Harish-Chandra bimodules in complex rank

Alexandra Utiralova

University of California Berkeley

Structure of the talk

<u>References</u>

I will cover results from two of my preprints arXiv:2002.01555 and arXiv:2107.03173.

I. Deligne categories

- Definition and properties.
- Ultraproduct construction.

II. Harish-Chandra bimodules

- Classical case.
- Central characters of Harish-Chandra bimodules in Deligne categories.
- Harish-Chandra bimodules of finite K-type.

Deligne categories

Intuitive definition

The categories $\text{Rep}(GL_t)$ are interpolations of the categories of representations of groups GL_n to complex values of n.

Definition

 $\operatorname{Rep}(GL_t)$ is the Karoubi envelope of the symmetric rigid monoidal category generated by a single object V of dimension t, such that $\operatorname{End}(V^{\otimes k}) \simeq \mathbb{C}[S_k]$ and $\operatorname{Hom}(V^{\otimes k}, V^{\otimes l}) = 0$ unless k = l.

- Karoubi envelope \leadsto Formally adjoin images of all idempotents and finite direct sums.
- V has $\dim t \rightsquigarrow ev \circ \tau \circ coev : \mathbb{1} \to V \otimes V^* \to V^* \otimes V \to \mathbb{1}$ is the multiplication by t.
- Every indecomposable object is a direct summand in $[r, s] := V^{\otimes r} \otimes (V^*)^{\otimes s}$.

Deligne categories

Remark

I will limit myself to considering only the type A case, that is the categories $Rep(GL_t)$.

All the definitions and results can be also generalized for $\text{Rep}(O_t)$ and $\text{Rep}(Sp_{2t})$ (was done jointly with Serina Hu).

- $\text{Hom}([r, s], [r', s']) = \text{Hom}(V^{\otimes r+s'}, V^{\otimes r'+s}) = 0 \text{ unless } r + s' = r' + s .$
- End([r, s]) $\simeq B_{r,s}(t)$ walled Brauer algebra.

There is an injective map $i : \mathbb{C}[S_r \times S_s] \to B_{r,s}(t)$ (because $\mathbb{C}[S_k] \simeq \operatorname{End}(V^{\otimes k}) \simeq \operatorname{End}((V^*)^{\otimes k})$).

It has a splitting $\pi: B_{r,s}(t) \to \mathbb{C}[S_r \times S_s]$.

Indecomposable objects

We need to classify primitive idempotents in $B_{r,s}(t)$.

Theorem (Comes, Wilson)

For a partition $\nu \vdash k$ let z_{ν} denote the corresponding primitive idempotent in $\mathbb{C}[S_k]$.

For any bipartition (λ, μ) with $\lambda \vdash r, \mu \vdash s$ there exists a unique primitive idempotent $e_{\lambda,\mu} \in B_{r,s}(t)$ such that $\pi(e_{\lambda,\mu}) = z_{\lambda} \otimes z_{\mu}$. And this gives the full classification of primitive idempotents in $B_{r,s}(t)$.

Corollary

Indecomposable objects in Rep (GL_t) are labeled by bipartitions $(\lambda, \mu) \mapsto V_{\lambda,\mu}$.

If $\lambda \vdash r, \mu \vdash s$, then $V_{\lambda,\mu}$ is a direct summand of [r,s].

Properties of Deligne categories

• The universal property.

Let \mathcal{D} be a symmetric tensor category. Then

$$\{F : \operatorname{Rep}(GL_t) \to \mathcal{D}\} \leftrightarrow \{X \in \mathcal{D} \text{ of dimension } t\}$$

via
$$F \mapsto F(V) = X$$
.

