \neg \eta\left(\bar{x}_{n}, n\right)$, but we know that $\mathfrak{A} \mid=\eta(\bar{a}, c)$. By hypothesis (\mathfrak{A}, \bar{a}) and (\mathfrak{B}, \bar{b}) agree on formulae from $\Theta_{n, k+1}$ so $\mathfrak{B} \models \varphi(\bar{b})$. This in turn implies that $\mathfrak{B} \models \exists x_{n} \eta\left(\bar{b}, x_{n}\right)$. Let $d \in B$ be a witness. Then \exists will play d. By the induction hypothesis $(\mathfrak{A}, \bar{a}, c) \approx_{k}(\mathfrak{B}, \bar{b}, d)$. Likewise if \forall picks some $d \in B$ then \exists can find $c \in A$ such that $(\mathfrak{A}, \bar{a}, c) \approx_{k}(\mathfrak{B}, \bar{b}, d)$. Thus $(\mathfrak{A}, \bar{a}) \approx_{k+1}(\mathfrak{B}, \bar{b})$.
By induction we now have the desired equivalence.

We can now prove the theorem as a corollary. For convenience we state the result again.

Theorem 3. For τ finite and $\mathfrak{A}, \mathfrak{B} \in \operatorname{Str}(\tau)$ the following are equivalent.

- $\mathfrak{A} \equiv \mathfrak{B}$
- $\mathfrak{A} \approx_{k} \mathfrak{B}$ for all $k<\omega$.

Proof. Suppose first that $\mathfrak{A} \equiv \mathfrak{B}$. We show by induction on k that $\mathfrak{A} \approx_{k} \mathfrak{B}$ for all k. For $k=0$ we have $\mathfrak{A} \equiv \mathfrak{B}$ implies $\mathfrak{A} \sim_{0} \mathfrak{B}$, in particular $\mathfrak{A} \approx_{0} \mathfrak{B}$.

Now for $k+1$. Suppose \forall picks $b \in B$. Let $\varphi \in \Theta_{1, k}$ be the unique element of $\Theta_{1, k}$ such that $\mathfrak{B} \models \varphi(b)$. Then $\mathfrak{B} \models \exists x_{0} \varphi\left(x_{0}\right)$. This is a sentence, and so by assumption $\mathfrak{A} \models \exists x_{0} \varphi\left(x_{0}\right)$. Let $a \in A$ be a witness. Thus $\mathfrak{A} \models \varphi(a)$. So $(\mathfrak{A}, a) \models \psi$ if and only if $(\mathfrak{B}, b) \models \psi$ for all $\psi \in \Theta_{1, k+1}$ (since both \mathfrak{A} and \mathfrak{B} don't satisfy any other of the elements of $\Theta_{1, k+1}$ apart from φ). Now by property 2) of the lemma we have that $(\mathfrak{A}, a) \approx_{k}(\mathfrak{B}, b)$. Now since b was arbitrary (and the roles for \mathfrak{A} and \mathfrak{B} were unimportant) we have $\mathfrak{A} \approx_{k+1} \mathfrak{B}$. By induction we are done.

Conversely, suppose $\mathfrak{A} \approx_{k} \mathfrak{B}$ for all $k<\omega$. We must show that $\mathfrak{A} \equiv \mathfrak{B}$. We show by induction on r that if $\varphi \in \mathscr{L}(\tau)$ is unnested and $\operatorname{qr}(\varphi) \leq r$ then \mathfrak{A} and \mathfrak{B}
agree on φ. Since we have already seen that all formulae are equivalent to unnested formulae this will finish the proof.

For $r=0, \varphi$ is an unnested atomic formula. Then since $\mathfrak{A} \approx_{0} \mathfrak{B}, \mathfrak{A}$ and \mathfrak{B} must agree on φ. Similarly for φ a boolean combination of unnested atomic formulae.

For $r+1$, suppose φ is $\exists x \theta(x)$ with $\mathrm{qr}(\theta) \leq r$. Suppose $\mathfrak{A} \models \varphi$ and let $a \in A$ be a witness, i.e. $\mathfrak{A} \models \theta(a)$. Let $\psi \in \Theta_{1, r}$ be such that $\mathfrak{A} \models \psi(a)$. ψ is unique by 1) above. Since $\mathfrak{A} \approx_{r+1} \mathfrak{B}$ there exists $b \in B$ such $(\mathfrak{A}, a) \approx_{k}(\mathfrak{B}, b)$, i.e. $\mathfrak{B} \models \psi(b)$. But since $\operatorname{qr}(\theta) \leq r$ we have by property 1) of the lemma, that $\theta \leftrightarrow \bigvee_{\eta \in Y} \eta$ for some $Y \subseteq \Theta_{1, r}$. Thus $\psi(b) \longrightarrow \theta(b)$. So $\mathfrak{B} \models \exists x \theta(x)$, i.e. $\mathfrak{B} \models \varphi$. This completes the proof.

[^0]: ${ }^{1} \operatorname{tp}(a)$ is the type of x it is the set of all $\mathscr{L}_{\infty \omega}(\tau)$ sentences in one variable which are true of a.
 ${ }^{2}$ the reason for the somewhat odd bound on the number of symbols in the definition of Φ is to ensure that Φ is actually a set.

[^1]: ${ }^{3}$ The notation $\models \psi$ just means that for every τ-structure \mathfrak{A} we have $\mathfrak{A} \models \psi$.

