Probabilities \& Supergeometry

Measurement theory for dynamical discrete systems

Berkeley Math Seminar

(93) Center for Quantum Mathematics and Physics (QMAP), UC Davis
(13)Department of Physics, Koç University, Turkey

02/20/2024

Questions

- Probabilities from exterior algebra?
- Geometric data?

Outline

- Precessing degrees of freedom
- Discrete systems
- Geometric model: symplectic vs odd symplectic
- Measurements
- Super phase-spacetime

A puzzle

What is really spinning??

Exterior algebra, $\Lambda \mathbb{R}^{3}=\frac{\mathbb{R}\left[\theta^{1}, \theta^{2}, \theta^{3}\right]}{\left(\theta^{i} j^{j}+\theta^{j} \theta^{i}\right)}$

Precession

[Berezin and Marinov, 1977]

$$
S\left[\theta^{i}(t)\right]=\int i d t\left(\frac{1}{2} \delta_{i j} \theta^{i} \ddot{\theta}^{j}+B^{i} \epsilon_{i j k} \theta^{j} \theta^{k}\right)
$$

Dynamics: $\dot{\vec{\theta}}=\vec{B} \times \vec{\theta}$

$\vec{\theta}$ precesses around \vec{B}

Measurements are probabilistic!

- Need positive states and observables

Problem

Anticommuting variables are not positive!

$$
\left(\theta^{i}\right)^{2}=0, \quad \theta^{i} \theta^{j}=-\theta^{j} \theta^{i}
$$

- Solution: supergeometry + quantum inspiration!

Discrete degrees of freedom

- Discrete systems: computer bits, coins, slot machines,...
- Dynamics: gate operations, tossing, spinning reels,...

Error-prone measurements \Longrightarrow probabilistic dynamics

casino

E.g. Document editing

Bitstream:

$\underbrace{110010010000111111011 \cdots 001110001101}$
 m terms

fat fingers
2^{m} probabilities encoded by superfunction:

$$
\begin{aligned}
\phi(\theta) & =\underbrace{\phi_{I}\left(p_{I}\right)}_{\text {probabilities }} \theta^{I}=\phi_{0}+\phi_{1} \theta^{1}+\cdots+\phi_{134} \theta^{1} \theta^{3} \theta^{4}+\cdots+\phi^{12 \cdots m} \theta_{1} \theta_{2} \cdots \theta_{\mathrm{m}-1} \theta_{\mathrm{m}} \\
& \in \Gamma\left(\mathbb{R}^{0 \mid m}\right)
\end{aligned}
$$

Covariance

Geometric models of dynamical systems and measurements?

Generalized dynamical phase-space

- Symplectic structure, ω :

$$
d \omega=0 \neq \omega^{\wedge n}, \quad \omega \in \Omega^{2}(M)
$$

- Symplectic vector field, ρ :

$$
\mathcal{L}_{\rho} \omega=0, \quad \rho \in \Gamma(T M)
$$

Definition
Dynamical phase-space $=(\underbrace{M^{2 n}}_{\substack{\Psi \\\left(p_{i}, q^{i}\right)}}, \omega, \rho)$

Phase-spacetime/Time covariance

Definition

Phase-spacetime $=(\underbrace{Z^{2 n+1}}_{\left(p_{i}, q^{i}, t\right)}, \omega) \quad$ [Herceeg et al, 2018, Casals et al., 2021]

Dynamical phase spacetime

Figure: dynamics $=$ unparameterized paths along $\operatorname{ker} \omega$

Measurements

- States $=$ probability distributions $=$ bounded non-negative functions

$$
0<\int \omega^{\wedge n} \Psi<\infty, \quad \Psi \in C^{\infty}(M)
$$

- Liouville evolution:

$$
\dot{\psi}=\mathcal{L}_{\rho} \psi
$$

- Observables $=$ dual to states $=$ phase-space functions
- Measurement $=$ Expectation value of some observable X in the state Ψ

$$
\langle X\rangle_{\Psi}:=\frac{\int_{M} \omega^{\wedge n} \Psi X}{\int_{M} \omega^{\wedge n} \Psi}
$$

- Superanalog?

