Harish-Chandra bimodules in complex rank

Alexandra Utiralova
University of California Berkeley

Structure of the talk

References

I will cover results from two of my preprints arXiv:2002.01555 and arXiv:2107.03173.
I. Deligne categories

- Definition and properties.
- Ultraproduct construction.

II. Harish-Chandra bimodules

- Classical case.
- Central characters of Harish-Chandra bimodules in Deligne categories.
- Harish-Chandra bimodules of finite K-type.

Deligne categories

Intuitive definition

The categories Rep $\left(G L_{t}\right)$ are interpolations of the categories of representations of groups $G L_{n}$ to complex values of n.

Definition

$\operatorname{Rep}\left(G L_{t}\right)$ is the Karoubi envelope of the symmetric rigid monoidal category generated by a single object V of dimension t, such that $\operatorname{End}\left(V^{\otimes k}\right) \simeq \mathbb{C}\left[S_{k}\right]$ and $\operatorname{Hom}\left(V^{\otimes k}, V^{\otimes l}\right)=0$ unless $k=l$.

- Karoubi envelope \rightsquigarrow Formally adjoin images of all idempotents and finite direct sums.
- V has $\operatorname{dim} t \rightsquigarrow e v \circ \tau \circ$ coev : $\mathbb{1} \rightarrow V \otimes V^{*} \rightarrow V^{*} \otimes V \rightarrow \mathbb{1}$ is the multiplication by t.
- Every indecomposable object is a direct summand in $[r, s]:=V^{\otimes r} \otimes\left(V^{*}\right)^{\otimes s}$.

Deligne categories

Remark

I will limit myself to considering only the type A case, that is the categories $\operatorname{Rep}\left(G L_{t}\right)$.
All the definitions and results can be also generalized for $\operatorname{Rep}\left(O_{t}\right)$ and $\operatorname{Rep}\left(S p_{2 t}\right)$ (was done jointly with Serina Hu).

- $\operatorname{Hom}\left([r, s],\left[r^{\prime}, s^{\prime}\right]\right)=\operatorname{Hom}\left(V^{\otimes r+s^{\prime}}, V^{\otimes r^{\prime}+s}\right)=0$ unless $r+s^{\prime}=r^{\prime}+s$.
- $\operatorname{End}([r, s]) \simeq B_{r, s}(t)$ - walled Brauer algebra.

There is an injective map $i: \mathbb{C}\left[S_{r} \times S_{s}\right] \rightarrow B_{r, s}(t)$ (because $\left.\mathbb{C}\left[S_{k}\right] \simeq \operatorname{End}\left(V^{\otimes k}\right) \simeq \operatorname{End}\left(\left(V^{*}\right)^{\otimes k}\right)\right)$.
It has a splitting $\pi: B_{r, s}(t) \rightarrow \mathbb{C}\left[S_{r} \times S_{s}\right]$.

Indecomposable objects

We need to classify primitive idempotents in $B_{r, s}(t)$.

Theorem (Comes, Wilson)

For a partition $\nu \vdash k$ let z_{ν} denote the corresponding primitive idempotent in $\mathbb{C}\left[S_{k}\right]$.
For any bipartition (λ, μ) with $\lambda \vdash r, \mu \vdash s$ there exists a unique primitive idempotent $e_{\lambda, \mu} \in B_{r, s}(t)$ such that $\pi\left(e_{\lambda, \mu}\right)=z_{\lambda} \otimes z_{\mu}$. And this gives the full classification of primitive idempotents in $B_{r, s}(t)$.

Corollary

Indecomposable objects in $\operatorname{Rep}\left(G L_{t}\right)$ are labeled by bipartitions $(\lambda, \mu) \mapsto V_{\lambda, \mu}$.
If $\lambda \vdash r, \mu \vdash s$, then $V_{\lambda, \mu}$ is a direct summand of $[r, s]$.

Properties of Deligne categories

- The universal property.

Let \mathcal{D} be a symmetric tensor category. Then

$$
\left\{F: \operatorname{Rep}\left(G L_{t}\right) \rightarrow \mathcal{D}\right\} \leftrightarrow\{X \in \mathcal{D} \text { of dimension } t\}
$$

via $F \mapsto F(V)=X$.