• Corollary. If $t = n \in \mathbb{Z}_{>0}$ we have a symmetric tensor functor $F : \text{Rep}(GL_t) \to \text{Rep}(GL(n, \mathbb{C}), \text{ s.t. } F(V) = V^{(n)}$ (the tautological n-dimensional representation). Suppose $\text{len}(\lambda) = l$, $\text{len}(\mu) = m$ and $n \geq l + m$. Define

$$[\lambda, \mu]_n := (\lambda_1, \dots, \lambda_l, 0, \dots, 0, -\mu_m, \dots, -\mu_1) \in \Lambda^+(\mathfrak{gl}_n).$$

Then for $t = n \ge l + m$ we have $F(V_{\lambda,\mu}) = V_{[\lambda,\mu]_n}^{(n)}$ (and if t = n < l + m then $F(V_{\lambda,\mu}) = 0$).

• Rep (GL_t) is abelian (and semisimple) if and only if $t \notin \mathbb{Z}$.

Definition

An ultrafilter \mathcal{F} on $S \neq \emptyset$ is a set of subsets of S, satisfying the following properties:

- For any $U_1, U_2 \in \mathcal{F}$ we have $U_1 \cap U_2 \in \mathcal{F}$,
- For any $U \subset S$ exactly one of U, S U is in \mathcal{F} ,
- If $U_1 \subset U_2$ and $U_1 \in \mathcal{F}$ then $U_2 \in \mathcal{F}$.

Remark. Ultrafilters are the same as \mathbb{F}_2 -valued characters of the ring of \mathbb{F}_2 -valued functions on S.

Example

Fix some $s \in S$. A **principal** ultrafilter \mathcal{F}_s consists of all subsets of S containing s.

It can be shown that there exists a non-principal ultrafilter on \mathbb{N} and that such ultrafilter must contain all cofinite sets.

Let us fix a non-principal ultrafilter \mathcal{F} on \mathbb{N} .

Definition

For a collection of nonempty sets X_n , $n \in \mathbb{N}$ we can define their ultraproduct as follows

$$\prod_{\mathcal{F}} X_n = \prod X_n / \sim,$$

where we say $(x_1, x_2, x_3, ...) \sim (x'_1, x'_2, x'_3, ...)$ if $x_k = x'_k$ for almost all k, that is for all k in some $U \in \mathcal{F}$.

Łoś's theorem, roughly

Any first order language statement that is true for almost all X_n is also true for $\prod_{\mathcal{F}} X_n$.

Example

If all X_n are groups/algebras/fields then so is $\prod_{\mathcal{F}} X_n$. If X_n are vector spaces over \mathbb{F}_n then $\prod_{\mathcal{F}} X_n$ is a vector space over $\prod_{\mathcal{F}} \mathbb{F}_n$.

Non-example

If V_n are finite-dimensional vector spaces then $\prod_{\mathcal{F}} V_n$ is not necessarily finite-dimensional. However, if the dimensions of V_n are universally bounded, it will be.

Example

Take $\mathbb{F}_n = \overline{\mathbb{Q}}$. Then $\prod_{\mathcal{F}} \mathbb{F}_n$ is an algebraically closed field of characteristic zero and cardinality continuum. Therefore, by Steinitz's theorem it is (non-canonically) isomorphic to \mathbb{C} .

Definition

For a collection of small categories C_n , $n \in \mathbb{N}$ we can define the category $C = \prod_{\mathcal{F}} C_n$ via $Ob \ C = \prod_{\mathcal{F}} Ob \ C_n$ and for any pair of objects $X = \prod_{\mathcal{F}} X_n, Y = \prod_{\mathcal{F}} Y_n$ we define $\operatorname{Hom}_{\mathcal{C}}(X,Y) = \prod_{\mathcal{F}} \operatorname{Hom}_{\mathcal{C}_n}(X_n,Y_n)$.