Phase-spacetime measurements

Definition

Laboratory $=$ "time" slice $=$ symplectic hypersurface $\Sigma \hookrightarrow Z^{2 n+1}$

- instantaneous measurements
- measurement of the observable X at Σ in the state Ψ

$$
\langle X\rangle_{\Sigma, \Psi}:=\frac{\int_{\Sigma} \omega^{\wedge n} \Psi X}{\int_{\Sigma} \omega^{\wedge n} \Psi}
$$

E.g. Symplectic foliation

Figure: Family of labs

Positivity

Squaring trick

- states are positive \Rightarrow squares

$$
\Psi=\Phi^{2}
$$

- squared superfunctions have positive bodies

$$
(a+b \theta)^{2}=a^{2}+2 a b \theta
$$

Problems:

- body is b independent
- $2 a b$ does not have a definite sign $)^{-}$
- Solution: Define a new product!

$$
\theta \star \theta=1, \quad 1 \star \theta=\theta \star 1=\theta, \quad 1 \star 1=1
$$

- \star-squares:

$$
\begin{aligned}
& \qquad \begin{aligned}
(a+b \theta)^{\star 2} & =a^{2}+b^{2}+2 a b \theta \\
& =\left(a^{2}+b^{2}\right)\left[p_{0}(1+\theta)+p_{(a)}(1-\theta)\right]
\end{aligned} \\
& \text { where } p_{0}=\frac{(a+b)^{2}}{2\left(a^{2}+b^{2}\right)} \text { and } p_{0}=\frac{(a-b)^{2}}{2\left(a^{2}+b^{2}\right)} \quad \text { Probabilities!! }
\end{aligned}
$$

Wearing the quantum $\widehat{\text { hat }}$

Star product

$$
\begin{gathered}
\theta^{i} \star \theta^{j}=\delta^{i j}+\mathcal{O}\left(\theta^{2}\right), \quad \theta^{i} \theta^{j} \star \theta^{k} \theta^{\prime}=\frac{1}{2}\left(\delta^{j k} \delta^{i l}-\delta^{i k} \delta^{j l}\right)+\mathcal{O}\left(\theta^{2}\right), \ldots \\
\star=\exp \left(\overleftarrow{\partial}_{i} \delta^{i j} \vec{\partial}_{j}\right)
\end{gathered}
$$

$$
\star=\text { Moyal! }
$$

body $\circ \star=$ Hodge!

- Clifford algebra representation

$$
\sigma(F \star G)=\sigma(F) \sigma(G)
$$

$\sigma:$ superfunctions \rightarrow Hermitian matrices

$$
a+b \theta^{1}+c \theta^{2}-i d \theta^{1} \theta^{2} \stackrel{\sigma}{\mapsto}\left(\begin{array}{ll}
a+d & b-i c \\
b+i c & a-d
\end{array}\right)
$$

- Positivity of states $=$ positivity of quantum mechanical trace

$$
\int F \star F=\operatorname{Tr}\left(\sigma(F)^{2}\right) \propto a^{2}+b^{2}+c^{2}+d^{2}
$$

Supergeometry

Symplectic supermanifold

Definition

Super phase-spacetime $=\left(\mathcal{Z}^{2 n+1 \mid m}, \Omega\right)$
where

- $\mathcal{Z}^{2 n+1 \mid m}:=\left(Z^{2 n+1}, \mathcal{A}_{m}\right)$ and $\mathcal{A}_{U} \cong C^{\infty}(U) \otimes \Lambda \mathbb{R}^{m}$
- Ω is symplectic ($\operatorname{dim}_{\mathcal{A}_{m}} \operatorname{ker} \Omega=1$), hermitian, Grassmann-even.

