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General Information

These notes are based on a course in Metamathematics taught by Professor Thomas
Scanlon at UC Berkeley in the Autumn of 2013. The course will focus on Model
Theory and the course book is Hodges’ a shorter model theory.

As with any such notes, these may contain errors and typos. I take full respon-
sibility for such occurences. If you find any errors or typos (no matter how trivial!)
please let me know at mps@berkeley.edu.

Lecture 10

We have introduced the Ehrenfeucht-Fraïssé game EFω(A,B) as a way of testing
for similarities between the structures A and B. In particular we saw that if A

and B are isomorphic then ∃ has a winning strategy (i.e. then A ∼ω B). The
natural question is then: how similar are A and B if we know that ∃ has a winning
strategy for EFω(A,B)? The answer is somewhere between elementary equivalence
and isomorphism.

Notation. Recall that A ≡∞ω B means that A and B agree on all sentence of the
infinitary language L∞ω(τ). In particular A ≡∞ω B implies A ≡ B.

Theorem 1. If τ is a countable signature, then A ∼ω B if and only if A ≡∞ω B.

Proof.
“=⇒” We will show by induction on the complexity of an L∞ω(τ)-sentence Φ, for
any signature τ , that A ∼ω B implies A |= Φ⇔ B |= Φ.

· If Φ is atomic then since A ∼ω B implies A ∼0 B which implies that A |= Φ⇔
B |= Φ.
· If Φ is ¬Ψ then A |= Φ iff A 6|= Ψ iff (by Induction Hypothesis) B 6|= Ψ iff
B |= Φ.
· If Φ is

∨
Ξ then ∀ξ ∈ Ξ we have A |= ξ ⇔ B |= ξ which happens iff B |= Φ.

Likewise if Φ is
∧

Ξ.
· Suppose Φ is ∃xΨ(x) and that A |= Φ. Then there exists a ∈ A such that
Aa |= Ψ(a). By hypothesis ∃ has a winning strategy for EFω(A,B). Treating
a as the 0th move of ∀ let b ∈ B be the element that ∃ picks by way of
her winning strategy. Then (a, b) is a winning position for ∃ in the game
EFω(A,B). This is equivalent to ∃ having a winning strategy for the game
EFω(Aa,Bb) i.e. Aa ∼ω Bb. So by the induction hypothesis Bb |= Ψ(b) i.e.
B |= ∃xΨ(x). Thus B |= Φ. Reversing the roles of A and B we see that
B |= Φ also implies that A |= Φ.
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“⇐=”: Conversely suppose A ≡∞ω B. We claim that A ∼ω B. If ∀ plays a ∈ A then
∃ will respond b ∈ B such that tp(a) = tp(b)1 in L∞ω(τ). More precisely let2

Φ := {ϕ(x) ∈ L∞ω(τ) : A |= ϕ(a/x) with (number of symbols in ϕ) ≤ 2|A|+|B|+ℵ0}.

Then A |=
∧

Φ(a) i.e. A |= ∃x
∧

Φ(x). By assumption B |= ∃x
∧

Φ(x). Let b ∈ B
be a witness. Then ∃ responds to ∀ by choosing the element b. Then Aa ≡∞ω Bb.
Continuing in this way we get a ω-sequence which is a win for ∃. Following this
procedure is thus a winning strategy for ∃, so A ∼ω B.

So EFω(A,B) does characterize an equivalence between A and B but in the
very strong infinitary logic of L∞ω.

We will now slightly modify the game with the aim of getting a new game that
exactly characterizes (for finite signatures) elementary equivalence, i.e. equivalence
in first-order logic.

What follows relies heavily on the notion of unnested formulae. For convenience
we repeat the definition.

Definition. An unnested atomic formula is one of the form

• x = c, for c ∈ Cτ and x a variable.
• Fx̄ = y where F ∈ Fτ and x̄, y are variables.
• Rx̄, where R ∈ Rτ and x̄ are variables.
• x = y, where x and y are variables.

An unnested formula is built from the unnested atomic formulae by the usual
rules.