- Corollary. If $t=n \in \mathbb{Z}_{>0}$ we have a symmetric tensor functor $F: \operatorname{Rep}\left(G L_{t}\right) \rightarrow \operatorname{Rep} G L(n, \mathbb{C})$, s.t. $F(V)=V^{(n)}$ (the tautological n-dimensional representation).
Suppose len $(\lambda)=l, \operatorname{len}(\mu)=m$ and $n \geq l+m$. Define

$$
[\lambda, \mu]_{n}:=\left(\lambda_{1}, \ldots, \lambda_{l}, 0, \ldots, 0,-\mu_{m}, \ldots,-\mu_{1}\right) \in \Lambda^{+}\left(\mathfrak{g l}_{n}\right)
$$

Then for $t=n \geq l+m$ we have $F\left(V_{\lambda, \mu}\right)=V_{[\lambda, \mu]_{n}}^{(n)}$ (and if $t=n<l+m$ then $\left.F\left(V_{\lambda, \mu}\right)=0\right)$.

- $\operatorname{Rep}\left(G L_{t}\right)$ is abelian (and semisimple) if and only if $t \notin \mathbb{Z}$.

Ultraproduct construction

Definition

An ultrafilter \mathcal{F} on $S \neq \emptyset$ is a set of subsets of S, satisfying the following properties:

- For any $U_{1}, U_{2} \in \mathcal{F}$ we have $U_{1} \cap U_{2} \in \mathcal{F}$,
- For any $U \subset S$ exactly one of $U, S-U$ is in \mathcal{F},
- If $U_{1} \subset U_{2}$ and $U_{1} \in \mathcal{F}$ then $U_{2} \in \mathcal{F}$.

Remark. Ultrafilters are the same as \mathbb{F}_{2}-valued characters of the ring of \mathbb{F}_{2}-valued functions on S.

Example

Fix some $s \in S$. A principal ultrafilter \mathcal{F}_{s} consists of all subsets of S containing s.

It can be shown that there exists a non-principal ultrafilter on \mathbb{N} and that such ultrafilter must contain all cofinite sets.

Ultraproduct construction

Let us fix a non-principal ultrafilter \mathcal{F} on \mathbb{N}.

Definition

For a collection of nonempty sets $X_{n}, n \in \mathbb{N}$ we can define their ultraproduct as follows

$$
\prod_{F} x_{n}=\prod_{X_{n} / \sim}
$$

where we say $\left(x_{1}, x_{2}, x_{3}, \ldots\right) \sim\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime} \ldots\right)$ if $x_{k}=x_{k}^{\prime}$ for almost all k, that is for all k in some $U \in \mathcal{F}$.

Łos's theorem, roughly

Any first order language statement that is true for almost all X_{n} is also true for $\prod_{\mathcal{F}} X_{n}$.

Ultraproduct construction

Example

If all X_{n} are groups/algebras/fields then so is $\prod_{\mathcal{F}} X_{n}$.
If X_{n} are vector spaces over \mathbb{F}_{n} then $\prod_{\mathcal{F}} X_{n}$ is a vector space over $\prod_{\mathcal{F}} \mathbb{F}_{n}$.

Non-example

If V_{n} are finite-dimensional vector spaces then $\prod_{\mathcal{F}} V_{n}$ is not necessarily finite-dimensional. However, if the dimensions of V_{n} are universally bounded, it will be.

Example

Take $\mathbb{F}_{n}=\overline{\mathbb{Q}}$. Then $\prod_{\mathcal{F}} \mathbb{F}_{n}$ is an algebraically closed field of characteristic zero and cardinality continuum. Therefore, by Steinitz's theorem it is (non-canonically) isomorphic to \mathbb{C}.

Ultraproduct construction

Definition

For a collection of small categories $\mathcal{C}_{n}, n \in \mathbb{N}$ we can define the category $\mathcal{C}=\prod_{\mathcal{F}} \mathcal{C}_{\mathrm{n}}$ via $O b \mathcal{C}=\prod_{\mathcal{F}} O b \mathcal{C}_{n}$ and for any pair of objects $X=\prod_{\mathcal{F}} X_{n}, Y=\prod_{\mathcal{F}} Y_{n}$ we define $\operatorname{Hom}_{\mathcal{C}}(X, Y)=\prod_{\mathcal{F}} \operatorname{Hom}_{\mathcal{C}_{n}}\left(X_{n}, Y_{n}\right)$.