Theorem (Deligne)

Let $t \in \mathbb{C}$ be transcendental. The category $\operatorname{Rep}(GL_t)$ is isomorphic to the Karoubi envelope of the symmetric rigid monoidal subcategory in $\prod_{\mathcal{F}} \operatorname{Rep} GL(n, \overline{\mathbb{Q}})$ generated by the object $V = \prod_{\mathcal{F}} V^{(n)}$, where $V^{(n)}$ is the tautological n-dimensional representation of $GL(n, \overline{\mathbb{Q}})$. The \mathbb{C} -linear structure on $\operatorname{Rep}(GL_t)$ comes from choosing an isomorphism $\prod_{\mathcal{F}} \overline{\mathbb{Q}} \simeq \mathbb{C}$ with $(1, 2, 3, \ldots) \mapsto t \in \mathbb{C}$.

I will assume that t is transcendental from now on.

Lie algebra \mathfrak{gl}_t

We can define the Lie algebra $\mathfrak{gl}_t = V \otimes V^* = \prod_{\mathcal{F}} \mathfrak{gl}_n$ in $\operatorname{Rep}(GL_t)$. There is a **natural** action of \mathfrak{gl}_t on every object of $\operatorname{Ind} \operatorname{Rep}(GL_t)$.

We can define $U = U(\mathfrak{gl}_t)$ as the quotient of the tensor algebra $T(\mathfrak{gl}_t)$ by the standard commutator relations. It has a PBW filtration F^kU coming from the filtration of $T(\mathfrak{gl}_t)$. We have $F^kU = \prod_{\mathcal{F}} F^kU(\mathfrak{gl}_n)$.

Moreover, if \mathcal{Z} is the center of U (i.e. $\mathcal{Z} = \text{Hom}(\mathbb{1}, U)$), we have $F^k \mathcal{Z} = \prod_{\mathcal{F}} F^k \mathcal{Z}(U(\mathfrak{gl}_n))$. Therefore, $\mathcal{Z} = \mathbb{C}[z_1, z_2, z_3, \ldots]$ with $\deg z_k = k$.

Let me specify a particular choice of generators in \mathcal{Z} . We take $z_i = \prod_{\mathcal{F}} z_i^{(n)}$, where $z_i^{(n)}$ acts on M_{χ} via $\sum_{l=1}^n \chi_l^i$.

Given a central character $\theta: \mathcal{Z} \to \mathbb{C}$, define the **exponential** generating function: $\theta(u) = 1 + \sum_{i \geq 1} \frac{1}{i!} \theta(z_i) u^i$.

$\overline{U$ -bimodules

Let \mathcal{C} be either $\operatorname{Rep}(GL_t)$ or $\operatorname{Rep}_{\mathbb{C}}G$ for some reductive group G.

Let $\mathfrak{g} \in \mathcal{C}$ be the corresponding Lie algebra object. It acts **naturally** on all objects of Ind \mathcal{C} .

Remark

We can define this for any symmetric tensor category \mathcal{C} .

Notations

Let \mathfrak{g}^{op} be the opposite Lie algebra.

Let
$$U^2 := U(\mathfrak{g}) \otimes U(\mathfrak{g}^{op}),$$

$$\mathcal{Z}^2 = \mathcal{Z} \otimes \mathcal{Z} = \mathcal{Z}(U^2).$$

Let $\mathfrak{t} \simeq \mathfrak{g} \subset \mathfrak{g} \oplus \mathfrak{g}^{op}$ be the (anti)diagonal subalgebra.

Then we can consider any U^2 -module $Y \in \operatorname{Ind} \mathcal{C}$ as a U-bimodule and $Y|_{\mathfrak{k}} = Y^{\operatorname{ad}}$.

€-algebraic bimodules

Definition

We say that a U-bimodule Y in Ind \mathcal{C} is \mathfrak{k} -algebraic if the action of \mathfrak{k} on Y coincides with the **natural** action.