Definition. The unnested Ehrenfeucht-Fraïssé game EFα[A,B] (note the square
brackets) is the game where at stage β < α, ∀ chooses en element from either A or
B (i.e. aβ ∈ A or bβ ∈ B) and ∃ responds with an element from the other structure.
∃ wins if for every unnested atomic formula ϕ(xβ|β<α)

A |= ϕ(ā) ⇐⇒ B |= ϕ(b̄).

We write A ≈α B when ∃ has a winning strategy in EFα[A,B].

Remark. Most often the ordinal α in the above definition will either be finite or will
be ω.

1tp(a) is the type of x it is the set of all L∞ω(τ) sentences in one variable which are true of a.
2the reason for the somewhat odd bound on the number of symbols in the definition of Φ is to

ensure that Φ is actually a set.
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Remark. If A ∼α B then A ≈α B. This is clear since a play in EFα[A,B] is in fact
a play of the old game EFα(A,B). So a winning strategy in EFα(A,B) is also a
winning strategy in EFα[A,B].

The converse is not true. For example take τ = {0, 1} where 0 and 1 are
constant symbols. Let A be a τ -structure where A has one element and where
0A = 1A and let B be τ -structure with B having two elements where 0B 6= 1B. Then
A ≈0 B but A 6∼0 B. To see that A ≈0 B we must see that A and B agree on
all unnested atomic sentences. But there are none! So they vacuously agree. In the
other game however, the (nested) atomic sentence 0 = 1 is satisfied by A but not
by B. Note however, that the unnested Ehrenfeucht-Fraïssé game can tell A and B

apart at level 1, i.e. A 6≈1 B. To see this suppose ∀ picks a ∈ A then ∃ must pick
b ∈ B. But then thinking of the formula x=0 we see that A |= a=0 and B 6|= b=0.
So ∃ cannot win EF1[A,B].

Question. What is the relation between ≈ω and ∼ω? I.e. do there exist A and B

such that A ≈ω B and A 6∼ω B?

Remark. There do exist A and B τ -structures (for finite signature τ) such that
∀k < ω A ≈k B but A 6≈ω B.

Here is an example. Let A = (N, <) and B = (N ⊕ Z, <) (where N ⊕ Z is
the order gotten by adding a copy of Z after N). Then A ≈k B for all k < ω, but
A 6≈ω B. To see that A 6≈ω B imagine the case where ∀ picks all elements of Z (from
B) doing down, then ∃ will run out of elements in N (from A) to pick.

Definition. For ϕ a formula, the quantifier rank qr(ϕ) is the number of nested
quantifiers in ϕ. I.e.:

· If ϕ is atomic, then qr(ϕ) = 0

· qr(ϕ ∧ ψ) = qr(ϕ ∨ ψ) = max{qr(ϕ), qr(ψ)}
· qr(¬ϕ) = qr(ϕ)

· qr(∃ϕ) = qr(ϕ) + 1.

Theorem 2. Let A and B be τ -structures. Then A ≡ B if and only if for all finite
τ ′ ⊆ τ we have A|τ ′ ≈k B|τ ′ for all k < ω.

Remark. Clearly A ≡ B iff for all finite τ ′ ⊆ τ A|τ ′ ≡ B|τ ′ . Thus it suffices to prove
the theorem in the case where τ is finite. The statement then becomes that A ≡ B

iff A ≈k B for all k < ω.

Before giving a proof of this theorem we need an important lemma. Hodges
calls it the Fraïssé-Hintikka theorem and notes that it is “the fundamental theorem
about the equivalence relations ≈k”. The theorem will follow as a corollary of the
lemma.
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Lemma. For a finite signature τ and k, n < ω, there is a finite set Θn,k of unnested
formulae of quantifier rank ≤ k in n free variables x0, . . . , xn−1, such that

0. Distinct elements of Θn,k are inconsistent, i.e. for any η, θ ∈ Θn,k then

|= ∀x̄(η → ¬θ) .3

1. If ϕ ∈ L (τ) has quantifier rank ≤ k and free variables x0, . . . , xn−1 then there
is some subset Φ ⊆ Θn,k such that |= ∀x̄(ϕ↔

∨
Φ).

2. Given A,B ∈ Str(τ) then for any n-tuples ā ∈ An and b̄ ∈ Bn , we have
Aā ≈k Bb̄ if and only if for each θ ∈ Θn,k,

A |= θ(ā) ⇐⇒ B |= θ(b̄).