Theorem (Deligne)

Let $t \in \mathbb{C}$ be transcendental. The category $\operatorname{Rep}\left(G L_{t}\right)$ is isomorphic to the Karoubi envelope of the symmetric rigid monoidal subcategory in $\prod_{\mathcal{F}} \operatorname{Rep} G L(n, \overline{\mathbb{Q}})$ generated by the object $V=\prod_{\mathcal{F}} V^{(n)}$, where $V^{(n)}$ is the tautological n-dimensional representation of $G L(n, \overline{\mathbb{Q}})$. The \mathbb{C}-linear structure on $\operatorname{Rep}\left(G L_{t}\right)$ comes from choosing an isomorphism $\prod_{\mathcal{F}} \overline{\mathbb{Q}} \simeq \mathbb{C}$ with $(1,2,3, \ldots) \mapsto t \in \mathbb{C}$.

I will assume that t is transcendental from now on.

Lie algebra $\mathfrak{g l}_{t}$

We can define the Lie algebra $\mathfrak{g l}_{t}=V \otimes V^{*}=\prod_{\mathcal{F}} \mathfrak{g l}_{n}$ in $\operatorname{Rep}\left(G L_{t}\right)$. There is a natural action of $\mathfrak{g l}_{t}$ on every object of Ind $\operatorname{Rep}\left(G L_{t}\right)$.
We can define $U=U\left(\mathfrak{g l}_{t}\right)$ as the quotient of the tensor algebra $T\left(\mathfrak{g l}_{t}\right)$ by the standard commutator relations. It has a PBW filtration $F^{k} U$ coming from the filtration of $T\left(\mathfrak{g l}_{t}\right)$. We have $F^{k} U=\prod_{\mathcal{F}} F^{k} U\left(\mathfrak{g l}_{n}\right)$.
Moreover, if \mathcal{Z} is the center of U (i.e. $\mathcal{Z}=\operatorname{Hom}(\mathbb{1}, U)$), we have $F^{k} \mathcal{Z}=\prod_{\mathcal{F}} F^{k} \mathcal{Z}\left(U\left(\mathfrak{g l}_{n}\right)\right)$. Therefore, $\mathcal{Z}=\mathbb{C}\left[z_{1}, z_{2}, z_{3}, \ldots\right]$ with $\operatorname{deg} z_{k}=k$.

Let me specify a particular choice of generators in \mathcal{Z}. We take $z_{i}=\prod_{\mathcal{F}} z_{i}^{(n)}$, where $z_{i}^{(n)}$ acts on M_{χ} via $\sum_{l=1}^{n} \chi_{l}^{i}$.
Given a central character $\theta: \mathcal{Z} \rightarrow \mathbb{C}$, define the exponential generating function: $\theta(u)=1+\sum_{i \geq 1} \frac{1}{i!} \theta\left(z_{i}\right) u^{i}$.

U-bimodules

Let \mathcal{C} be either $\operatorname{Rep}\left(G L_{t}\right)$ or $\operatorname{Rep}_{\mathbb{C}} G$ for some reductive group G.
Let $\mathfrak{g} \in \mathcal{C}$ be the corresponding Lie algebra object. It acts naturally on all objects of $\operatorname{Ind} \mathcal{C}$.

Remark

We can define this for any symmetric tensor category \mathcal{C}.

Notations

Let $\mathfrak{g}^{o p}$ be the opposite Lie algebra.
Let $U^{2}:=U(\mathfrak{g}) \otimes U\left(\mathfrak{g}^{o p}\right)$,
$\mathcal{Z}^{2}=\mathcal{Z} \otimes \mathcal{Z}=\mathcal{Z}\left(U^{2}\right)$.
Let $\mathfrak{k} \simeq \mathfrak{g} \subset \mathfrak{g} \oplus \mathfrak{g}^{o p}$ be the (anti)diagonal subalgebra.
Then we can consider any U^{2}-module $Y \in \operatorname{Ind} \mathcal{C}$ as a U-bimodule and $\left.Y\right|_{\mathfrak{k}}=Y^{\mathrm{ad}}$.

\mathfrak{k}-algebraic bimodules

Definition

We say that a U-bimodule Y in $\operatorname{Ind} \mathcal{C}$ is \mathfrak{k}-algebraic if the action of \mathfrak{k} on Y coincides with the natural action.

Lemma

$\{\mathfrak{k}$-algebraic bimodules $\} \leftrightarrow\{$ left U-modules in $\operatorname{Ind} \mathcal{C}\}$.

Definition

U-bimodule $Y \in \operatorname{Ind} \mathcal{C}$ is called finitely-generated if it is a quotient of $U \otimes X \otimes U$ for some $X \in \mathcal{C}$. We say Y is generated by X.