Lemma

 $\{\mathfrak{k}\text{-}algebraic\ bimodules}\} \leftrightarrow \{left\ U\text{-}modules\ in\ \mathrm{Ind}\ \mathcal{C}\}.$

Definition

U-bimodule $Y \in \operatorname{Ind} \mathcal{C}$ is called **finitely-generated** if it is a quotient of $U \otimes X \otimes U$ for some $X \in \mathcal{C}$. We say Y is generated by X.

Example

For any $X \in \mathcal{C}$ let $\Phi_X = X \otimes U$.

Then $\Phi_X^{\mathrm{ad}} = X \otimes U^{\mathrm{ad}} = X \otimes S(\mathfrak{g})$, so Φ_X is **t-algebraic**. And it is finitely generated as it is a quotient of $U \otimes X \otimes U$.

Harish-Chandra bimodules

Question

Now, how do we define a Harish-Chandra bimodule in C?

There are two natural ways to do this. Let $Y \in \operatorname{Ind} \mathcal{C}$ be a finitely generated \mathfrak{k} -algebraic bimodule.

- We can ask that $[Y^{ad}:X]<\infty$ for any $X\in\mathcal{C}$, or
- 2 We can ask that \mathbb{Z}^2 acts finitely on Y (that is $\operatorname{Ann}_{\mathbb{Z}^2}(Y)$ is an ideal of finite codimension).

Lemma

Condition 1 implies condition 2.

Proof.

 \mathcal{Z}^2 acts on $[Y:X] := \operatorname{Hom}_{\operatorname{Ind}\mathcal{C}}(X,Y^{\operatorname{ad}})$. Since it is finite dimensional, $\dim(\mathcal{Z}^2/\operatorname{Ann}_{\mathcal{Z}^2}[Y:X]) < \infty$. Now, if X generates Y, $\operatorname{Ann}_{\mathcal{Z}^2}(Y) = \operatorname{Ann}_{\mathcal{Z}^2}[Y:X]$.

Difference between classical and complex rank cases

Corollary of Kostant's theorem

If $\mathcal{C} = \operatorname{Rep}_{\mathbb{C}} G$ then condition 2 implies condition 1.

Definition

We say that Y is a **Harish-Chandra bimodule** if it satisfies condition **2**. Denote by \mathcal{HC} the corresponding category.

Definition

If Y satisfies condition 1, we say that it is a Harish-Chandra bimodule of finite K-type.

Example

Let $\theta: \mathcal{Z} \to \mathbb{C}$ be some central character of $U(\mathfrak{gl}_t)$ and let $U_{\theta} := U/\operatorname{Ker}(\theta)U$. Then $U_{\theta} \in \mathcal{HC}$, but is not of finite K-type.

Central characters

Because of condition 2, we have a block decomposition for \mathcal{HC} :

$$\mathcal{HC} = \bigoplus \widetilde{\mathcal{HC}}(\theta_1, \theta_2),$$

where $\mathcal{HC}(\theta_1, \theta_2)$ is the subcategory on which $\mathcal{Z}^2 = \mathcal{Z} \otimes \mathcal{Z}$ acts with generalized central character $\theta_1 \otimes \theta_2$.

Question

For which pairs (θ_1, θ_2) is the category $\mathcal{HC}(\theta_1, \theta_2)$ non-zero?

Remark

Let $\mathcal{HC}(\theta_1, \theta_2)$ be the subcategory on which \mathbb{Z}^2 acts via $\theta_1 \otimes \theta_2$. It is enough to answer the questions for these categories.

Lemma

Any object Y in $\mathcal{HC}(\theta_1, \theta_2)$ is a quotient of $\Phi_X(\theta_2) = X \otimes U_{\theta_2}$.

Classification of central characters. Classical case

The answer in the classical case

Let $C = \operatorname{Rep}_{\mathbb{C}} G$. Then $\mathcal{HC}(\theta_1, \theta_2)$ is nonzero if and only if there exist Verma modules M_{χ_1}, M_{χ_2} , such that \mathcal{Z} acts via θ_i on M_{χ_i} and $\chi_1 - \chi_2 \in \Lambda(G)$.