Notation. For ϕ a formula define ϕ[0] := ϕ and ϕ[1] := ¬ϕ.

Proof. We first construct Θn,k by recursion on k. [Note: this does not mean that we
fix n. In the induction step we will use the n+ 1 level]

Let Φ be the set of unnested atomic formulae in L (τ) in variables x0, . . . , xn−1.
This set is finite. This is because τ is finite and to construct an unnested atomic
formulae we are only allowed to introduce one symbol from τ .

To get Θn,0 we will go through every way one might choose to make each
instance of ϕ ∈ Φ either true or false, and then take conjunctions of these formulae.
More precisely we let

Θn,0 :=

∧
ϕ∈Φ

ϕ[s(ϕ)]
∣∣ s : Φ −−−→ {0, 1}


and then

Θn,k+1 :=

∧
ϕ∈Y
∃xn ϕ(x̄, xn) ∧

∧
ψ∈Z
∀xn ¬ψ(x̄, xn)

∣∣ for Y,Z a partition of Θn+1,k

 .

This finishes the construction of the sets Θn,k for arbitrary n, k < ω.
Now we must check that conditions 0), 1) , and 2) are satisfied. First note

that Θn,k is indeed finite and all elements are unnested and have quantifier rank ≤ k.

0. Condition 0) is reasonably clear. For k = 0 and s, t : Φ −−−→ {0, 1} with s 6= t

there is some ϕ such that s(ϕ) 6= t(ϕ) then∧
ψ∈Φ

ψ[s(ψ)]

 −−−→ ϕ[s(ϕ)]

3The notation |= ψ just means that for every τ -structure A we have A |= ψ.
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and ∧
ψ∈Φ

ψ[t(ψ)]

 −−−→ ϕ[t(ϕ)].

Since ϕ[s(ϕ)] and ϕ[t(ϕ)] are explicitly inconsistent we see that
∧
ψ[s(ψ)] and∧

ψ[t(ψ)] are inconsistent as well.
For the level k + 1, suppose Y 6= Y ′ and let η ∈ Y \ Y ′. Now consider two
formulas from Θn,k+1. Then∧

ϕ∈Y
∃xn ϕ ∧

∧
ψ∈Y c

∀xn ¬ψ

 −−−→ ∃xn η
whereas  ∧

ϕ∈Y ′

∃xn ϕ ∧
∧

ψ∈(Y ′)c

∀xn ¬ψ

 −−−→ ∀xn¬η.
and since ∀xn¬η ↔ ¬∃xn η we have an explicit inconsistency. By induction
condition 0) holds for all the sets Θn,k.

1. To see that 1) holds, note that if ϕ is an unnested formula of quantifier rank
0 in n free variables, then ϕ is a boolean combination of elements of Φ and so
equivalent to some element of Θn,0.
[Case qr(ϕ) ≤ k + 1 ?????]

2. We show that condition 2) holds by induction on k.

• For k = 0. (A, ā) ≈0 (B, b̄) means that for ψ an unnested atomic τ -
formula, A |= ψ(ā) ⇐⇒ B |= ψ(b̄). But the formulae in Θn,0 are exactly
the atoms in the boolean algebra generated by unnested atomic formulae.
So if (A, ā) and (B, b̄) agree on the unnested atomic formulae then they
will agree on all elements of Θn,0, and vice versa.

• At stage k + 1 we will take one implication at a time. First suppose
(A, ā) ≈k+1 (B, b̄). We show that for all ϕ ∈ Θn,k+1, A |= ϕ(ā) implies
B |= ϕ(b̄). By symmetry we will also get thatB |= ϕ(b̄) implies A |= ϕ(ā).
Let ϕ ∈ Θn,k+1. By construction ϕ is∧