Example

For any $X \in \mathcal{C}$ let $\Phi_{X}=X \otimes U$.
Then $\Phi_{X}^{\mathrm{ad}}=X \otimes U^{\mathrm{ad}}=X \otimes S(\mathfrak{g})$, so Φ_{X} is \mathfrak{k}-algebraic. And it is finitely generated as it is a quotient of $U \otimes X \otimes U$.

A. Utiralova (UC Berkeley)

Harish-Chandra bimodules

Question

Now, how do we define a Harish-Chandra bimodule in \mathcal{C} ?
There are two natural ways to do this. Let $Y \in \operatorname{Ind} \mathcal{C}$ be a finitely generated \mathfrak{k}-algebraic bimodule.
(1) We can ask that $\left[Y^{\text {ad }}: X\right]<\infty$ for any $X \in \mathcal{C}$, or
(2) We can ask that \mathcal{Z}^{2} acts finitely on Y (that is $\mathrm{Ann}_{\mathcal{Z}^{2}}(Y)$ is an ideal of finite codimension).

Lemma

Condition 1 implies condition 2.

Proof.

\mathcal{Z}^{2} acts on $[Y: X]:=\operatorname{Hom}_{\text {Ind } \mathcal{C}}\left(X, Y^{\text {ad }}\right)$. Since it is finite dimensional, $\operatorname{dim}\left(\mathcal{Z}^{2} / \operatorname{Ann}_{\mathcal{Z}^{2}}[Y: X]\right)<\infty$. Now, if X generates $Y, \operatorname{Ann}_{\mathcal{Z}^{2}}(Y)=\operatorname{Ann}_{\mathcal{Z}^{2}}[Y: X]$.

Difference between classical and complex rank cases

Corollary of Kostant's theorem
If $\mathcal{C}=\operatorname{Rep}_{\mathbb{C}} G$ then condition 2 implies condition 1.

Definition

We say that Y is a Harish-Chandra bimodule if it satisfies condition 2. Denote by $\mathcal{H C}$ the corresponding category.

Definition

If Y satisfies condition 1, we say that it is a Harish-Chandra bimodule of finite K-type.

Example

Let $\theta: \mathcal{Z} \rightarrow \mathbb{C}$ be some central character of $U\left(\mathfrak{g l}_{t}\right)$ and let $U_{\theta}:=U / \operatorname{Ker}(\theta) U$. Then $U_{\theta} \in \mathcal{H C}$, but is not of finite K-type.

Central characters

Because of condition 2, we have a block decomposition for $\mathcal{H C}$:

$$
\mathcal{H C}=\bigoplus \widetilde{\mathcal{H C}}\left(\theta_{1}, \theta_{2}\right)
$$

where $\widetilde{\mathcal{H C}}\left(\theta_{1}, \theta_{2}\right)$ is the subcategory on which $\mathcal{Z}^{2}=\mathcal{Z} \otimes \mathcal{Z}$ acts with generalized central character $\theta_{1} \otimes \theta_{2}$.

Question

For which pairs $\left(\theta_{1}, \theta_{2}\right)$ is the category $\widetilde{\mathcal{H C}}\left(\theta_{1}, \theta_{2}\right)$ non-zero?

Remark

Let $\mathcal{H C}\left(\theta_{1}, \theta_{2}\right)$ be the subcategory on which \mathcal{Z}^{2} acts via $\theta_{1} \otimes \theta_{2}$. It is enough to answer the questions for these categories.

Lemma

Any object Y in $\mathcal{H C}\left(\theta_{1}, \theta_{2}\right)$ is a quotient of $\Phi_{X}\left(\theta_{2}\right)=X \otimes U_{\theta_{2}}$.

Classification of central characters. Classical case

The answer in the classical case

Let $\mathcal{C}=\operatorname{Rep}_{\mathbb{C}} G$. Then $\mathcal{H C}\left(\theta_{1}, \theta_{2}\right)$ is nonzero if and only if there exist Verma modules $M_{\chi_{1}}, M_{\chi_{2}}$, such that \mathcal{Z} acts via θ_{i} on $M_{\chi_{i}}$ and $\chi_{1}-\chi_{2} \in \Lambda(G)$.