Idea of proof

Any module is a quotient of $\Phi_X(\theta_2)$. If \mathcal{Z} acts via θ_2 on M_χ then

$$\Phi_X(\theta_2) = X \otimes U_{\theta_2} \hookrightarrow \operatorname{Hom}_{\mathbb{C}}(M_{\chi}, X \otimes M_{\chi}),$$

and $X \otimes M_{\chi}$ has filtration by $M_{\chi+\lambda}$, where $\lambda \in \Lambda(G)$ are weights of X.

Classification of central characters. Complex rank

Let $\mathcal{C} = \operatorname{Rep}(GL_t)$.

Main Theorem

The category $\mathcal{HC}(\theta_1, \theta_2)$ is non-zero if and only if

$$\theta_1(u) - \theta_2(u) = \sum_{i=1}^r (e^{(b_i+1)u} - e^{b_i u}) - \sum_{j=1}^s (e^{(c_j+1)u} - e^{c_j u})$$

for some $r, s \geq 0$ and $b_i, c_i \in \mathbb{C}$.

Remark. For O_t and Sp_{2t} we have that $\mathcal{HC}(\theta_1, \theta_2)$ is non-zero if and only if for some $r \geq 0$ and $b_i \in \mathbb{C}$:

$$\theta_1(u) - \theta_2(u) = \sum_{i=1}^r \left(\cosh((b_i + 1)u) - \cosh(b_i u) \right)$$

Idea of proof

- Any bimodule $Y \in \mathcal{HC}(\theta_1, \theta_2)$ is a quotient of $\Phi_X(\theta_2) = X \otimes U_{\theta_2}$. And any X is a quotient of [r, s].
- 2 We want to understand for which θ_1 the quotient

$$\Phi_X(\theta_1, \theta_2) = (X \otimes U_{\theta_2})_{\theta_1} := X \otimes U_{\theta_2}/(z - \theta_1(z))(X \otimes U_{\theta_2})$$

is non-zero (enough to take X = [r, s]).

3 Do this by induction on r + s in the classical setting. Then take the ultraproduct.

Notation. Let $\eta: \mathfrak{h}^* \to \{\mathcal{Z}(\mathfrak{gl}_n) \to \overline{\mathbb{Q}}\}$ be the map that sends a weight to the corresponding central character.

Idea of proof

Example

Let us do the case when [r, s] = [1, 0].

In the classical setting we have

$$\Phi_{V^{(n)}}(\theta_2) = V^{(n)} \otimes U_{\theta_2} \subset \operatorname{Hom}_{\overline{\mathbb{Q}}}(M_{\chi}, V^{(n)} \otimes M_{\chi}), \text{ where } \eta(\chi) = \theta_2.$$

Thus, θ_1 for which $\Phi_{V^{(n)}}(\theta_1, \theta_2)$ is non-zero are $\eta(\chi + e_i)$ (where $e_1 \dots e_n$ are weights of $V^{(n)}$).

•
$$\eta(\chi + e_i)(z_k^{(n)}) = \sum_{j=1}^n \chi_j^k + (\chi_i + 1)^k - \chi_i^k$$
,

• so,
$$\eta(\chi + e_i)(u) - \eta(\chi)(u) = e^{(\chi_i + 1)u} - e^{\chi_i u}$$
.

Thus, taking the ultraproduct, we get that $\Phi_V(\theta_1, \theta_2)$ is nonzero only if $\theta_1(u) - \theta_2(u) = e^{(b+1)u} - e^{bu}$ for some $b \in \mathbb{C}$.

Ultraproduct phenomenon

It turns out that we can get any value of $b \in \mathbb{C}!$

Bimodules of finite K-type

Lemma

Suppose $Y_1, Y_2 \in \mathcal{HC}(\theta_1, \theta_2)$ and Y_2 has finite K-type. Then $\dim \operatorname{Hom}_{U^2}(Y_1, Y_2) < \infty$.