Split structure

Short exact sequence of sheaves:

$$
0 \rightarrow \mathcal{N} \rightarrow \mathcal{A} \xrightarrow{i^{*}} C^{\infty} Z \rightarrow 0
$$

where $\mathcal{N}=$ sheaf of nilpotent ideals, $\mathcal{V} Z:=\frac{\mathcal{N}}{\mathcal{N}^{2}}, \mathcal{E} Z:=\Lambda \mathcal{V} Z$

- Real supermanifolds are split viz. there exists surjective morphism [Batchelor, 1979]

$$
\pi: \mathcal{Z} \rightarrow\left(Z, C^{\infty} Z\right), \quad \pi \circ i=\operatorname{Id}_{Z}
$$

- Superaffine connection $\nabla: \Gamma(T \mathcal{Z}) \rightarrow \Gamma\left(T^{*} \mathcal{Z} \otimes T \mathcal{Z}\right)$ canonically induces a \mathbb{Z}-grading [Koszul, 1994]

$$
\nabla_{X} X=X, \quad\left(X-k \operatorname{ld}_{\mathcal{A}}\right) \mathcal{N}^{k} \subset \mathcal{N}^{k+1}
$$

Definition

Koszul bundle $=$ representative exterior bundle $=\left(\mathcal{E} Z, \pi_{\nabla}\right)$

Induced \star-product

Theorem

Given a super phase-spacetime $(\mathcal{Z}, \Omega, \nabla)$ equipped with a flat, torsion-free, superaffine connection ∇ preserving Ω, there is a canonical star product $\star \nabla$.

Proof

- Clifford map $\gamma: \Gamma(\operatorname{Ver} \mathcal{V} Z) \rightarrow \Gamma(\mathcal{C} Z)$ obeying

$$
\{\gamma(u), \gamma(v)\}=2 \eta(u, v) \mid \mathrm{Id}
$$

- Quantization map $\sigma: \Gamma(\mathcal{E} Z) \rightarrow \Gamma(\operatorname{Ver} \mathcal{V} Z)$

$$
\begin{aligned}
\sigma(F) & =\gamma\left(\left(\exp \eta^{-1} \nabla F\right)_{0}\right) \\
& =\operatorname{Id} F_{0}+\gamma(\nabla F)+\frac{1}{2!} \gamma\left(\nabla^{2} F\right)+\cdots+\frac{1}{m!} \gamma\left(\nabla^{m} F\right)
\end{aligned}
$$

- *-product

$$
\sigma\left(F \star_{\nabla} G\right)=\sigma(F) \sigma(G) \Longrightarrow F \star_{\nabla} G=\left(\exp \eta^{-1}\right)(F, G)
$$

Supercone and measurements

Geometric data

 $\left(\mathcal{Z}, \Omega, \nabla_{\Omega}\right)$
Definition

$\mathcal{C}=$ Cone of states $=\left\{\Psi \in \Gamma\left(\mathcal{E}^{\nabla} Z\right) \mid \Psi=\Phi \star \nabla \Phi\right.$ and $\left.\Phi \in \mathcal{A}\right\}$

Definition

Measurement of observable $X \in \mathcal{A}$ in superlab Σ wrt state ψ

$$
\langle X\rangle_{\Sigma, \psi}:=\frac{\int_{\Sigma} \Psi \star X}{\int_{\Sigma} \Psi}=\frac{\int_{\Sigma} \Phi \star X \star \Phi}{\int_{\Sigma} \Phi \star \Phi}
$$

classical looks like quantum!

- Statefunction

$$
\Psi=\Phi^{\star 2}
$$

- Canonical measure

$$
d x^{1} \ldots d x^{2 n} \sqrt{\operatorname{det} \Omega_{\text {body }}} \circ \text { body }
$$

Examples

Supersymplectic measurement: Coin toss

- Supersymplectic structure:

$$
\theta \in \mathcal{M}=\mathbb{R}^{0 \mid 1}, \Omega=i d \theta \wedge d \theta
$$

- (Normalized) State:

$$
\begin{aligned}
\Psi(\theta) & =p_{0}(1+\theta)+p_{0}(1-\theta), \quad p_{0}+p_{0}=1 \\
& =\left(\phi_{+}+\phi_{-} \theta\right)^{\star 2}
\end{aligned}
$$

where $\phi_{ \pm}=\frac{1}{\sqrt{ } 2}\left(1 \pm \sqrt{1-\left(p_{0}-p_{0}\right)^{2}}\right)^{1 / 2}$