Idea of proof

Any module is a quotient of $\Phi_{X}\left(\theta_{2}\right)$. If \mathcal{Z} acts via θ_{2} on M_{χ} then

$$
\Phi_{X}\left(\theta_{2}\right)=X \otimes U_{\theta_{2}} \hookrightarrow \operatorname{Hom}_{\mathbb{C}}\left(M_{\chi}, X \otimes M_{\chi}\right)
$$

and $X \otimes M_{\chi}$ has filtration by $M_{\chi+\lambda}$, where $\lambda \in \Lambda(G)$ are weights of X.

Classification of central characters. Complex rank

Let $\mathcal{C}=\operatorname{Rep}\left(G L_{t}\right)$.

Main Theorem

The category $\mathcal{H C}\left(\theta_{1}, \theta_{2}\right)$ is non-zero if and only if

$$
\theta_{1}(u)-\theta_{2}(u)=\sum_{i=1}^{r}\left(e^{\left(b_{i}+1\right) u}-e^{b_{i} u}\right)-\sum_{j=1}^{s}\left(e^{\left(c_{j}+1\right) u}-e^{c_{j} u}\right)
$$

for some $r, s \geq 0$ and $b_{i}, c_{j} \in \mathbb{C}$.
Remark. For O_{t} and $S p_{2 t}$ we have that $\mathcal{H C}\left(\theta_{1}, \theta_{2}\right)$ is non-zero if and only if for some $r \geq 0$ and $b_{i} \in \mathbb{C}$:

$$
\theta_{1}(u)-\theta_{2}(u)=\sum_{i=1}^{r}\left(\cosh \left(\left(b_{i}+1\right) u\right)-\cosh \left(b_{i} u\right)\right)
$$

Idea of proof

(1) Any bimodule $Y \in \mathcal{H C}\left(\theta_{1}, \theta_{2}\right)$ is a quotient of $\Phi_{X}\left(\theta_{2}\right)=X \otimes U_{\theta_{2}}$. And any X is a quotient of $[r, s]$.
(We want to understand for which θ_{1} the quotient

$$
\Phi_{X}\left(\theta_{1}, \theta_{2}\right)=\left(X \otimes U_{\theta_{2}}\right)_{\theta_{1}}:=X \otimes U_{\theta_{2}} /\left(z-\theta_{1}(z)\right)\left(X \otimes U_{\theta_{2}}\right)
$$

is non-zero (enough to take $X=[r, s]$).

- Do this by induction on $r+s$ in the classical setting. Then take the ultraproduct.
Notation. Let $\eta: \mathfrak{h}^{*} \rightarrow\left\{\mathcal{Z}\left(\mathfrak{g l}_{n}\right) \rightarrow \overline{\mathbb{Q}}\right\}$ be the map that sends a weight to the corresponding central character.

Idea of proof

Example

Let us do the case when $[r, s]=[1,0]$.
In the classical setting we have
$\Phi_{V^{(n)}}\left(\theta_{2}\right)=V^{(n)} \otimes U_{\theta_{2}} \subset \operatorname{Hom}_{\overline{\mathbb{Q}}}\left(M_{\chi}, V^{(n)} \otimes M_{\chi}\right)$, where $\eta(\chi)=\theta_{2}$. Thus, θ_{1} for which $\Phi_{V^{(n)}}\left(\theta_{1}, \theta_{2}\right)$ is non-zero are $\eta\left(\chi+e_{i}\right)$ (where $e_{1} \ldots e_{n}$ are weights of $\left.V^{(n)}\right)$.

- $\eta\left(\chi+e_{i}\right)\left(z_{k}^{(n)}\right)=\sum_{j=1}^{n} \chi_{j}^{k}+\left(\chi_{i}+1\right)^{k}-\chi_{i}^{k}$,
- so, $\eta\left(\chi+e_{i}\right)(u)-\eta(\chi)(u)=e^{\left(\chi_{i}+1\right) u}-e^{\chi_{i} u}$.

Thus, taking the ultraproduct, we get that $\Phi_{V}\left(\theta_{1}, \theta_{2}\right)$ is nonzero only if $\theta_{1}(u)-\theta_{2}(u)=e^{(b+1) u}-e^{b u}$ for some $b \in \mathbb{C}$.

Ultraproduct phenomenon

It turns out that we can get any value of $b \in \mathbb{C}$!

Bimodules of finite K-type

Lemma
 Suppose $Y_{1}, Y_{2} \in \mathcal{H C}\left(\theta_{1}, \theta_{2}\right)$ and Y_{2} has finite K-type.
 Then $\operatorname{dim} \operatorname{Hom}_{U^{2}}\left(Y_{1}, Y_{2}\right)<\infty$.