Proof.

 Y_1 is a quotient of $\Phi_X(\theta_1, \theta_2)$ for some X. Thus, $\dim \operatorname{Hom}_{U^2}(Y_1, Y_2) \leq \dim \operatorname{Hom}_{U^2}(\Phi_X(\theta_1, \theta_2), Y_2) = \dim \operatorname{Hom}_{U^2}(\Phi_X, Y_2) = \dim \operatorname{Hom}(X, Y_2^{\operatorname{ad}}) < \infty$.

Question

How do we construct examples of bimodules of finite K-type?

Example

Let (λ, λ') , (μ, μ') be bipartitions, then $V_{\lambda, \lambda'} \otimes V_{\mu, \mu'}^*$ is a Harish-Chandra bimodule of finite K-type.

Bimodules of finite K-type

We would like to take filtered ultraproducts of Harish-Chandra bimodules.

That is, if $Y^{(n)}$ are Harish-Chandra bimodules for GL_n and $F^kY^{(n)}$ is a filtration by finite-dimensional \mathfrak{k} -modules that agrees with the PBW filtration on U^2 we can define $F^kY = \prod_{\mathcal{F}} F^kY^{(n)}, Y := \bigcup F^kY$.

Warning

A priori F^kY lies in $\prod_{\mathcal{F}} \operatorname{Rep} GL(n,\mathbb{C})$, but $\underline{\mathbf{not}}$ in $\operatorname{Rep}(GL_t)$. We need to require that for any bipartition (ν,ν')

 $[F^kY^{(n)}:V^{(n)}_{[\nu,\nu']_n}]$ is constant for almost all n.

Lemma

Y as above has finite K-type if and only if $[Y^{(n)}:V^{(n)}_{[\nu,\nu']_n}]$ is constant for almost all n.

Bimodules of finite K-type

It is hard to compute $[Y^{\text{ad}}:X]$ in general. However, we know something about finite-dimensional bimodules $\text{Hom}_{\bar{\mathbb{Q}}}(V_{\mu^{(n)}},V_{\lambda^{(n)}})$.

Lemma

Under some assumptions on the sequences $\lambda^{(n)}$, $\mu^{(n)}$, for each bipartition (ν, ν') the multiplicity $[\operatorname{Hom}_{\bar{\mathbb{Q}}}(V_{\mu^{(n)}}, V_{\lambda^{(n)}}) : V_{[\nu, \nu']_n}]$ is constant for almost all n.

Corollary

Define $\underline{\text{Hom}}(\mu, \lambda)$ to be the filtered ultraproduct of $\underline{\text{Hom}}_{\bar{\mathbb{Q}}}(V_{\mu^{(n)}}, V_{\lambda^{(n)}})$. Then it is a bimodule of finite K-type.

- The bimodules $\underline{\mathrm{Hom}}(\mu,\lambda)$ are simple.
- $V \otimes \underline{\operatorname{Hom}}(\mu, \lambda) = \bigoplus \underline{\operatorname{Hom}}(\mu, \lambda')$ and similarly, $V^* \otimes \underline{\operatorname{Hom}}(\mu, \lambda) = \bigoplus \underline{\operatorname{Hom}}(\mu, \lambda'')$, where λ', λ'' run over some finite sets.

Appendix

Roughly, we define the sequence $\lambda^{(n)}$ in the way that $k, l, \gamma(\lambda)$ are constant (or equivalently, universally bounded) and $\alpha^{(n)}(\lambda)$ and $\beta^{(n)}(\lambda)$ are unbounded parts.

And $\mu^{(n)}$ has the same k, l, some $\gamma(\mu)$ and $\alpha^{(n)}(\mu) - \alpha^{(n)}(\lambda)$ is a constant element in \mathbb{Z}^k for almost all n. Similarly for β .

Thank you!