η∈Y
∃xn η ∧

∧
ξ∈Y c

∀xn ¬ξ

for some subset Y ⊆ Θn+1,k. Suppose A |= ϕ(ā). For η ∈ Y this implies
that A |= ∃xnη(ā, xn). Let c ∈ A be a witness to this, i.e. A |= η(ā, c).
By hypothesis there exists some d ∈ B such that (A, ā, c) ≈k (B, b̄, d).
Then by the induction hypothesis B |= η(b̄, d) so B |= ∃xnη(b̄, xn). So
for each η ∈ Y we have B |= ∃xnη(b̄, xn). Likewise for ξ ∈ Y c, if B 6|=
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∀xn¬ξ(b̄, xn) then B |= ∃xnξ(b̄, xn) and by same argument we have that
A |= ∃xnξ(ā, xn). Since this is not true by assumption we must have
B |= ∀xn¬ξ(b̄, xn). Thus B |= ϕ(b). By symmetry of the roles of A and
B we have that A |= ϕ(ā) iff B |= ϕ(b̄) for all ϕ ∈ Θn,k+1.
Now for the converse implication. Suppose (A, ā) and (B, b̄) agree on all of
the Θn,k+1 formulae. We must show A ≈k+1 B, i.e. that ∃ has a winning
strategy in EFk+1[A,B]. Suppose ∀ plays c ∈ A. As Θn+1,k partitions
An+1 (by property 1) of this lemma), there is exactly one formula η ∈
Θn+1,k such that A |= η(ā, c). Now as Θn,k+1 partitions An there is
exactly one formula ϕ ∈ Θn,k+1 such that A |= ϕ(ā). Then

ϕ(x̄) −−−→ ∃xnη(x̄, xn)

since ϕ either implies ∃xnη(x̄, xn) or ∀xn¬η(x̄n, n), but we know that
A |= η(ā, c). By hypothesis (A, ā) and (B, b̄) agree on formulae from
Θn,k+1 so B |= ϕ(b̄). This in turn implies that B |= ∃xnη(b̄, xn). Let
d ∈ B be a witness. Then ∃ will play d. By the induction hypothesis
(A, ā, c) ≈k (B, b̄, d). Likewise if ∀ picks some d ∈ B then ∃ can find
c ∈ A such that (A, ā, c) ≈k (B, b̄, d). Thus (A, ā) ≈k+1 (B, b̄).
By induction we now have the desired equivalence.

We can now prove the theorem as a corollary. For convenience we state the
result again.

Theorem 3. For τ finite and A,B ∈ Str(τ) the following are equivalent.

• A ≡ B

• A ≈k B for all k < ω.

Proof. Suppose first that A ≡ B. We show by induction on k that A ≈k B for all k.
For k = 0 we have A ≡ B implies A ∼0 B, in particular A ≈0 B.

Now for k + 1. Suppose ∀ picks b ∈ B. Let ϕ ∈ Θ1,k be the unique element
of Θ1,k such that B |= ϕ(b). Then B |= ∃x0ϕ(x0). This is a sentence, and so by
assumption A |= ∃x0ϕ(x0). Let a ∈ A be a witness. Thus A |= ϕ(a). So (A, a) |= ψ

if and only if (B, b) |= ψ for all ψ ∈ Θ1,k+1 (since both A and B don’t satisfy any
other of the elements of Θ1,k+1 apart from ϕ). Now by property 2) of the lemma we
have that (A, a) ≈k (B, b). Now since b was arbitrary (and the roles for A and B

were unimportant) we have A ≈k+1 B. By induction we are done.
Conversely, suppose A ≈k B for all k < ω. We must show that A ≡ B. We

show by induction on r that if ϕ ∈ L (τ) is unnested and qr(ϕ) ≤ r then A and B
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agree on ϕ. Since we have already seen that all formulae are equivalent to unnested
formulae this will finish the proof.

For r = 0, ϕ is an unnested atomic formula. Then since A ≈0 B, A and B

must agree on ϕ. Similarly for ϕ a boolean combination of unnested atomic formulae.
For r + 1, suppose ϕ is ∃xθ(x) with qr(θ) ≤ r. Suppose A |= ϕ and let a ∈ A

be a witness, i.e. A |= θ(a). Let ψ ∈ Θ1,r be such that A |= ψ(a). ψ is unique by
1) above. Since A ≈r+1 B there exists b ∈ B such (A, a) ≈k (B, b), i.e. B |= ψ(b).
But since qr(θ) ≤ r we have by property 1) of the lemma, that θ ↔

∨
η∈Y η for some

Y ⊆ Θ1,r. Thus ψ(b) −−−→ θ(b). So B |= ∃xθ(x), i.e. B |= ϕ. This completes the
proof.
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