Proof.

Y_{1} is a quotient of $\Phi_{X}\left(\theta_{1}, \theta_{2}\right)$ for some X. Thus, $\operatorname{dim} \operatorname{Hom}_{U^{2}}\left(Y_{1}, Y_{2}\right) \leq \operatorname{dim} \operatorname{Hom}_{U^{2}}\left(\Phi_{X}\left(\theta_{1}, \theta_{2}\right), Y_{2}\right)=$ $\operatorname{dim} \operatorname{Hom}_{U^{2}}\left(\Phi_{X}, Y_{2}\right)=\operatorname{dim} \operatorname{Hom}\left(X, Y_{2}^{\text {ad }}\right)<\infty$.

Question

How do we construct examples of bimodules of finite K-type?

Example

Let $\left(\lambda, \lambda^{\prime}\right),\left(\mu, \mu^{\prime}\right)$ be bipartitions, then $V_{\lambda, \lambda^{\prime}} \otimes V_{\mu, \mu^{\prime}}^{*}$ is a Harish-Chandra bimodule of finite K-type.

Bimodules of finite K-type

We would like to take filtered ultraproducts of Harish-Chandra bimodules.
That is, if $Y^{(n)}$ are Harish-Chandra bimodules for $G L_{n}$ and $F^{k} Y^{(n)}$ is a filtration by finite-dimensional \mathfrak{k}-modules that agrees with the PBW filtration on U^{2} we can define $F^{k} Y=\prod_{\mathcal{F}} F^{k} Y^{(n)}, Y:=\bigcup F^{k} Y$.

Warning

A priori $F^{k} Y$ lies in $\prod_{\mathcal{F}} \operatorname{Rep} G L(n, \mathbb{C})$, but not in $\operatorname{Rep}\left(G L_{t}\right)$. We need to require that for any bipartition $\left(\nu, \nu^{\prime}\right)$
$\left[F^{k} Y^{(n)}: V_{\left[\nu, \nu^{\prime}\right]_{n}}^{(n)}\right]$ is constant for almost all n.

Lemma

Y as above has finite K-type if and only if $\left[Y^{(n)}: V_{\left[\nu, \nu^{\prime}\right]_{n}}^{(n)}\right]$ is constant for almost all n.

Bimodules of finite K-type

It is hard to compute $\left[Y^{\text {ad }}: X\right]$ in general. However, we know something about finite-dimensional bimodules $\operatorname{Hom}_{\overline{\mathbb{Q}}}\left(V_{\mu^{(n)}}, V_{\lambda^{(n)}}\right)$.

Lemma

Under some assumptions on the sequences $\lambda^{(n)}, \mu^{(n)}$, for each bipartition $\left(\nu, \nu^{\prime}\right)$ the multiplicity $\left[\operatorname{Hom}_{\overline{\mathbb{Q}}}\left(V_{\mu^{(n)}}, V_{\lambda^{(n)}}\right): V_{\left[\nu, \nu^{\prime}\right]_{n}}\right]$ is constant for almost all n.

Corollary

Define Hom (μ, λ) to be the filtered ultraproduct of $\operatorname{Hom}_{\overline{\mathbb{Q}}}\left(V_{\mu^{(n)}}, V_{\lambda^{(n)}}\right)$. Then it is a bimodule of finite K-type.

- The bimodules $\underline{\operatorname{Hom}}(\mu, \lambda)$ are simple.
- $V \otimes \underline{\operatorname{Hom}}(\mu, \lambda)=\bigoplus \underline{\operatorname{Hom}}\left(\mu, \lambda^{\prime}\right)$ and similarly, $V^{*} \otimes \underline{\operatorname{Hom}}(\mu, \lambda)=\bigoplus \underline{\operatorname{Hom}}\left(\mu, \lambda^{\prime \prime}\right)$, where $\lambda^{\prime}, \lambda^{\prime \prime}$ run over some finite sets.

Appendix

Roughly, we define the sequence $\lambda^{(n)}$ in the way that $k, l, \gamma(\lambda)$ are constant (or equivalently, universally bounded) and $\alpha^{(n)}(\lambda)$ and $\beta^{(n)}(\lambda)$ are unbounded parts.
And $\mu^{(n)}$ has the same k, l, some $\gamma(\mu)$ and $\alpha^{(n)}(\mu)-\alpha^{(n)}(\lambda)$ is a constant element in \mathbb{Z}^{k} for almost all n. Similarly for β.

Thank you!