- Observable $X=x_{0}\left(\frac{1+\theta}{2}\right)+x^{(2)}\left(\frac{1-\theta}{2}\right)$

Supersymplectic dynamics: 2-bit Markov

- Supersymplectic structure:

$$
\left(t, \theta^{1}, \theta^{2}\right) \in \mathcal{M}=\mathbb{R}^{1 \mid 2}, \Omega=i\left(\delta_{a b} d \theta^{a} \wedge d \theta^{b}-H \epsilon_{b a} \theta^{b} d \theta^{a} \wedge d t\right)
$$

- Dynamics: $\operatorname{ker} \Omega \ni \rho=\partial_{t}-\frac{H}{2} \epsilon_{a b} \theta^{a} \partial_{\theta^{b}}$
- State: $\Psi(t, \theta)=1+\psi_{1} \theta^{1}+\psi_{2} \theta^{2}+i \psi_{12} \theta^{1} \theta^{2}, \quad \psi_{1}^{2}+\psi_{2}^{2}+\psi_{12}^{2} \leq 1$

$$
=p_{i}(t) \xi^{i}
$$

where ξ^{i} correspond to a bounding tetrahedron containing \star-squares.

Figure: Geometry of \star-squares

Markov-like evolution

$$
\begin{gathered}
\left(\begin{array}{l}
p_{1}(t) \\
p_{2}(t) \\
p_{3}(t) \\
p_{4}(t)
\end{array}\right)=\left(\begin{array}{cccc}
\frac{1+2 \mathfrak{c}(t)}{3} & \frac{1-\mathfrak{c}(t)+\sqrt{3} \mathfrak{s}(t)}{3} & \frac{1-\mathfrak{c}(t)-\sqrt{3} \mathfrak{s}(t)}{3} & 0 \\
\frac{1-\mathfrak{c}(t)-\sqrt{3} \mathfrak{s}(t)}{3} & \frac{1+2 \mathfrak{c}(t)}{3} & \frac{1-\mathfrak{c}(t)+\sqrt{3} \mathfrak{s}(t)}{3} & 0 \\
\frac{1-\mathfrak{c}(t)+\sqrt{3} \mathfrak{s}(t)}{3} & \frac{1-\mathfrak{c}(t)-\sqrt{3} \mathfrak{s}(t)}{3} & \frac{1+2 \mathfrak{c}(t)}{3} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
p_{1}(0) \\
p_{2}(0) \\
p_{3}(0) \\
p_{4}(0)
\end{array}\right) \\
\text { where } \mathfrak{c}(t):=\cos \left(\frac{t H}{2}\right), \mathfrak{s}(t):=\sin \left(\frac{t H}{2}\right)
\end{gathered} \quad \downarrow, p_{1}^{2}+p_{2}^{2}+p_{3}^{2}=\text { const. } .
$$

Cone of allowed initial distributions
$\Delta_{\text {cone }} \leq 0$

Filled ellipsoid of \star-squares
$\Delta_{\text {ellipsoid }} \leq 0$

Bounding polyhedral convex Markov cone

$$
p_{1}, p_{2}, p_{3} \geq 0, p_{1}+p_{2}+p_{3} \leq 1
$$

Figure: Dynamics $=$ circular paths inside the orange ellipsoid

Questions \& Future directions

- Quantization of Markov processes?
- Quantum Darboux theorem?
- Supersymmetries?
- Thermodynamic limit?
- Measurement theory for non-commuting algebras?

References

Datchelor, M. (1979).
The structure of supermanifolds.
Transactions of the American Mathematical Society, 253:329-338.
R Berezin, F. A. and Marinov, M. S. (1977).
Particle Spin Dynamics as the Grassmann Variant of Classical Mechanics.
Annals Phys., 104:336.
Tasals, R., Herczeg, G., and Waldron, A. (2021).
Dynamical Quantization of Contact Structures.
T Herczeg, G., Latini, E., and Waldron, A. (2018).
Contact Quantization: Quantum Mechanics = Parallel transport.
R Koszul, J.-L. (1994).
Connections and splittings of supermanifolds.
Differential Geometry and its Applications, 4(2):151-161.

